Electron Spin Tracking Studies for the EIC Accelerator Physics Journal Club 11/17/22

Matt Signorelli PhD Candidate, Cornell ERL/EIC Group **PI: Georg Hoffstaetter**

a bassion for discovery

Cornell Laboratory for Accelerator-based Sciences and Education (CLASSE)

- Background
 - What is the EIC?
 - Electron Polarization in a Storage Ring
- Motivation/Methods for Tracking Studies
- Results
 - ESR v5.3 1IP and a "mystery" effect
 - ESR v5.6
 - 1IP, vertical emittance creator study
 - Resolution of the mystery

What is the Electron-Ion Collider (EIC)?

- Hadron Storage Ring (HSR)
- Rapid Cycling Synchrotron (RCS)
- Electron Storage Ring (ESR)

Species	proton	electron									
Energy [GeV]	275	18	275	10	100	10	100	5	41	5	
CM energy [GeV]	14	0.7	104.9		63.2		4	4.7	28.6		

4

Electron Polarization in a Storage Ring

Electron Polarization in a Storage Ring

$$\frac{d\vec{L}}{dt} = \vec{\mu} \times \vec{B}$$

For single particles,

 $\vec{L} = \gamma \vec{\mu}$

Spin precesses around magnetic fields

Electron Polarization in a Storage Ring

• Ring with only dipoles and quadrupoles

• Periodic spin direction \hat{n}_0

Electron Polarization in a Storage Ring

• What if we want longitudinal spin at the interaction point?

9

Electron Polarization in a Storage Ring

Is that it? For hadrons, mostly. But...

Electrons emit synchrotron radiation!

- 1. Sokolov-Ternov (spin flip) effect
- 2. Spin diffusion
- 3. Kinetic polarization (usually small)

Electron Polarization in a Storage Ring

Sokolov-Ternov Effect

- Derivable from single-particle Dirac theory
- Spin may flip during synchrotron radiation emission in homogenous field
- Asymmetry A: higher rate to flip antiparallel to \vec{B} -field than parallel to

$$A = \frac{w_{-} - w_{+}}{w_{-} + w_{+}} = \frac{8}{5\sqrt{3}} = 0.9238$$

• Builds up polarization in a storage ring!

Electron Polarization in a Storage Ring

• Ring with only dipoles and quadrupoles

• No depolarizing effects of radiation in perfectly planar ring

Electron Polarization in a Storage Ring

• Spin diffusion

Electron Polarization in a Storage Ring

From [1-8]

From [1-8]

Electron Polarization in a Storage Ring

• "Spin matching"

See [9] for more details.

From [1-8]

Electron Polarization in a Storage Ring

$$P(t) = P_{\infty} (1 - e^{-t/\tau_{eq}}) + P_0 e^{-t/\tau_{eq}}$$

 $\tau_{eq}^{-1} = \tau_{pol}^{-1} + \tau_{dep}^{-1}$

 Can be accurately approximated from the closed orbit with analytical formulas Hard to estimate analytically.
 May be affected significantly by nonlinearities

To estimate τ_{dep}^{-1} , do Monte Carlo tracking with *only* spin diffusion effects

$$P_{tr}(t) = P_0 e^{-t/\tau_{dep}} \approx P_0 - t/\tau_{dep}$$

Matt Signorelli (mgs255@cornell.edu)

From [1-8]

16

EIC-ESR Spin Rotator System

• Rotates \hat{n}_0 to longitudinal at the IP for a wide range of e-beam energies (5-18 GeV)

Images from [10]

EIC-ESR Spin Matching Conditions

Images from [10], ESR spin matching conditions in [11] or [9].

Matt Signorelli (mgs255@cornell.edu)

EIC-ESR Polarization Requirements

- Maintain average polarization of at least 70%
- Bunches should be replaced on average every 2.2 minutes
- For $P_{\infty} = 30\%$, need $\tau_{eq} > 4.6$ min

Images from [10] Cornell Accelerator Physics Journal Club – November 17th, 2022

- Most accurate statistics including all nonlinearities
- Verify effects/significance of first-order spin matching
- Must cross-check between various modern codes
- Verify polarization robustness (i.e. with misalignments, ϵ_v -creator)

Methods

Monte-Carlo Spin Tracking Methods with Radiation

- Map Tracking damped maps generated between each bend center (radiation points*) by PTC w/ user-specified order
- Bmad Tracking element-by-element damped nonlinear maps w/ radiation points after each element
- **PTC Tracking** element-by-element symplectic integration w/ radiation points at each step within the element
- Bmad toolkit conveniently implements all the above tracking methods and can be run in parallel on a GPU cluster

*bend-splitting for radiation – "SLICKTRACK" – is necessary for accurate spin tracking

Methods

ESR 18 GeV Lattice Tracking Studies

- v5.3: $G_x = 0$, $G_z = 0$ - 1IP
- v5.6: $G_x = 0$, $G_z \neq 0$ - 1IP
 - $-\epsilon_y$ -creator

• v5.3 with varying Q_s

All trackings started with 5,000–10,000 particle distribution generated from analytical equilibrium $\epsilon_a, \epsilon_b, \epsilon_c$

v5.3 Results $G_x = 0, G_z = 0$

Polarization

	= 0		
	v5.3 1IP		
	$ au_{eq}$ [min]	$oldsymbol{P}_{\infty}$	
Analytical	31.1	61.3%	
1 st Order Map Tracking	30.7	66.4%	
2 nd Order Map Tracking	15.7	33.8%	
3 rd Order Map Tracking	6.5	14.0%	
Bmad Tracking	5.6	12.1%	
PTC Tracking	5.7	12.3%	

- Polarization significantly worse in nonlinear case
- Such significant damping should not occur if starting w/ equilibrium distribution. Is this a clue on what's happening?

Turn-by-turn RMS emittances

Nonlinearities might be driving tails of y-distribution to high amplitudes

 \rightarrow Core emittance likely a better measure...

Core emittance

- Emittance obtained by fitting a Gaussian to particles within some cutoff amplitude
- If perfectly Gaussian distribution, $\epsilon_{core} = \epsilon_{RMS}$ for all cutoff amplitudes
- Core emittances calculated as means of core emittance over turns 4,000 to end

 In nonlinear case, obtaining ~5 nm of vertical emittance even in the core

- There is some nonlinear effect present that:
 - \rightarrow Creates 5nm ϵ_b even in the core
 - \rightarrow Reduces DK polarization from 60% to 12%
- Only regions in ring where ϵ_b might be created is where there is coupling

 Try fully nonlinear trackings (including nonlinear solenoids) but with 1st, 2nd and 3rd order quadrupoles in between solenoids (settable in Bmad)

Core Emittance

 ~5 nm vertical emittance created by 2nd order effects of quadrupoles in between solenoids

Polarization?

Polarization

	v5.3 1IP				
	$ au_{eq}$ [min]	\pmb{P}_{∞}			
Analytical	31.1	61.3%			
Bmad w/ 1 st Order S.M. Quads	28.3	61.1%			
Bmad w/ 2 nd Order S.M. Quads	7.0	15.1%			
Bmad w/ 3 rd Order S.M. Quads	5.0	10.8%			
Bmad Tracking	5.6	12.1%			

• 2nd order effects in quadrupoles between solenoids the primary culprit

Conclusions – v5.3

- Mystery 2nd order effect...
 - \rightarrow Creates ~5 nm of core vertical emittance
 - \rightarrow Reduces P_{∞} to 12%

- DA studies suggest having η , $\eta' = 0$ in solenoids removes the effect
 - \rightarrow Must turn off the short solenoid & lose the longitudinal spin match

• Leads to the v5.6: η , $\eta' = 0$ in solenoids but $G_z \neq 0$

v5.6 Results $G_x = 0, G_z \neq 0$ $\eta, \eta' = 0$ in solenoid modules

Results – v5.6 1IP

Does having η , $\eta' = 0$ in the solenoids fix mystery effect? Vertical core emittances:

Can we live without a longitudinal spin match at 18 GeV? Maybe – need to check Linear P_{∞} :

*nonlinearities give much lower actual P_{∞}

Results – v5.6 1IP

Polarization

- Polarization is robust for baseline 1IP v5.6 in fully nonlinear case
- But what about misalignments, beam-beam force, and vertical emittance creation?

Several methods to create ϵ_{γ}

- 1. Localized closed η_y bump \leftarrow
- 2. Delocalized η_y
- 3. Localized coupling near the IR
- Inserted closed η_y bump in IP2 drift space that creates 2.5 nm ϵ_y
- Optimized so $G_y = 0$ for 1-turn from center of chicane
- Spin match was tricky: ϵ_y grew to ~ 5 nm

Polarization

	v5.6 1IP		v5.6 1IP + η_y bump			v5.6 1IP + η_y bump + $G_y = 0$		
	$ au_{eq}$ [min]	P_{∞}	$ au_{eq}$ [min]	\pmb{P}_{∞}		$ au_{eq}$ [min]	\pmb{P}_{∞}	
Analytical	15.0	33.4%	6.8	29.3%		12.2	31.9%	
1 st Order Map Tracking	14.0	32.9%	6.4	14.5%		8.9	24.5%	
2 nd Order Map Tracking	13.9	32.7%	5.8	13.4%		6.2	17.1%	
3 rd Order Map Tracking	13.7	32.1%	5.6	13.0%		6.6	18.0%	
PTC Tracking	13.6	31.9%	5.4	12.5%		6.4	17.5%	

- Polarization drops below acceptable levels!
- Careful implementation and vertical spin matching will be necessary if closed η_v -bump used as vertical emittance creator

Cornell Laboratory for

- Zero dispersion in the solenoid modules fixes mystery effect \bullet
- However, doing so loses longitudinal spin match \bullet \rightarrow Polarization drops significantly, even in linear case $\rightarrow \epsilon_{v}$ creation drops polarization below acceptable levels
- Dispersion in the solenoids still inevitable
 - Misalignments, beam-beam force worrisome

What was the mystery effect??

Resolution of the v5.3 "mystery"

Overview

Recall, for v5.3, 2nd order effects of quads between solenoids:

- Resolved with $\eta = 0$ in solenoids, but important to understand these effects
 - Tolerance on dispersion in solenoids in 5GeV, 10GeV lattices
 - Robustness against misalignments, uncontrolled vertical emittance increase

Overview

I will show that

• Blowup in vertical emittance, very low polarizations, and "spike" in horizontal core emittance are caused by the $Q_v - 2Q_s$ resonance

and that by changing Q_s

- You can have dispersion in the solenoids
- Longitudinal spin match is achievable, and holds up well in nonlinear tracking

• v5.3 Baseline working point: $Q_x = 48.12, Q_y = 43.10, Q_s = 0.05$

Nonlinear tracking study: vary Q_s , keep Q_x , Q_y constant

- 5,000 particles, 5,000 turns. Emittances are means of turns 4,000-5,000
- Radiation damping + fluctuations, bends split for stochastic radiation
- Synchrotron tune set *after* turning on radiation and tapering
- All 3rd order map tracking for speed
 - Agrees very well with fully nonlinear Bmad, PTC tracking

v5.3 $Q_x = 48.12, Q_y = 43.10, \text{Vary } Q_s$

Matt Signorelli (mgs255@cornell.edu)

v5.3 $Q_x = 48.12, Q_y = 43.10, \text{Vary } Q_s$

Matt Signorelli (mgs255@cornell.edu)

v5.3 $Q_x = 48.12, Q_y = 43.10, \text{Vary } Q_s$

Matt Signorelli (mgs255@cornell.edu)

Brookhaven v5.3 $Q_x = 48.12, Q_y = 43.10, \text{Vary } Q_s$

Matt Signorelli (mgs255@cornell.edu)

46 Cornell Accelerator Physics Journal Club - November 17th, 2022

National Laboratory

v5.3 $Q_x = 48.12, Q_y = 43.10, Vary Q_s$

v5.3 $Q_x = 48.12, Q_y = 43.10, \text{Vary } Q_s$

Matt Signorelli (mgs255@cornell.edu)

v5.3 $Q_x = 48.12, Q_y = 43.10, \text{Vary } Q_s$

Matt Signorelli (mgs255@cornell.edu)

v5.3 $Q_x = 48.12, Q_v = 43.10, Vary Q_s$ is Brookhaven

Matt Signorelli (mgs255@cornell.edu)

v5.3 $Q_x = 48.12, Q_y = 43.10, \text{Vary } Q_s$ [9]

Matt Signorelli (mgs255@cornell.edu)

v5.3 $Q_x = 48.12, Q_y = 43.10, \text{Vary } Q_s$

Matt Signorelli (mgs255@cornell.edu)

Cornell Accelerator Physics Journal Club – November 17th, 2022 52

Brookhaven

National Laboratory

v5.3 $Q_x = 48.12, Q_y = 43.10, \text{Vary } Q_s$

Matt Signorelli (mgs255@cornell.edu)

v5.3 $Q_x = 48.12, Q_v = 43.10, \text{Vary } Q_s$ \bigcirc

Matt Signorelli (mgs255@cornell.edu)

v5.3 $Q_x = 48.12, Q_y = 43.10, \text{Vary } Q_s$

Matt Signorelli (mgs255@cornell.edu)

Cornell Accelerator Physics Journal Club – November 17th, 2022 55

Brookhaven

National Laboratory

Matt Signorelli (mgs255@cornell.edu)

Matt Signorelli (mgs255@cornell.edu)

v5.3 $Q_x = 48.12, Q_v = 43.10, Vary Q_s$ is Brookhaven

Matt Signorelli (mgs255@cornell.edu)

Matt Signorelli (mgs255@cornell.edu)

v5.3 $Q_x = 48.12, Q_y = 43.10, \text{Vary } Q_s$

Matt Signorelli (mgs255@cornell.edu)

v5.3 $Q_x = 48.12, Q_v = 43.10, Vary Q_s$ is Brookhaven

Matt Signorelli (mgs255@cornell.edu)

Results

- Horizontal core emittances blow up on $Q_x 2Q_s$ resonance
- Likewise, vertical core emittance blows up on $Q_y 2Q_s$, which is the baseline
 - Considering the previous results \rightarrow
- $\rightarrow Q_y 2Q_s$ resonance is excited by 2nd order effects in quadrupoles between solenoids

Results

Theory for $Q_v - 2Q_s$ resonance, observed in quadrupoles Looking for $e^{i(Q_y - 2Q_s + p)\theta} \rightarrow y\delta^2$ term in Hamiltonian:
$$\begin{split} H &= \frac{1}{2} K(x^2 - y^2) + \dots \\ &= \frac{1}{2} \frac{K_0}{(1+\delta)} \Big(\Big(x_\beta + \eta_x \delta \Big)^2 - \Big(y_\beta + \eta_y \delta \Big)^2 \Big) + \dots \\ &= \frac{1}{2} K_0 \Big(2 x_\beta \eta_x \delta - 2 y_\beta \eta_y \delta \Big) (1-\delta) + \dots \end{split}$$
 $= K_0 \eta_y y_\beta \delta^2 + \dots$

Excited by nonzero vertical dispersion in quadrupoles, which we have in between the solenoids for v5.3!

Results

Recall polarization results for v5.3:

v5.3 Baseline ($Q_s = 0.05$)	P _{dk}	v5.3 $Q_s = 0.04$	P_{dk}			
Analytical	61.3%	Analytical 6	1.3%			
1 st Order Map Tracking	66.4%	1 st Order Map Tracking 6	6.6%			
2 nd Order Map Tracking	33.9%					
3 rd Order Map Tracking	14.0%	3 rd Order Map Tracking 5	6.1%			
Bmad Tracking	12.1%					
PTC Tracking	12.3%	Very large increase in polarization				
Bmad Tracking w/ 1 st Order Rotator Quads	61.1%	 Longitudinal spin match highly benefic v5.6 baseline has ~30%, drops 				
Bmad Tracking w/ 2 nd Order Rotator Quads	15.1%					
Bmad Tracking w/ 3 rd Order Rotator Quads	10.9%	below acceptable values with v	rtica			

- In the 18GeV lattice, vertical emittance blow-up and "spike" in horizontal core emittance is caused by the $Q_y 2Q_s$ resonance
- The $Q_y 2Q_s$ resonance is excited by vertical dispersion in quadrupoles
- Implications:
 - Misalignments in v5.6 will lead to vertical dispersion in solenoids, and excitation of this resonance
 - Dispersion in the solenoids is not bad unless on the resonance
 - Longitudinal spin match may not need to be dropped. Nonlinear ~56% asymptotic polarization is possible in v5.3 with different choice of Q_s
 - Reconsider choice of Q_s

References

- 1. L. H. Thomas, "I. The kinematics of an electron with an axis," *Philos. Mag.*, vol. 3, no. 13, pp. 1–22, 1927, doi: 10.1080/14786440108564170
- V. Bargmann, L. Michel, and V. L. Telegdi, "Precession of the polarization of particles moving in a homogeneous electromagnetic field," *Phys. Rev. Lett.*, vol. 2, pp. 435–436, 10 1959, doi:10.1103/PhysRevLett.2.435
- 3. L. H. Thomas, "Recollections of the discovery of the Thomas precessional frequency," *AIP Conference Proceedings*, vol. 95, no. 1, pp. 4–12, 1983, doi:10.1063/1.33853
- 4. A. A. Sokolov and I. M. Ternov, "On Polarization and Spin Effects in the Theory of Synchrotron Radiation," Sov. Phys. Doklady, vol. 8, p. 1203, 1964.
- 5. V. N. Baier and V. M. Katkov, "Quantum effects in magnetic bremsstrahlung," *Phys. Lett. A*, vol. 25, no. 7, pp. 492–493, 1967, doi:10.1016/0375-9601(67)90003-5
- 6. V. N. Baier, V. M. Katkov, and V. M. Strakhovenko, "Kinetics of radiative polarization," Sov. Phys. *JETP*, vol. 31, no. 5, p. 908, 1970.
- 7. Y. S. Derbenev and A. M. Kondratenko, "Polarization kinematics of particles in storage rings," Sov. Phys. JETP, vol. 37, pp. 968–973, 1973.
- 8. D. P. Barber and G. Ripken, "Computer Algorithms and Spin Matching," in *Handbook of Accelerator Physics and Engineering*. 2013, doi:10.1142/8543
- 9. M. G. Signorelli and G. H. Hoffstaetter, *Different forms of first order spin-orbit motion and their utility in spin matching in electron storage rings*, 2021, doi:10.48550/arXiv. 2112.07607
- D. Marx et al. "Designing the EIC electron storage ring lattice for a wide energy range". In: 13th Int. Particle Acc. Conf. (Bangkok, Thailand). JACoW Publishing, 2022, pp. 1946–1949. isbn: 978-3-95450-227. doi: 10.18429/JACoW-IPAC2022-WEPOPT042.
- 11. V. I. Ptitsyn, Spin matching derivation, Brookhaven National Laboratory, 2021.

Thank you! Questions?