Elliptic flow at forward rapidity in Au+Au collisions using the PHENIX Detector at RHIC

Eric Richardson University of Maryland Department of Chemistry and Biochemistry

> Cornell University LEPP Journal Club 9/28/12





# Elliptic flow at forward rapidity in Au+Au collisions using the PHENIX Detector at RHIC





# Elliptic flow at forward rapidity in Au+Au collisions using the PHENIX Detector at RHIC



#### <u>Outline</u>

- 1. Brief introduction to relativistic heavyion collisions
- 2. Elliptic flow
- 3. Challenges to measuring elliptic flow at forward rapidity
- 4. Reaction Plane Detector upgrade
- 5. Forward rapidity elliptic flow results



# (1) Relativistic Heavy Ion Collisions



We are able to access and study the QGP with heavy-ion collisions by increasing temperature

## Quark Gluon Plasma

Defined as: free movement of quarks and gluons - no longer confined to hadrons (e.g. protons, neutrons)

Increase temperature  $\rightarrow$  particle production  $\rightarrow$  increase density



Normal Nuclear Matter

Quark Gluon Plasma





#### Relativistic Heavy Ion Collider (RHIC)



- RHIC ~2.4 mile circumference
- Collides Au+Au using counter circulating beams at  $\sqrt{s_{NN}} = 200 \text{ GeV}$
- PHENIX at 8 o'clock position



9/28/12

E. Richardson - U. of Maryland



#### **PHENIX Detector**

- Central Arms
  - Drift Chamber
  - Pad Chamber
  - EMCal
  - Time of Flight
  - And others
- Muon Arms
  - Drift Chamber
  - Drift Tubes

# **Collision Centrality**

- Centrality: the percent of collisions having more geometric overlap than current collision
- A centrality of 10% means 10% of collisions have more geometric overlap than the current collision



# (2) Introduction to Elliptic Flow

#### Asymmetric Distribution of Emitted Particles



- If medium created from the collision thermalizes before "evaporation", pressure gradients will develop
- From the eccentricity of the collision shape, a steeper gradient develops in direction of short axis called the reaction plane and given the angle  $\Psi_{\rm RP}$
- Causes momentum anisotropy, resulting in more particles moving in direction of  $\Psi_{RP}$  termed "Elliptic Flow"

#### Asymmetric Distribution of Emitted Particles



$$\frac{dN}{d(\phi - \Psi_{RP})} \propto 1 + 2\nu_2 \cos\left[2(\phi - \Psi_{RP})\right]$$

- $v_2$  elliptic flow parameter (quantifies magnitude of flow)
- N number of particles

•  $\phi$  - angle of particle

• 
$$\Psi_{RP}$$
 - angle of RP

# Measuring $\Psi_{RP}$

- $\Psi_{RP}$  is measured from the same particle asymmetry used to measure elliptic flow
- Sum X and Y event flow vectors

$$\Psi_{RP} = \frac{1}{2} \tan^{-1} \left( \frac{\mathbf{Y} = \sum_{i} \sin(2\phi)}{\mathbf{X} = \sum_{i} \cos(2\phi)} \right)$$

 $\phi$  = particle's azimuthal angle about the beam axis

# Why study Elliptic Flow?

- Provides insights on
  - How strongly the medium interacts
  - If and when the medium thermalizes
  - Energy loss
  - Viscosity
  - Critical point in nuclear phase diagram
  - Etc...

# PHOBOS $v_2(p_T)$



 $p_T$  = transverse momentum, comes from medium interactions (not from beam momentum)

- Measure strong v<sub>2</sub> signal
  - Indicates medium thermalized quickly before significant expansion
  - If thermalized later after significant expansion, medium shape would be nearly circular and pressure gradients nearly isotropic,  $v_2 \approx 0$



# (3) Challenges of Measuring Elliptic Flow at Forward Rapidity

### Angular Emission



- Most v<sub>2</sub> measurements have been done at mid-rapidity
- How does v<sub>2</sub> at forward rapidity compare? Same behavior? How is it different?



#### Measurement Challenges

- Muon Arms have ~120 cm of steel to absorb hadrons, while muons are able to penetrate
- Pion rejection rate of  $\sim 10^{-4}$
- Causes statistical challenges to measuring elliptic flow



## Additional Challenges



- Can't perfectly measure  $\Psi_{RP}$  due to finite particle statistics and detector granularity
- Causes particle dispersion that must be corrected for

## Reaction Plane (RP) Resolution

• Quantitative expression of how well  $\Psi_{RP}$  can be measured

$$\operatorname{Res} = \sqrt{2} \left\langle \cos 2 \left( \Psi^a - \Psi^b \right) \right\rangle$$

 $\Psi^{a/b}$  are independent measurements of  $\Psi_{RP}$  from different detectors

$$v_2^{corr} = \frac{v_2^{meas}}{\text{Res}}$$

# **BBC RP Resolution**

- PHENIX's resolution using Beam Beam Counter (BBC) arms
- Resolution of 1.0 means perfect accuracy in measuring  $\Psi_{RP}$
- BBC resolution is good enough for measuring abundant or low momentum particles
- To study rare or higher momentum particles, or to measure elliptic flow from the low particle statistics in Muon Arms, a higher resolution detector is needed → Reaction Plane Detector



# (4) Reaction Plane Detector (RXNP) Upgrade

# **Initial Detector** Concept

Locate in PHENIX central  $\bullet$ region in-between each magnet nosecone and Hadron Blind Detector (HBD) - 7 cm of space



# Initial Detector Concept

- Locate in PHENIX central region in-between each magnet nosecone and Hadron Blind Detector (HBD) - 7 cm of space
- Disc shape scintillator with azimuthal segmentation
- Place metal converter in front of scintillators to increase energy deposition via conversion electrons
- Detect and amplify signal with PMTs

9/28/12

• Connect scintillator and PMTs with light guide



Scintillators

25

## **RXNP** Design Optimization

- GEANT simulations optimize detector design by maximizing reaction plane resolution while not exceeding spatial allowance
- From simulations decided to use
  - 2 cm thick lead converter
  - 2 cm thick scintillator
  - 12 azimuthal segments
  - 2 radial segments
- KEK-PS Beam Tests
  - Overall best performance was scintillator + fiber light guide combination
  - Rather than substituting with either Cherenkov radiator or solid light guide
  - 9/28/12 E. Richardson U. of Maryland





Beam View

#### Testing PMT performance in Magnetic Field

- Predetermined location where PMT performance is expected to be best
- PMTs located 80, 90, 110, and 130 cm from beam pipe
- Used and LED pulse generator and compared PMT gain at 0 field to full field



## PMT Magnetic Field Test



• Results show strongest PMT gain when 130 cm from beam pipe

#### Final Detector Conceptual Drawings





9/28/12 E. Richardson - U. of Maryland

- Detector has North and South arms
- Each arm divided into quadrants
- Each quadrant contains:
  - 1 Pb converter
  - 3 inner & 3 outer scintillators
  - 6 fine mesh PMT's



# **Expected RP Resolution**

- RXNP expected to have a resolution  $\sim 2x$  better than BBC
- Equivalent to collecting ~3.5x more statistics while using BBC resolution



#### 200 GeV Au+Au simulation

## **Detector Components**





- Converter 98% Lead + 2% Antimony to increase hardness
- Fibers wavelength shifting to optimize PMT response



- PMTs
  - 3-in fine mesh from Hamamatsu (R5543)
  - Borrowed 52 PMTs from a KEK experiment E325

## **PMT Tests**

• Gain response outside magnetic field

> Zero Field 0 Deg 30 Deg 45 Deg

> > 45 Deg

10<sup>2</sup>

- Gain response inside magnetic field (0.7 T)
- Also tested for noise
- Used to find our best **48 PMTs**

9/28/12 E. Richardson - U. of ]



45 Deg

10

10

403

M



3.2

## Assembly Photos











9/28/12

E. Richardson - U. of Maryland



9/28/12

E. Richardson - U. of Maryland

Cornell - LEPP Journal Club





## Installation



#### PHENIX technicians

Cornell - LEPP Journal Club
#### Fully Installed!!!



#### LED Calibration Box (Top View)



#### LED Box



#### Detector Performance During 4 Years of Running

- 47 of 48 PMTs operational, ~98% of design
- RXNP collected data on all Physics runs



#### **RP** Resolution

- RXNP can measure  $\Psi_{RP}$  from 9 different detector segments
- RXNP\_N+S ~2x higher than BBC\_N+S
- Matches simulated expectations



### **RXNP NIM Paper**

Nuclear Instruments and Methods in Physics Research A 636 (2011) 99-107



Contents lists available at ScienceDirect

Nuclear Instruments and Methods in Physics Research A

journal homepage: www.elsevier.com/locate/nima

#### **Technical Notes**

#### A reaction plane detector for PHENIX at RHIC $^{\rm {\rm } \pm}$

E. Richardson<sup>d,\*</sup>, Y. Akiba<sup>f,g</sup>, N. Anderson<sup>d</sup>, A.A. Bickley<sup>b</sup>, T. Chujo<sup>j</sup>, B.A. Cole<sup>c</sup>, S. Esumi<sup>j</sup>, J.S. Haggerty<sup>a</sup>, J. Hanks<sup>c</sup>, T.K. Hemmick<sup>i</sup>, M. Hutchison<sup>d</sup>, Y. Ikeda<sup>j</sup>, M. Inaba<sup>j</sup>, J. Jia<sup>a,h</sup>, D. Lynch<sup>a</sup>, Y. Miake<sup>j</sup>, A.C. Mignerey<sup>d</sup>, T. Niida<sup>j</sup>, E. O'Brien<sup>a</sup>, R. Pak<sup>a</sup>, M. Shimomura<sup>j</sup>, P.W. Stankus<sup>e</sup>, T. Todoroki<sup>j</sup>, K. Watanabe<sup>j</sup>, R. Wei<sup>h</sup>, W. Xie<sup>g</sup>, W.A. Zajc<sup>c</sup>, C. Zhang<sup>e</sup>

<sup>a</sup> Physics Department, Brookhaven National Laboratory, Upton, NY 11973-5000, USA

<sup>b</sup> University of Colorado, Boulder, CO 80309, USA

<sup>c</sup> Columbia University, New York, NY 10027 and Nevis Laboratories, Irvington, NY 10533, USA

<sup>d</sup> University of Maryland, College Park, MD 20742, USA

<sup>e</sup> Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA

f RIKEN Nishina Center for Accelerator-Based Science, Wako, Saitama 351-0198, Japan

<sup>g</sup> RIKEN BNL Research Center, Brookhaven National Laboratory, Upton, NY 11973-5000, USA

<sup>h</sup> Chemistry Department, Stony Brook University, SUNY, Stony Brook, NY 11794-3400, USA

<sup>1</sup> Department of Physics and Astronomy, Stony Brook University, SUNY, Stony Brook, NY 11794, USA

<sup>j</sup> Institute of Physics, University of Tsukuba, Tsukuba, Ibaraki 305, Japan

ጚ

NUCLEAR

#### Conclusion - Parts 1-4

- Elliptic flow is a powerful tool to study the hot and dense medium created from heavy-ion collisions
- To measure elliptic flow at forward rapidity using PHENIX Muon Arms a new detector was needed to more accurately measure  $\Psi_{RP}$
- RXNP was built which increased PHENIX's RP resolution by ~2x, equivalent to increasing particle statistics by ~3.5x
- Resolution now good enough to measure elliptic flow in Muon Arms





### (5) Forward Rapidity Elliptic Flow Results



# Muon Arm $v_2(\eta)$

- Hadrons show flat v<sub>2</sub> for all centralities
- Decay muons show flat v<sub>2</sub> for central collisions, modest decrease for peripheral
- Indicate stable v<sub>2</sub>(η) for central events
- Challenge interpretation of STAR and PHOBOS v<sub>2</sub>(η) results that show significantly decreasing signal for central events



# $v_2(p_T)$ Ratio

- Ratio near unity for 0-20% centrality for  $p_T > 1.5 \text{ GeV/c}$
- Suggests longitudinally extended thermalized medium with similar eccentricity
- Consistent with previous slide
- Decreasing ratio with more peripheral events
- Suggests differences in medium conditions
- Below p<sub>T</sub> < 1.5 GeV/c signal affected by misidentified high p<sub>T</sub> partices



# $v_2(p_T)$

 For 0-25% see a dip in v<sub>2</sub> at low p<sub>T</sub> for η
≈ 3

 For 25-50% see trend of decreasing v<sub>2</sub> toward forward η



 $V_2(N_{part})$ 

- Similar signal shape for central collisions
- PHENIX Central Arms and Muon Arms diverge at N<sub>part</sub> ≈ 150 or a centrality of 25%
- Further evidence medium changes at forward η for peripheral collisions



#### Conclusion - Part 5

- Central Collisions (< 20-30%)
  - Forward rapidity  $v_2$  is consistent with mid-rapidity measurements out to Muon Arm region (1.2 <  $|\eta|$  < 2.4)
  - Suggests longitudinally extended thermalized medium with similar eccentricity throughout
  - Challenges interpretation of PHOBOS and STAR  $v_2(\eta)$  results
  - Only at very forward angles ( $\eta \approx 3$ ) is a difference seen with mid-rapidity
- Peripheral collisions
  - $v_2$  decreases toward forward  $\eta$
  - Suggests changes in the medium's properties from mid-rapidity (medium not fully thermalized?)



Central Arms:  $|\eta| < 0.35$ 

Muon Arms:  $1.2 < |\eta| < 2.4$ 



#### Elliptic flow at forward rapidity in Au+Au collisions using the PHENIX Detector at RHIC



#### Thank You!



The PHENIX Collaboration thanks the staff of the Collider-Accelerator and Physics Departments at BNL for their vital contributions. We acknowledge support from the Office of Nuclear Physics in DOE Office of Science and NSF (USA); MEXT and JSPS (Japan); CNPq and FAPESP (Brazil); NSFC (China); MSMT (Czech Republic); IN2P3/CNRS and CEA (France); BMBF, DAAD, and AvH (Germany); OTKA (Hungary); DAE and DST (India); ISF (Israel); NRF (Korea); MES, RAS, and FAAE (Russia); VR and KAW (Sweden); US CRDF for the FSU; US-Hungary Fulbright; and US-Israel BSF.

### Backup

# Quarks are Confined to Hadrons

• Unlike electrons, quarks cannot be measured or observed one at a time



- As quarks separate, it becomes more energetically favorable to create a new color neutral quark-antiquark pair from the vacuum than separate any further
- Think of as pulling apart a rubber band

#### Accelerating Au Nuclei



#### Equivalent to compressing a basketball to the thickness of 2 mm

9/28/12 E. Richardson - U. of Maryland

# Colliding Au Nuclei



Contracted Nuclei

Au nuclei accelerated toward one another at 200 GeV per nucleon pair

9/28/12 E. Richardson - U. of Maryland



- Au nuclei overlap one another for  $4x10^{-25}$  s
- Mean energy density of 2920 GeV/fm<sup>3</sup> (normal nuclear matter =  $0.14 \text{ GeV/fm}^3$ )
- Nuclei excite one another and particle production begins





- Medium continually expands, cools, and eventually hadronizes
- Chemical freeze-out reached when quark flavors inside hadrons no longer change
- Thermal freeze-out reached when hadrons no longer interact with each other













# Measuring $\Psi_{RP}$

- $\Psi_{RP}$  is measured from the same particle asymmetry used to measure elliptic flow
- To avoid artificial correlations each is measured in a distinct angular "window"



# Measuring $\Psi_{RP}$

- $\Psi_{RP}$  is measured from the same particle asymmetry used to measure elliptic flow
- Sum X and Y event flow vectors

$$\Psi_{RP} = \frac{1}{2} \tan^{-1} \left( \frac{\mathbf{Y} = \sum_{i} \sin(2\phi)}{\mathbf{X} = \sum_{i} \cos(2\phi)} \right)$$

 $\phi$  = particle's azimuthal angle about the beam axis



Static x,y axis from lab frame

### **Collision Snapshot**

(Beam View)

#### PHENIX

#### **STAR**



9/28/12 E. Richardson - U. of Maryland

69

# v<sub>2</sub> Dependence on Collision Shape



- v<sub>2</sub> magnitude varies with eccentricity of collision shape
- % Centrality: the percent of collisions having more geometric overlap than current event
- A 10% centrality event means 10% of collisions had more geometric overlap than the current event



E. Richardson - U. of Maryland

#### Elliptic Flow Dependence on Centrality

Central



- Almost circular participant shape
- Nearly isotropic pressure gradients = isotropic particle distribution
- Small v<sub>2</sub> signal

(beam view)



- Elliptic participant shape
- Asymmetric pressure gradients steeper in direction of reaction plane
- Large particle anisotropy = large v<sub>2</sub> signal



E. Richardson - U. of Maryland

#### **Converter Basics**

- Particles hit thin metal disc, expelling many electrons
- This increases number of charged particles that hit scintillator (located behind disc), which increases energy deposition
- A way to amplify the signal
- Allows neutral particles to contribute to signal
- Also helps to reduce low energy background


# Improved Azimuthal Distribution

- Without converter, secondary particles dilute particle asymmetry converter
- With converter, secondary particles show strong asymmetric distribution, reinforcing signal



# Improved RP resolution

• With converter RP resolution is ~16% higher than using just primary particles





# **KEK-PS Beam Tests**

• Used 1-2 GeV/c p/pion/e beam



- Of all combinations, found scintillator + embedded fiber light guide was best
  - Reasonable pulse height (~120mV), small signal tail
  - Allows flexibility for PMT positioning
  - More uniformity in light collection w.r.t. particle position

### RP Resolution vs. Vertex



• Resolution decreases when collision is near arm due to decreasing detector acceptance

#### Hydrodynamic Behavior



- v<sub>2</sub> described well at low p<sub>T</sub> by hydrodynamic models having very little viscosity
- Hydrodynamics requires approximate local equilibrium
- Further evidence of thermalization

#### **Reaction Plane Detector**

Scintillator Paddles Inner Ring:  $1.5 < |\eta| < 2.8$ Outer Ring:  $1.0 < |\eta| < 1.5$ 



# Muon Piston CalorimeterPbWO<sub>4</sub> Calorimeter $3.1 < |\eta| < 3.9$





Beam Beam CounterQuartz Cherenkov $3.1 < |\eta| < 3.9$ 



PHENIX Central Region (zoomed in)





# Identify Hadrons

- Most tracks in Muon Arms are decay muons from π<sup>±</sup> and K<sup>±</sup>.
- Hadrons distinguished from muons by examining p<sub>z</sub> distribution of stopped tracks in MuID.
- Peak is muons "ranging out" from EM interactions
- Tail is hadrons that experienced a strong interaction



0<sup>L</sup>

2

Cornell - LEPP Journal Club

p\_(GeV/c)

6

hadron

candidates

mostly

muons