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• Background

• What is the EIC?

• Electron Polarization in a Storage Ring

• Motivation/Methods for Tracking Studies

• Results

• ESR v5.3 1IP and a “mystery” effect

• ESR v5.6

• 1IP, vertical emittance creator study

• Resolution of the mystery

Overview



3Matt Signorelli (mgs255@cornell.edu) Cornell Accelerator Physics Journal Club – November 17th, 2022

What is the Electron-Ion Collider (EIC)?

Background

Species proton electron proton electron proton electron proton electron proton electron

Energy [GeV] 275 18 275 10 100 10 100 5 41 5

CM energy [GeV] 140.7 104.9 63.2 44.7 28.6

• Hadron Storage Ring (HSR)

• Rapid Cycling Synchrotron (RCS)

• Electron Storage Ring (ESR)



4Matt Signorelli (mgs255@cornell.edu) Cornell Accelerator Physics Journal Club – November 17th, 2022

Electron Polarization in a Storage Ring

Background
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Electron Polarization in a Storage Ring

Background
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Electron Polarization in a Storage Ring

• Ring with only dipoles

• Periodic spin direction ො𝑛0

ෝ𝒏𝟎ෝ𝒏𝟎
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Electron Polarization in a Storage Ring

• Ring with only dipoles and quadrupoles

• Periodic spin direction ො𝑛0

ෝ𝒏𝟎ෝ𝒏𝟎

ෝ𝒏𝟎

ෝ𝒏𝟎 ෝ𝒏𝟎
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Background
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×

Electron Polarization in a Storage Ring

• What if we want longitudinal spin at the interaction point?

ෝ𝒏𝟎

ෝ𝒏𝟎
ෝ𝒏𝟎ෝ𝒏𝟎

ෝ𝒏𝟎 ෝ𝒏𝟎

ෝ𝒏𝟎
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Electron Polarization in a Storage Ring

Is that it?

For hadrons, mostly. But…

Electrons emit synchrotron radiation!

1. Sokolov-Ternov (spin flip) effect

2. Spin diffusion
3. Kinetic polarization (usually small)

Background
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Electron Polarization in a Storage Ring

Sokolov-Ternov Effect

• Derivable from single-particle Dirac theory

• Spin may flip during synchrotron radiation emission in homogenous field

• Asymmetry 𝐴: higher rate to flip antiparallel to 𝐵-field than parallel to

𝐴 =
𝑤− −𝑤+

𝑤− +𝑤+
=

8

5 3
= 0.9238

• Builds up polarization in a storage ring!

Background
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Electron Polarization in a Storage Ring

• Ring with only dipoles and quadrupoles

• No depolarizing effects of radiation in perfectly planar ring 

Background

ෝ𝒏𝟎
𝑺

𝑺
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ෝ𝒏𝟎

ෝ𝒏𝟎
ෝ𝒏𝟎ෝ𝒏𝟎

ෝ𝒏𝟎 ෝ𝒏𝟎

ෝ𝒏𝟎

𝑺

𝑺 ≠ ෝ𝒏𝟎

Electron Polarization in a Storage Ring

• Spin diffusion

Background
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Electron Polarization in a Storage Ring

Background

From [1-8]

ෝ𝒏𝟎
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Electron Polarization in a Storage Ring

Background

From [1-8]
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Electron Polarization in a Storage Ring

• “Spin matching”

Background

From [1-8]

𝑠𝑖 𝑠𝑓

𝑮𝒙,𝒚,𝒛(𝑠𝑖 → 𝑠𝑓) = 𝟎

ෝ𝒏𝟎

See [9] for more details.

𝑺

𝑺 = ෝ𝒏𝟎
ෝ𝒏𝟎
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Background

Electron Polarization in a Storage Ring

𝑃 𝑡 = 𝑃∞ 1 − 𝑒−𝑡/𝜏𝑒𝑞 + 𝑃0𝑒
−𝑡/ 𝜏𝑒𝑞

𝜏𝑒𝑞
−1 = 𝜏𝑝𝑜𝑙

−1 + 𝜏𝑑𝑒𝑝
−1

To estimate 𝜏𝑑𝑒𝑝
−1 , do Monte Carlo tracking with only spin diffusion effects

𝑃𝑡𝑟 𝑡 = 𝑃0𝑒
−𝑡/𝜏𝑑𝑒𝑝 ≈ 𝑃0 − 𝑡/𝜏𝑑𝑒𝑝

✓ Can be accurately 

approximated from the closed 

orbit with analytical formulas 

× Hard to estimate analytically. 

May be affected significantly by 

nonlinearities

From [1-8]
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EIC-ESR Spin Rotator System 

• Rotates ො𝑛0 to longitudinal at the IP for a wide range of e-beam energies (5-18 GeV)

Background
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Images from [10]

𝑧
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EIC-ESR Spin Matching Conditions

Background

𝜙4

𝜙3
𝜙2

𝜙1

𝜓4 𝜓3 𝜓2
𝜓1

Images from [10], ESR spin matching conditions in [11] or [9].
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𝛽

𝑖
00

𝑮𝒙 = 𝟎 by conditions on 

quads between solenoids

𝑮𝒛 = 𝟎 by conditions on 

periodic dispersion 𝜂, 𝜂′
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EIC-ESR Polarization Requirements

• Maintain average polarization of at least 70%

• Bunches should be replaced on average every 2.2 minutes

• For 𝑃∞ = 30%, need 𝜏𝑒𝑞 > 4.6 min

Background

Images from [10]
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Motivation for Tracking Studies

• Most accurate statistics including all nonlinearities 

• Verify effects/significance of first-order spin matching

• Must cross-check between various modern codes

• Verify polarization robustness (i.e. with misalignments, 𝜖𝑦-creator)
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Methods

Monte-Carlo Spin Tracking Methods with Radiation

• Map Tracking – damped maps generated between each bend center 

(radiation points*) by PTC w/ user-specified order

• Bmad Tracking – element-by-element damped nonlinear maps w/ 

radiation points after each element

• PTC Tracking – element-by-element symplectic integration w/ 

radiation points at each step within the element

• Bmad toolkit conveniently implements all the above tracking methods and can 

be run in parallel on a GPU cluster

*bend-splitting for radiation – “SLICKTRACK” – is necessary for accurate spin tracking 
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Methods

ESR 18 GeV Lattice Tracking Studies

• v5.3: 𝑮𝒙 = 𝟎, 𝑮𝒛 = 𝟎
— 1IP

• v5.6: 𝑮𝒙 = 𝟎, 𝑮𝒛 ≠ 𝟎
— 1IP
— 𝜖𝑦-creator

• v5.3 with varying 𝑸𝒔

All trackings started with 5,000–10,000 particle distribution generated 
from analytical equilibrium 𝜖𝑎 , 𝜖𝑏 , 𝜖𝑐
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v5.3 Results
𝐺𝑥 = 0,   𝐺𝑧 = 0
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Polarization

• Polarization significantly worse in nonlinear case

• Such significant damping should not occur if starting w/ equilibrium distribution. Is 

this a clue on what’s happening?

Results – v5.3

v5.3 1IP

𝝉𝒆𝒒 [min] 𝑷∞

Analytical 31.1 61.3%

1st Order Map Tracking 30.7 66.4%

2nd Order Map Tracking 15.7 33.8%

3rd Order Map Tracking 6.5 14.0%

Bmad Tracking 5.6 12.1%

PTC Tracking 5.7 12.3%
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Turn-by-turn RMS emittances

Nonlinearities might be driving tails of y-distribution to high amplitudes

→ Core emittance likely a better measure…

Results – v5.3
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Core emittance
— Emittance obtained by fitting a Gaussian 

to particles within some cutoff amplitude

— If perfectly Gaussian distribution,  

𝜖𝑐𝑜𝑟𝑒 = 𝜖𝑅𝑀𝑆 for all cutoff amplitudes

• Core emittances calculated as means of 

core emittance over turns 4,000 to end

• In nonlinear case, obtaining  ~5 nm of 

vertical emittance even in the core

Results – v5.3
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• There is some nonlinear effect present that:

→ Creates 5nm 𝜖𝑏 even in the core

→ Reduces DK polarization from 60% to 12%

• Only regions in ring where 𝜖𝑏 might be created is where there is coupling

• Try fully nonlinear trackings (including nonlinear solenoids) but with 1st, 

2nd and 3rd order quadrupoles in between solenoids (settable in Bmad)

Results – v5.3
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Core Emittance

• ~5 nm vertical emittance created by 

2nd order effects of quadrupoles in 

between solenoids

• Polarization?

Results – v5.3
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Polarization

• 2nd order effects in quadrupoles between solenoids the primary culprit

Results – v5.3

v5.3 1IP

𝝉𝒆𝒒 [min] 𝑷∞

Analytical 31.1 61.3%

Bmad w/ 1st Order S.M. Quads 28.3 61.1%

Bmad w/ 2nd Order S.M. Quads 7.0 15.1%

Bmad w/ 3rd Order S.M. Quads 5.0 10.8%

Bmad Tracking 5.6 12.1%
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Conclusions – v5.3

• Mystery 2nd order effect… 

→ Creates ~5 nm of core vertical emittance

→ Reduces 𝑃∞ to 12%

• DA studies suggest having 𝜼, 𝜼′ = 𝟎 in solenoids removes the effect

→ Must turn off the short solenoid & lose the longitudinal spin match

• Leads to the v5.6: 𝜼, 𝜼′ = 𝟎 in solenoids but 𝑮𝒛 ≠ 𝟎
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v5.6 Results
𝐺𝑥 = 0,   𝐺𝑧 ≠ 0

𝜂, 𝜂′ = 0 in solenoid modules
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Results – v5.6 1IP

Does having 𝜼, 𝜼′ = 𝟎 in the solenoids fix mystery effect?

Vertical core emittances: 

𝜼, 𝜼′ ≠ 𝟎 𝜼, 𝜼′ = 𝟎

✓
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Results – v5.6 1IP

Can we live without a longitudinal spin match at 18 GeV?

Linear 𝑃∞:

𝑮𝒛 = 𝟎
*nonlinearities give much lower actual 𝑃∞

𝑮𝒛 ≠ 𝟎

Maybe – need to check 

nonlinear tracking
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Polarization

• Polarization is robust for baseline 1IP v5.6 in fully nonlinear case 

• But what about misalignments, beam-beam force, and vertical emittance creation?

Results – v5.6 1IP

v5.6 1IP

𝝉𝒆𝒒 [min] 𝑷∞

Analytical 15.0 33.4%

1st Order Map Tracking 14.0 32.9%

2nd Order Map Tracking 13.9 32.7%

3rd Order Map Tracking 13.7 32.1%

Bmad Tracking 13.7 32.1%

PTC Tracking 13.6 31.9%
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Several methods to create 𝝐𝒚
1. Localized closed 𝜂𝑦 bump

2. Delocalized 𝜂𝑦
3. Localized coupling near the IR

• Inserted closed 𝜂𝑦 bump in IP2 drift 

space that creates 2.5 nm 𝜖𝑦

• Optimized so 𝑮𝑦 = 0 for 1-turn from 

center of chicane

• Spin match was tricky: 𝜖𝑦 grew to ~ 5 nm

Results – v5.6 𝝐𝒚-creator 

←
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Polarization

• Polarization drops below acceptable levels!

• Careful implementation and vertical spin matching will be necessary if 

closed 𝜼𝒚-bump used as vertical emittance creator

Results – v5.6 𝝐𝒚-creator

v5.6 1IP v5.6 1IP 

+ 𝜼𝒚 bump

v5.6 1IP 

+ 𝜼𝒚 bump 

+ 𝑮𝒚 = 𝟎

𝝉𝒆𝒒 [min] 𝑷∞ 𝝉𝒆𝒒 [min] 𝑷∞ 𝝉𝒆𝒒 [min] 𝑷∞

Analytical 15.0 33.4% 6.8 29.3% 12.2 31.9%

1st Order Map Tracking 14.0 32.9% 6.4 14.5% 8.9 24.5%

2nd Order Map Tracking 13.9 32.7% 5.8 13.4% 6.2 17.1%

3rd Order Map Tracking 13.7 32.1% 5.6 13.0% 6.6 18.0%

PTC Tracking 13.6 31.9% 5.4 12.5% 6.4 17.5%
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Conclusions – v5.6

• Zero dispersion in the solenoid modules fixes mystery effect

• However, doing so loses longitudinal spin match

→ Polarization drops significantly, even in linear case

→ 𝜖𝑦 creation drops polarization below acceptable levels

• Dispersion in the solenoids still inevitable

• Misalignments, beam-beam force worrisome

What was the mystery effect??
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Resolution of the v5.3 “mystery”
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Recall, for v5.3, 2nd order effects of quads between solenoids:

• Resolved with 𝜼 = 𝟎 in solenoids, but important to understand these effects

• Tolerance on dispersion in solenoids in 5GeV, 10GeV lattices

• Robustness against misalignments, uncontrolled vertical emittance increase

Overview
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I will show that

• Blowup in vertical emittance, very low polarizations, 

and “spike” in horizontal core emittance are 

caused by the 𝑄𝑦 − 2𝑄𝑠 resonance

and that by changing 𝑄𝑠

• You can have dispersion in the solenoids 

• Longitudinal spin match is achievable, and holds 

up well in nonlinear tracking

Overview
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• v5.3 Baseline working point: 𝑄𝑥 = 48.12, 𝑄𝑦 = 43.10, 𝑄𝑠 = 0.05

Nonlinear tracking study: vary 𝑄𝑠, keep 𝑄𝑥 , 𝑄𝑦 constant

• 5,000 particles, 5,000 turns. Emittances are means of turns 4,000-5,000

• Radiation damping + fluctuations, bends split for stochastic radiation

• Synchrotron tune set after turning on radiation and tapering

• All 3rd order map tracking for speed

• Agrees very well with fully nonlinear Bmad, PTC tracking

Methods
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v5.3 𝑸𝒙 = 𝟒𝟖. 𝟏𝟐,𝑸𝒚 = 𝟒𝟑. 𝟏𝟎, Vary 𝑸𝒔

× 10−3

𝑄𝑦 − 2𝑄𝑠 𝑄𝑥 − 2𝑄𝑠

40 45 47 48 49 50 51 52 53 55 57 58 59 60 61 62 63 65 70𝑄𝑠 =
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v5.3 𝑸𝒙 = 𝟒𝟖. 𝟏𝟐,𝑸𝒚 = 𝟒𝟑. 𝟏𝟎, Vary 𝑸𝒔

× 10−3

𝑄𝑦 − 2𝑄𝑠 𝑄𝑥 − 2𝑄𝑠

Control: 1st order map tracking for all 𝑸𝒔

40 45 47 48 49 50 51 52 53 55 57 58 59 60 61 62 63 65 70𝑄𝑠 =
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v5.3 𝑸𝒙 = 𝟒𝟖. 𝟏𝟐,𝑸𝒚 = 𝟒𝟑. 𝟏𝟎, Vary 𝑸𝒔

× 10−3

𝑄𝑦 − 2𝑄𝑠 𝑄𝑥 − 2𝑄𝑠

40 45 47 48 49 50 51 52 53 55 57 58 59 60 61 62 63 65 70𝑄𝑠 =
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v5.3 𝑸𝒙 = 𝟒𝟖. 𝟏𝟐,𝑸𝒚 = 𝟒𝟑. 𝟏𝟎, Vary 𝑸𝒔

× 10−3

𝑄𝑦 − 2𝑄𝑠 𝑄𝑥 − 2𝑄𝑠

40 45 47 48 49 50 51 52 53 55 57 58 59 60 61 62 63 65 70𝑄𝑠 =
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v5.3 𝑸𝒙 = 𝟒𝟖. 𝟏𝟐,𝑸𝒚 = 𝟒𝟑. 𝟏𝟎, Vary 𝑸𝒔

× 10−3

𝑄𝑦 − 2𝑄𝑠 𝑄𝑥 − 2𝑄𝑠

40 45 47 48 49 50 51 52 53 55 57 58 59 60 61 62 63 65 70𝑄𝑠 =
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v5.3 𝑸𝒙 = 𝟒𝟖. 𝟏𝟐,𝑸𝒚 = 𝟒𝟑. 𝟏𝟎, Vary 𝑸𝒔

× 10−3

𝑄𝑦 − 2𝑄𝑠 𝑄𝑥 − 2𝑄𝑠
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v5.3 𝑸𝒙 = 𝟒𝟖. 𝟏𝟐,𝑸𝒚 = 𝟒𝟑. 𝟏𝟎, Vary 𝑸𝒔

× 10−3

𝑄𝑦 − 2𝑄𝑠 𝑄𝑥 − 2𝑄𝑠

40 45 47 48 49 50 51 52 53 55 57 58 59 60 61 62 63 65 70𝑄𝑠 =
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v5.3 𝑸𝒙 = 𝟒𝟖. 𝟏𝟐,𝑸𝒚 = 𝟒𝟑. 𝟏𝟎, Vary 𝑸𝒔
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v5.3 𝑸𝒙 = 𝟒𝟖. 𝟏𝟐,𝑸𝒚 = 𝟒𝟑. 𝟏𝟎, Vary 𝑸𝒔
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• Horizontal core emittances blow up on 

𝑄𝑥 − 2𝑄𝑠 resonance

• Likewise, vertical core emittance blows up 

on 𝑄𝑦 − 2𝑄𝑠, which is the baseline

• Considering the previous results →

→ 𝑸𝒚 − 𝟐𝑸𝒔 resonance is excited by 2nd

order effects in quadrupoles between 

solenoids

Results
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Theory for 𝑸𝒚 − 𝟐𝑸𝒔 resonance, observed in quadrupoles

Looking for e𝑖 𝑄𝑦−2𝑄𝑠+𝑝 𝜃 → 𝑦𝛿2 term in Hamiltonian:

𝐻 =
1

2
𝐾 𝑥2 − 𝑦2 + …

=
1

2

𝐾0
1 + 𝛿

𝑥𝛽 + 𝜂𝑥𝛿
2
− 𝑦𝛽 + 𝜂𝑦𝛿

2
+…

=
1

2
𝐾0 2𝑥𝛽𝜂𝑥𝛿 − 2𝑦𝛽𝜂𝑦𝛿 1 − 𝛿 + …

= 𝑲𝟎𝜼𝒚𝒚𝜷𝜹
𝟐 +…

Results

Excited by nonzero vertical dispersion 

in quadrupoles, which we have in 

between the solenoids for v5.3!
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Recall polarization results for v5.3:

Results

v5.3 Baseline (𝑸𝒔 = 𝟎. 𝟎𝟓) 𝑷𝒅𝒌

Analytical 61.3%

1st Order Map Tracking 66.4%

2nd Order Map Tracking 33.9%

3rd Order Map Tracking 14.0%

Bmad Tracking 12.1%

PTC Tracking 12.3%

Bmad Tracking w/ 1st Order Rotator Quads 61.1%

Bmad Tracking w/ 2nd Order Rotator Quads 15.1%

Bmad Tracking w/ 3rd Order Rotator Quads 10.9%

v5.3 𝑸𝒔 = 𝟎. 𝟎𝟒 𝑷𝒅𝒌

Analytical 61.3%

1st Order Map Tracking 66.6%

3rd Order Map Tracking 56.1%

• Very large increase in polarization

• Longitudinal spin match highly beneficial

• v5.6 baseline has ~30%, drops 

below acceptable values with vertical 

emittance creation
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• In the 18GeV lattice, vertical emittance blow-up and “spike” in horizontal 

core emittance is caused by the 𝑄𝑦 − 2𝑄𝑠 resonance

• The 𝑄𝑦 − 2𝑄𝑠 resonance is excited by vertical dispersion in quadrupoles

• Implications:

• Misalignments in v5.6 will lead to vertical dispersion in solenoids, and 

excitation of this resonance

• Dispersion in the solenoids is not bad unless on the resonance

• Longitudinal spin match may not need to be dropped. Nonlinear ~56% 

asymptotic polarization is possible in v5.3 with different choice of 𝑄𝑠
• Reconsider choice of 𝑄𝑠

Conclusions
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