# On the Spin and Parity of the New Boson at the LHC

Andrei Gritsan

Johns Hopkins University



# October 5, 2012 LEPP Journal Club, Cornell University

# New Boson on LHC

• Observation of a New Boson on CMS and ATLAS



- it is a boson, spin  $\neq 1 \Rightarrow$  spin = 0 or 2... (nothing like this before)
- it couples to vector bosons, consistent with the Higgs boson
- What we do not know:
  - if it is the Higgs boson, if couples to Fermions (matter)
  - expect it to be elementary, if not  $\Rightarrow$  may be more interesting...
  - if it is a tip of an iceberg of new exciting states of matter / energy

# Is it the SM Higgs Boson?

 $H \rightarrow \gamma \gamma$ 

 $H \rightarrow ZZ$ 

2

#### Study the properties of the New Boson

(1) mass  $m_X$  and width  $\Gamma_X$  $m_X \sim 125.7 \pm 0.5 \,\,{\rm GeV}$  $\Gamma_X \sim \text{small (expect 4 MeV)}$ 

 $\mathsf{H} \to \mathsf{WW}$ (2) rates of production and decay  $H \rightarrow \tau \tau$ - tension, but consistent with SM  $\text{H} \rightarrow \text{bb}$ 





(3) structure of the couplings in production and decay - quantum numbers: spin & parity (SM  $J^P = 0^+$ ); tensor structure

# Some History and Credits

• Study of Parity of 
$$\pi^0 o \gamma\gamma$$
 and  $\pi^0 o \gamma^*\gamma^* o e^+e^-e^+e^- \Rightarrow J^P = 0^-$ 

Samios *et al.* (1962)



#### • A lot of progress over the past 50 years, with application to a Higgs-like boson

J. R. DellAquila et al., Phys. Rev. D 33, 80 (1986); C. A. Nelson, Phys. Rev. D 37, 1220 (1988); A. Soni et al., Phys. Rev. D 48, 5259 (1993); V. Barger et al., Phys. Rev. D 49, 79 (1994); B. C. Allanach et al., JHEP 0212, 039 (2002); S. Y. Choi et al., Phys. Lett. B 553, 61 (2003); C. P. Buszello et al., Eur. Phys. J. C 32, 209 (2004); R. M. Godbole et al., J. High Energy Phys. 12, 031 (2007); W. Y. Keung et al., Phys. Rev. Lett. 101, 091802 (2008); O. Antipin et al., J. High Energy Phys. 10, 018 (2008); K. Hagiwara et al., J. High Energy Phys. 07, 101(2009); Q.-H. Cao et al., Phys. Rev. D 81, 015010 (2010); Y. Gao et al., Phys. Rev. D 81, 075022 (2010); A. De Rujula et al., Phys. Rev. D 82, 013003 (2010); C. Englert et al., Phys. Rev. D 82, 114024 (2010); J. S. Gainer et al., HEP 1111, 027 (2011); J. Ellis et al., to appear in JHEP, arXiv:1202.6660 [hep-ph], etc...

 Discuss "On the spin and parity of a single-produced resonance at the LHC" arXiv:1208.4018 [hep-ph] (Aug. 20, 2012)

S.Bolognesi<sup>1,4</sup>, Y.Gao<sup>2,4</sup>, A.G.<sup>1,4</sup>, K.Melnikov<sup>1</sup>, M.Schulze<sup>3</sup>, N.Tran<sup>2,4</sup> A.Whitbeck<sup>1,4</sup>,



#### The Higgs Boson: Production and Decay

• Excite vacuum: gg,..  $\rightarrow H \rightarrow ZZ^{(*)}$ ,  $WW^{(*)}$ ,  $\gamma\gamma$ ,  $\tau^+\tau^-$ ,  $b\overline{b}$ ,..



#### Production Modes and Background

• At LHC gluon fusion expected to dominate (7% VBF...)



• The challenge is to distinguish signal from backgrounds, examples:



#### Production of New Resonances

• Large Hadron Collider is a discovery machine



# Production of New Resonances

• Consider two dominant production mechanisms



of color-neutral & charge-neutral X

• Gluon fusion 
$$gg \rightarrow X$$

J = 0 or 2  $J_z = 0$  or  $\pm 2$ 

expect to dominate at lower mass

• Quark-antiquark 
$$q ar q o X$$

J = 1 or 2 $J_z = \pm 1 \qquad (m_q \rightarrow 0)$ 

assume chiral symmetry is exact

# Decay of New Resonances

• Consider decay back to Standard Model particles



• Decay to fermions

 $X \to \ell^+ \ell^-, \ q\bar{q}$ spin-0 excluded  $m_f \to 0$ 

• Decay to gauge bosons  $X \rightarrow \gamma \gamma$ ,  $W^+W^-$ , ZZ, gg spin-1 excluded with  $\gamma \gamma$ , gg

again X is color-neutral & charge-neutral

# Kinematics in New Resonances Production

•  $ab \rightarrow X$  polarization  $\Leftrightarrow$  production mechanism and couplings

$$d\sigma_{pp}(\vec{\Omega}) = \sum_{ab} \int \mathrm{d}Y_X \,\mathrm{d}x_1 \mathrm{d}x_2 \,\tilde{f}_a(x_1) \,\tilde{f}_b(x_2) \,\frac{d\sigma_{ab}(x_1p_1, x_2p_2, \vec{\Omega})}{\mathrm{d}Y_X}|_{Y_{ab} = \frac{1}{2}\ln\frac{x_1}{x_2}}$$



#### Kinematics in New Resonances Decay

• Only 1 angle  $\theta^*$  for  $X \to \gamma \gamma$ ,  $\ell^+ \ell^-$ ,  $q\bar{q}$ , gg (but more for ZZ, WW)



$$\frac{d\Gamma(X_J \to P_1 P_2)}{\Gamma d \cos \theta^*} = \left(J + \frac{1}{2}\right) \sum_{\lambda_1, \lambda_2} f_{\lambda_1 \lambda_2} \sum_m f_m \left(d_{m, \lambda_1 - \lambda_2}^J(\theta^*)\right)^2$$

• Note: if  $f_m = \frac{1}{J} \Rightarrow \cos \theta^*$  flat  $\Rightarrow$  cannot determine spin requires  $f_m$  fine-tuning (breaks by changing LHC energy)

# Decay of a New Resonance to ${\cal Z}{\cal Z}$ or WW

- "experimental" goal: measure all polarizations  $(\hat{z}', \hat{z})$ :  $A_{\lambda_1 \lambda_2}$ ,  $f_{zm}$
- "theoretical" goal: connect to underlying physics (spin, parity, etc...)



#### How to Measure Polarization in $X \to VV$ • Deduce all $A_{\lambda_1\lambda_2}$ and $f_{zm}$ from angular distributions, but need: (1) define complete set of observables (2) full analytical angular distributions Z (3) connect amplitudes to "theory" $\mathbf{Z}_{1}$ (4) MC with all spin correlations Ζ $m_X, m_1, m_2$ $\vec{p}_X$ ("QCD") e $\theta^*, \Phi^*$ (arbitrary) $\theta_1, \Phi_1$ $\theta_2$ , $(\Phi_2 - \Phi_1) = \Phi$ (12 degrees of freedom)

# Angular Distributions

• Connect amplitudes and angular distributions for any J = 0, 1, 2, 3, 4, ...

$$\begin{array}{ll} A_{ab} \propto & D_{\chi_{1}-\chi_{2},m}^{J*}(\Omega^{*})B_{\chi_{1}\chi_{2}} \times D_{m,\lambda_{1}-\lambda_{2}}^{J*}(\Omega)A_{\lambda_{1}\lambda_{2}} \\ & \times D_{\lambda_{1},\mu_{1}-\mu_{2}}^{s_{1}*}(\Omega_{1})T(\mu_{1},\mu_{2}) \times D_{\lambda_{2},\tau_{1}-\tau_{2}}^{s_{2}*}(\Omega_{2})W(\tau_{1},\tau_{2}) \\ d\sigma \propto \sum_{\chi,\mu,\tau} |\sum_{\lambda,m} A_{ab}(\{\Omega\})|^{2} \\ ab \to X, \quad \Omega^{*} = (\Phi_{1},\theta^{*},-\Phi_{1}), \{\chi_{1}\chi_{2}\} \\ X \to Z_{1}Z_{2}, \ \Omega = (0,0,0), \{\lambda_{1}\lambda_{2}\} \\ Z_{1} \to f_{1}\bar{f}_{1}, \ \Omega_{1} = (0,\theta_{1},0), \{\mu_{1},\mu_{2}\} \\ Z_{2} \to f_{2}\bar{f}_{2}, \ \Omega_{2} = (\Phi,\theta_{2},-\Phi), \{\tau_{1},\tau_{2}\} \end{array} \qquad \begin{array}{c} p \\ \mu^{*} \\ \mu^{*} \\ \mu^{*} \\ \mu^{*} \\ \theta_{2} \\ e \\ \Phi \end{array}$$

$$r = c_A/c_V \Rightarrow A_f = 2r_{1,2}/(1 + r_{1,2}^2) = 0.15 \ (\ell^- \ell^+), \ 1 \ (\ell\nu)$$

#### Explicit Distributions for any Spin ${\cal J}$

$$\begin{split} F_{0,0}^{J}(\theta^{*}) \times & \left[ 4 |A_{00}|^{2} \sin^{2} \theta_{1} \sin^{2} \theta_{2} + 2 |A_{++}| |A_{--}| \sin^{2} \theta_{1} \sin^{2} \theta_{2} \cos(2\Phi - \phi_{--} + \phi_{++}) \right] \\ & + |A_{++}|^{2} \left( 1 + 2A_{f_{1}} \cos \theta_{1} + \cos^{2} \theta_{1} \right) \left( 1 + 2A_{f_{2}} \cos \theta_{2} + \cos^{2} \theta_{2} \right) \\ & + |A_{--}|^{2} \left( 1 - 2A_{f_{1}} \cos \theta_{1} + \cos^{2} \theta_{1} \right) \left( 1 - 2A_{f_{2}} \cos \theta_{2} + \cos^{2} \theta_{2} \right) \\ & + 4 |A_{00}| |A_{++}| (A_{f_{1}} + \cos \theta_{1}) \sin \theta_{1} (A_{f_{2}} + \cos \theta_{2}) \sin \theta_{2} \cos(\Phi + \phi_{++}) \\ & + 4 |A_{00}| |A_{--}| (A_{f_{1}} - \cos \theta_{1}) \sin \theta_{1} (A_{f_{2}} - \cos \theta_{2}) \sin \theta_{2} \cos(\Phi - \phi_{--}) \\ & + F_{1,1}^{J}(\theta^{*}) \times \left[ 2 |A_{+0}|^{2} (1 + 2A_{f_{1}} \cos \theta_{1} + \cos^{2} \theta_{1}) \sin^{2} \theta_{2} + 2 |A_{0-}|^{2} \sin^{2} \theta_{1} (1 - 2A_{f_{2}} \cos \theta_{2} + \cos^{2} \theta_{2}) \\ & + 2 |A_{-0}|^{2} (1 - 2A_{f_{1}} \cos \theta_{1} + \cos^{2} \theta_{1}) \sin^{2} \theta_{2} + 2 |A_{0+}|^{2} \sin^{2} \theta_{1} (1 - 2A_{f_{2}} \cos \theta_{2} + \cos^{2} \theta_{2}) \\ & + 4 |A_{00}| |A_{--}| (A_{f_{1}} + \cos \theta_{1}) \sin \theta_{1} (A_{f_{2}} - \cos \theta_{2}) \sin \theta_{2} \cos(\Phi + \phi_{0-} - \phi_{0-}) \\ & + 4 |A_{00}| |A_{-0}| (A_{f_{1}} + \cos \theta_{1}) \sin \theta_{1} (A_{f_{2}} + \cos \theta_{2}) \sin \theta_{2} \cos(\Phi + \phi_{0+} - \phi_{0-}) \\ & + 4 |A_{0+}| |A_{-0}| (A_{f_{1}} - \cos \theta_{1}) \sin \theta_{1} (A_{f_{2}} - \cos \theta_{2}) \sin \theta_{2} \cos(2\Psi - \phi_{0-} + \phi_{-0}) \\ & + 4 |A_{0-}| |A_{-0}| (A_{f_{1}} - \cos \theta_{1}) \sin \theta_{1} (A_{f_{2}} - \cos \theta_{2}) \sin \theta_{2} \cos(2\Psi - \phi_{0-} + \phi_{-0}) \\ & + 4 |A_{0-}| |A_{-0}| (A_{f_{1}} - \cos \theta_{1}) \sin \theta_{1} (A_{f_{2}} - \cos \theta_{2}) \sin \theta_{2} \cos(2\Psi - \phi_{0-} + \phi_{-0}) \\ & + 4 |A_{0-}| |A_{-0}| (A_{f_{1}} - \cos \theta_{1}) \sin \theta_{1} (A_{f_{2}} - \cos \theta_{2}) \sin \theta_{2} \cos(2\Psi - \phi_{0-} + \phi_{-0}) \\ & + 4 |A_{0-}| |A_{-0}| (A_{f_{1}} - \cos \theta_{1}) \sin \theta_{1} (A_{f_{2}} - \cos \theta_{2}) \sin \theta_{2} \cos(2\Psi - \phi_{0-} + \phi_{-0}) \\ & + F_{2,2}^{J} (\theta^{*}) \times \left[ |A_{+-}|^{2} (1 + 2A_{f_{1}} \cos \theta_{1} + \cos^{2} \theta_{1}) (1 - 2A_{f_{2}} \cos \theta_{2} + \cos^{2} \theta_{2}) \right] \\ & + F_{2,-}^{J} (\theta^{*}) \times \left[ 2 |A_{+-}| |A_{-+}| \sin^{2} \theta_{1} \sin^{2} \theta_{2} \cos(4\Psi - \phi_{+-} + \phi_{-+}) \right] + \text{ other 26 interference terms for spin} \\ & \text{ where } \Psi = \Phi_{1} + \Phi/2 \quad \text{ and } \quad F_{ij}^{J} (\theta^{*}) = \sum_{m=0,\pm 1,\pm 2} \int_{m=0,\pm 1,\pm 2} \int_{m=0,\pm 1,\pm 2} \int_{m=0,\pm 1,\pm 2} \int_{m=0,\pm 1,\pm 2} \int_{m=0,$$

Andrei Gritsan, JHU

# Examples of Distributions for $X \to Z Z \to 4\ell$

• SM Higgs  $0^+$ , BSM scalar  $0^+$ , pseudocalar  $0^-$  at  $m_X = 125$  GeV - lines projections of analytical distributions, points from MC

![](_page_15_Figure_2.jpeg)

•  $X \to Z^*Z^*$  with  $m_1 > m_2$ ,  $m_X < 2m_Z \Rightarrow$  at least one  $Z^*$  off-shell

 $m_1, m_2$  dependence from  $\Sigma |A_{\lambda_1 \lambda_2}(m_1, m_2)|^2$ BW and phase-space  $p_Z(m_1, m_2)$ 

![](_page_15_Figure_5.jpeg)

#### Amplitude for Spin-0 $X \rightarrow VV$

• Amplitude for  $X_{J=0} \rightarrow V_1 V_2$ 

$$A = v^{-1} \left( g_1^{(0)} m_V^2 \epsilon_1^* \epsilon_2^* + g_2^{(0)} f_{\mu\nu}^{*(1)} f^{*(2),\mu\nu} + g_3^{(0)} f^{*(1),\mu\nu} f_{\mu\alpha}^{*(2)} \frac{q_\nu q^\alpha}{\Lambda^2} + g_4^{(0)} f_{\mu\nu}^{*(1)} \tilde{f}^{*(2),\mu\nu} \right)$$

form-factors  $g_i: g_1$  for  $H \to ZZ$ ,  $g_2$  for  $H \to \gamma\gamma$ 

![](_page_16_Figure_4.jpeg)

#### Amplitude for Spin-0 $X \rightarrow VV$

• Express through Lorenz structures  $(f_{(i)}^{\mu\nu} = \epsilon_i^{\mu}q_i^{\nu} - \epsilon_i^{\nu}q_i^{\mu})$  field strength tensor)

$$A = v^{-1} \epsilon_1^{*\mu} \epsilon_2^{*\nu} \left( \frac{a_1 g_{\mu\nu} m_X^2 + a_2 q_\mu q_\nu + a_3 \epsilon_{\mu\nu\alpha\beta} q_1^{\alpha} q_2^{\beta}}{2} \right)$$

$$a_3 = -2g_4^{(0)}, \quad a_2 = -2g_2^{(0)} - g_3^{(0)}\frac{s}{\Lambda^2}, \quad a_1 = g_1^{(0)}\frac{m_V^2}{m_X^2} - \frac{s}{m_X^2}a_2$$

• 3 amplitudes ("experiment") ⇔ 3 coupling constants ("theory")

$$\begin{aligned} A_{00}(m_1, m_2) &= -\frac{m_X^2}{v} \left( a_1 \sqrt{1+x} + a_2 \frac{m_1 m_2}{m_X^2} x \right) \\ A_{\pm\pm}(m_1, m_2) &= \frac{m_X^2}{v} \left( a_1 \pm i a_3 \frac{m_1 m_2}{m_X^2} \sqrt{x} \right) \\ s &= \frac{m_X^2 - m_1^2 - m_2^2}{2}; \quad x = (s/m_1 m_2)^2 - 1 \end{aligned}$$

• Compare  $B \rightarrow V_1 V_2$ , see e.g. PRD45,193(1992)

#### Amplitude for Spin-1 $X \rightarrow VV$

• Most general amplitude for  $X_{J=1} \rightarrow VV$ 

![](_page_18_Figure_2.jpeg)

• Reconfirm Landau-Yang theorem for  $X \to \gamma \gamma$  $m_1 = m_2 = 0, \ \lambda \neq 0 \quad \Rightarrow \quad A_{\lambda_1 \lambda_2} = 0$  for J = 1

#### Amplitude for Spin-2 $X \rightarrow VV$

$$\begin{split} A(X \to V_1 V_2) &= 2g_1^{(2)} t_{\mu\nu} f^{*(1)\mu\alpha} f^{*(2)\nu\alpha} + 2g_2^{(2)} t_{\mu\nu} \frac{q_\alpha q_\beta}{\Lambda^2} f^{*(1)\mu\alpha} f^{*(2)\nu\beta} \\ &+ g_3^{(2)} \frac{\tilde{q}^\beta \tilde{q}^\alpha}{\Lambda^2} t_{\beta\nu} \left( f^{*(1)\mu\nu} f_{\mu\alpha}^{*(2)} + f^{*(2)\mu\nu} f_{\mu\alpha}^{*(1)} \right) + g_4^{(2)} \frac{\tilde{q}^\nu \tilde{q}^\mu}{\Lambda^2} t_{\mu\nu} f^{*(1)\alpha\beta} f_{\alpha\beta}^{*(2)} \\ &+ m_V^2 \left( 2g_5^{(2)} t_{\mu\nu} \epsilon_1^{*\mu} \epsilon_2^{*\nu} + 2g_6^{(2)} \frac{\tilde{q}^\mu q_\alpha}{\Lambda^2} t_{\mu\nu} \left( \epsilon_1^{*\nu} \epsilon_2^{*\alpha} - \epsilon_1^{*\alpha} \epsilon_2^{*\nu} \right) + g_7^{(2)} \frac{\tilde{q}^\mu \tilde{q}^\nu}{\Lambda^2} t_{\mu\nu} \epsilon_1^{*} \epsilon_2^{*} \right) \\ &+ g_8^{(2)} \frac{\tilde{q}_\mu \tilde{q}_\nu}{\Lambda^2} t_{\mu\nu} f^{*(1)\alpha\beta} \tilde{f}_{\alpha\beta}^{*(2)} \\ &+ m_V^2 \left( g_9^{(2)} \frac{t_{\mu\alpha} \tilde{q}^\alpha}{\Lambda^2} \epsilon_{\mu\nu\rho\sigma} \epsilon_1^{*\nu} \epsilon_2^{*\rho} q^\sigma + \frac{g_{10}^{(2)} t_{\mu\alpha} \tilde{q}^\alpha}{\Lambda^4} \epsilon_{\mu\nu\rho\sigma} q^\rho \tilde{q}^\sigma \left( \epsilon_1^{*\nu} (q\epsilon_2^*) + \epsilon_2^{*\nu} (q\epsilon_1^*) \right) \right) \end{split}$$

• Minimal coupling (~gravity)  $A \propto rac{1}{\Lambda} t_{\mu
u} \mathcal{T}^{\mu
u}$ 

![](_page_19_Figure_3.jpeg)

 $\rightarrow$  energy-mom tensor  $\rightarrow$  SM field-strength tensor

$$\mathcal{T}_{\mu\nu} = f_{\mu\alpha}^{*(1)} f_{\nu\beta}^{*(2)} g^{\alpha\beta} + m_V^2 \epsilon_1^{*\mu} \epsilon_2^{*\nu} \& f^{(i)\mu\nu} = \epsilon_i^{\mu} q_i^{\nu} - \epsilon_i^{\nu} q_i^{\mu}$$

• Many options, for illustration:  $g_1^{(2)} \& g_5^{(2)} (2_m^+), g_4^{(2)} (2_h^+), g_8^{(2)} (2_h^-)$ 

#### Amplitude for Spin-2 $X \rightarrow VV$

• Similarly, express through Lorenz structures...

$$A(X \to V_1 V_2) = \Lambda^{-1} e_1^{*\mu} e_2^{*\nu} \left[ c_1 \left( q_1 q_2 \right) t_{\mu\nu} + c_2 g_{\mu\nu} t_{\alpha\beta} \tilde{q}^{\alpha} \tilde{q}^{\beta} + \text{more...} \right]$$

• Just for illustration, generally 9 amplitudes:

$$c_1 = 2g_1^{(2)} + 2g_2^{(2)}\frac{s}{\Lambda^2}\left(1 + \frac{m_1^2}{s}\right)\left(1 + \frac{m_2^2}{s}\right) + 2g_5^{(2)}\frac{m_V^2}{s};\dots$$

$$\begin{aligned} \mathbf{A}_{00} &= \frac{m_X^4}{m_1 m_2 \sqrt{6}} \frac{c_1}{8} + \frac{m_1 m_2}{\sqrt{6}} \left[ c_1 \frac{1}{2} \left( 1 + x \right) - c_2 2x + c_{41} 2x + c_{42} 2x \right] - \frac{\left(m_1^4 + m_2^4\right)}{m_1 m_2 \sqrt{6}} \frac{c_1}{4} \\ &+ \frac{m_1 m_2 \left(m_1^2 - m_2^2\right)}{m_X^2 \sqrt{6}} \left( c_{41} - c_{42} \right) 2x + \frac{m_1^3 m_2^3}{m_X^4 \sqrt{6}} \left[ c_1 \left( \frac{3}{4} + x \right) - c_2 \left( 4x + 8x^2 \right) - c_3 8x^2 \right] \\ &+ \frac{\left(m_1^8 + m_2^8\right)}{m_X^4 m_1 m_2 \sqrt{6}} \frac{c_1}{8} + \frac{m_1 m_2 \left(m_1^4 + m_2^4\right)}{m_X^4 \sqrt{6}} \left[ -c_1 \frac{1}{2} \left( 1 + x \right) + c_2 2x \right] ; \dots \end{aligned}$$

• Minimal  $g_1^{(2)}$ :  $c_1 \simeq -4c_2 = -2c_{4i}$  (as  $m_i \to 0$ )  $\Rightarrow A_{+-}\&A_{-+}$  dominate  $\Rightarrow$  production gg $\rightarrow X$  only  $J_z = \pm 2 \Rightarrow f_{z0} = 0$ 

# Coupling to fermions

- For completeness  $X \to q\bar{q}$ , also to describe  $q\bar{q} \to X$ :
  - example of spin-2:

$$A = \frac{1}{\Lambda} t^{\mu\nu} \bar{u}_{q_1} \left( \gamma_\mu \Delta q_\nu \left( \rho_1 + \rho_2 \gamma_5 \right) + \frac{m_q}{\Lambda^2} \Delta q_\mu \Delta q_\nu \left( \rho_3 + \rho_4 \gamma_5 \right) \right) v_{q_2}$$

● 4 amplitudes ("experiment") ⇔ 4 coupling constants ("theory")

$$A_{\pm\pm} = \frac{2\sqrt{2} m_q M_X \beta}{\sqrt{3}\Lambda} \left( \pm \rho_1 + \frac{\beta M_X^2}{2\Lambda^2} \left( \rho_4 \mp \rho_3 \beta \right) \right)$$
$$A_{\pm\mp} = \frac{M_X^2 \beta}{\Lambda} \left( \mp \rho_1 - \beta \rho_2 \right)$$

• Consequence of  $m_q$  (chiral symmetry)

# Monte Carlo Simulation

- MC program, open access: <a href="http://www.pha.jhu.edu/spin/">http://www.pha.jhu.edu/spin/</a>
  - complete chain  $ab \to X \to \gamma\gamma$  or  $Z^*Z^*/W^*W^* \to (f_1\bar{f}_1')(f_2\bar{f}_2')$
  - calculate matrix element  $|M|^2$
  - weigh or accept/discard events
- Important features:
  - most general couplings for J=0,1,2
    - e.g. Higgs radiative corrections
    - e.g. non-minimal G couplings,  $Z' \rightarrow ZZ$
  - any angular distribution from QM
  - interface to detector simulation (LHE)
- Background and detector: simplified model for illustration
  - POWHEG / MadGraph:  $q\bar{q} \rightarrow ZZ, WW, \gamma\gamma$
  - others backgrounds smaller, account by rescaling the rate
  - detector: acceptance loss and energy smearing of  $\ell^{\pm},\gamma$

![](_page_22_Figure_15.jpeg)

#### Simulation Examples of $X \to ZZ \to 4\ell$

![](_page_23_Figure_1.jpeg)

# Simulation Examples: Masses

•  $m_1$  and  $m_2$  different between signal models and from background all signals gg (J = 0, 2) or  $q\bar{q}$   $(J = 1) \rightarrow X \rightarrow Z^*Z^*$  at 125 GeV

![](_page_24_Figure_2.jpeg)

#### Simulation Examples: Other Channels

![](_page_25_Figure_1.jpeg)

- $X \to \gamma \gamma$ - only 1 angle  $\cos \theta^*$
- $X \to W^* W^* \to 2\ell 2\nu$ 
  - no exclusive reco due to 2 
    u
  - but stronger  $\Phi$  modulation  $\Rightarrow$  reflected in reco observables

# LHC DATA

# Experiment I

![](_page_27_Picture_1.jpeg)

#### Experiment I

![](_page_28_Picture_1.jpeg)

#### Quark-Antiquark Process

![](_page_29_Figure_1.jpeg)

#### Proton-Proton Process

ΓÂ' • Now spread in boost  $Y = \frac{1}{2} \ln \frac{E + p_z}{E - p_z}$  $\frac{d\sigma_{\rm observe}(Y,m^2,\theta^*;\vec{\zeta})}{dY\,dm^2\,d\cos\theta^*} \propto$  $\sum F_{q\bar{q}}(m,Y) \times \left[\hat{\sigma}_{q\bar{q}}^{\text{even}}(m^2,\cos^2\theta^*) + D_{q\bar{q}}(m,Y) \times \hat{\sigma}_{a\bar{a}}^{\text{odd}}(m^2,\cos^1\theta^*)\right]$ q = udscbchallenge at LHC: q vs  $\bar{q}$  direction  $\Rightarrow$  Dilution  $D_{u\bar{u}, d\bar{d}} < 1$ 1.5  $xf(x,Q^2)$ g(x0.1) 0.8  $D_{qq}(m_{Z'}^{2}, \chi)$ 0.5 0.2 10<sup>-3</sup> 10<sup>-2</sup> 10<sup>-1</sup> 0<u>4</u>  $10^{-4}$ -3 -2 -1 х

#### Process in the Detector

• Combine  $q\bar{q}$ :  $u\bar{u}$  (46%),  $d\bar{d}$  (37%),  $s\bar{s}$  (10%),  $c\bar{c}$  (5%),  $b\bar{b}$  (3%)

![](_page_31_Figure_2.jpeg)

• Detector effects: lost particles and resolution

![](_page_31_Figure_4.jpeg)

# Mixing Angle $\theta_W$ on CMS: PRD84,112002(2011)

- Repeat  $q ar q o \gamma^*/Z o \mu^- \mu^+ \sim$ 300,000 times (from 1 fb $^{-1}$  of data)
  - $\sin^2 \theta_W =$ 0.2287 ± 0.0020 ± 0.0025 ~ 1.4% precision
- Prior (LEP/SLC) results  $\sim 0.1\%$  precision (0.2312) but with  $e^-e^+ \leftrightarrow \gamma^*/Z$

![](_page_32_Picture_4.jpeg)

![](_page_32_Figure_5.jpeg)

# Experiment II

![](_page_33_Picture_1.jpeg)

#### Experiment II

![](_page_34_Picture_1.jpeg)

# CMS MELA: Matrix Element Likelihood Analysis

![](_page_35_Figure_1.jpeg)

- Used in  $H \rightarrow ZZ^{(*)} \rightarrow 2q2\ell$  in 2011 JHEP04(2012)036 from PRD81,075022(2010)
- Discriminate signal vs background - QCD effects suppressed (no  $p_T$ , Y) independent of production mechanism

![](_page_35_Figure_4.jpeg)

₹Â'

Φ

#### **MELA** Parameterization

MELA = 
$$\left[1 + \frac{\mathcal{P}_{bkg}(m_1, m_2, \theta_1, \theta_2, \Phi, \theta^*, \Phi_1 | m_{4\ell})}{\mathcal{P}_{sig}(m_1, m_2, \theta_1, \theta_2, \Phi, \theta^*, \Phi_1 | m_{4\ell})}\right]^{-1}$$

 $\rightarrow$  detector acceptance cancels in the ratio, correlations included

•  $\mathcal{P}_{bkg} \propto \text{JHEP11(2011)027} \ (m_{4\ell} > 180 \text{ GeV}):$  dominant  $q\bar{q} \rightarrow ZZ$  $\propto \text{POWHEG template} \ (m_{4\ell} < 180 \text{ GeV}):$  dominant  $q\bar{q} \rightarrow Z\gamma^*$ 

![](_page_36_Figure_4.jpeg)

•  $\mathcal{P}_{\mathrm{sig}} \propto$  analytical signal distributions

![](_page_36_Figure_6.jpeg)

# CMS: 2D analysis MELA vs $m_{4\ell}$

![](_page_37_Figure_1.jpeg)

MELA

1

#### CMS: 2D analysis MELA vs $m_{4\ell}$

![](_page_38_Figure_1.jpeg)

![](_page_38_Figure_2.jpeg)

# CMS: Interesting Feature in $H \to Z^{(*)} Z^{(*)} \to 4\ell$

• CMS data favors both  $Z^*$  off-shell

- too early to speculate
- need to watch

![](_page_39_Figure_4.jpeg)

![](_page_39_Figure_5.jpeg)

# CMS: MELA for Spin / Parity

psMELA = 
$$\left[1 + \frac{\mathcal{P}_{0^{-}}(m_1, m_2, \theta_1, \theta_2, \Phi, \theta^*, \Phi_1 | m_{4\ell})}{\mathcal{P}_{0^{+}}(m_1, m_2, \theta_1, \theta_2, \Phi, \theta^*, \Phi_1 | m_{4\ell})}\right]$$

- Hypothesis testing
  - scalar  $(0^+)$  vs pseudoscalar  $(0^-)$
  - may include any other model
- Simulation (http://www.pha.jhu.edu/spin)
  - expected separation  $1.6\sigma$  now
  - $3.1\sigma$  with 5+30  ${\rm fb^{-1}}$

![](_page_40_Figure_8.jpeg)

![](_page_40_Picture_9.jpeg)

— I

#### Simplified study: $H \to ZZ \to 4\ell$

• Perform 2D analysis  $(m_{4\ell}, psMELA)$ 

![](_page_41_Figure_2.jpeg)

• Hypothesis testing:  $0_m^+$  (SM) vs  $0^-$  at 2.9 $\sigma$  when sig vs bkg  $5\sigma$ 

![](_page_41_Figure_4.jpeg)

#### Simplified study: $H \rightarrow WW \rightarrow 2\ell 2\nu$

• 2D analysis  $(m_T, m_{\ell\ell})$ ,  $m_T = (2p_T^{\ell\ell} E_T^{\text{miss}} (1 - \cos \Delta \phi_{\ell\ell - E_T^{\text{miss}}}))^{1/2}$ 

![](_page_42_Figure_2.jpeg)

• Hypothesis testing:  $0_m^+$  (SM) vs  $2^+$  at 2.8 $\sigma$  when sig vs bkg  $5\sigma$ 

![](_page_42_Figure_4.jpeg)

# Simplified study: $H \rightarrow \gamma \gamma$

• 2D analysis  $(m_{\gamma\gamma}, \cos\theta^*)$ 

![](_page_43_Figure_2.jpeg)

• Hypothesis testing:  $0_m^+$  (SM) vs  $2^+$  at 2.4 $\sigma$  when sig vs bkg  $5\sigma$ 

![](_page_43_Figure_4.jpeg)

Andrei Gritsan, JHU

# Scan different hypothese

• Take  $5\sigma$  yield as a reference, compare to current status at ICHEP:

| scenario                 | $X \rightarrow ZZ$ | $X \to WW$ | $X \to \gamma \gamma$ |
|--------------------------|--------------------|------------|-----------------------|
| $0_m^+$ vs bkg           | 5.0                | 5.0        | 5.0                   |
| CMS now (expect/observe) | (3.8/3.2)          | (2.4/1.6)  | (2.8/4.1)             |
| $0^+_m$ vs $0^+_h$       | 1.8                | 1.1        | 0.0                   |
| $0_m^+$ vs $0^-$         | 2.9                | 1.2        | 0.0                   |
| $0^+_m$ vs $1^+$         | 2.1                | 2.0        | —                     |
| $0^+_m$ vs $1^-$         | 2.8                | 3.2        | —                     |
| $0^+_m$ vs $2^+_m$       | 1.1                | 2.8        | 2.4                   |
| $0^+_m$ vs $2^+_h$       | ${\sim}5$          | 1.1        | 3.1                   |
| $0^+_m$ vs $2^h$         | $\sim 5$           | 2.5        | 3.1                   |

# Optimistic projecting into the future (5+30/fb)

![](_page_45_Figure_1.jpeg)

### Conclusion

• New boson on LHC (CMS+ATLAS)

new exciting form of matter/energy

- Need to understand what it is
  - find its quantum numbers
  - find its couplings to matter
- Angular & mass analysis
  - should work well with LHC data
- Next 6 months will be exciting
  - we will more than double our data
  - we will measure more than the rate
- It will be a long adventure in either case...

![](_page_46_Figure_12.jpeg)

#### BACKUP

#### Kinematics in $e^+e^-$ with B ightarrow VV

• Angular distribution of  $X \rightarrow P_1 P_2$ 

![](_page_48_Figure_2.jpeg)

$$\frac{d\Gamma(X_J \to P_1 P_2)}{\Gamma d \cos \theta^*} = \left(J + \frac{1}{2}\right) \sum_{\lambda_1, \lambda_2} f_{\lambda_1 \lambda_2} \sum_m f_m |d_{m, \lambda_1 - \lambda_2}^J(\theta^*)|^2$$

• For  $\Upsilon \to B\bar{B}$ :  $\lambda_1 = \lambda_2 = 0, J = 1, m = \pm 1$   $\frac{d\Gamma(\Upsilon \to B\bar{B})}{\Gamma d\cos\theta^*} \propto |d_{1,0}^1(\theta^*)|^2 \propto \sin^2\theta^*$ 

# Polarization Experiment with $B \rightarrow VV(T)$

• 3 spin configurations  $\Rightarrow$  3 amplitudes  $A_{\lambda_1\lambda_2}$  (similar to  $H \rightarrow ZZ...$ )

 $|J_B, m\rangle = |0, 0\rangle \Rightarrow \lambda_1 = \lambda_2$ 

![](_page_49_Figure_3.jpeg)

# Polarization in $oldsymbol{B}$ Decays

• "penguin"  $B \rightarrow \varphi K^*$  with vector (tensor) mesons polarization puzzle BABAR arXiv:hep-ex/0303020; BELLE arXiv:hep-ex/0307014

![](_page_50_Figure_2.jpeg)

#### Angular Measurements

![](_page_51_Figure_1.jpeg)

# Polarization in $B ightarrow arphi K_J^{(*)}$ Decays

• Complex multivariate analysis with 12 parameters per channel B (matter):  $|A_{00}|, |A_{++}|, |A_{--}|, \arg(A_{00}), \arg(A_{++}), \arg(A_{--})$  $\overline{B}$  (antimatter):  $|\overline{A}_{00}|, |\overline{A}_{++}|, |\overline{A}_{--}|, \arg(\overline{A}_{00}), \arg(\overline{A}_{++}), \arg(\overline{A}_{--})$ 

![](_page_52_Figure_2.jpeg)

# Polarization in $B ightarrow arphi K_J^{(*)}$ Decays

![](_page_53_Figure_1.jpeg)

#### New Physics in ${old B}$ Decay Polarization

![](_page_54_Figure_1.jpeg)

supersymmetry

![](_page_54_Picture_3.jpeg)

 $\begin{aligned} |A_{00}|^2 \gg |A_{--}|^2 \gg |A_{++}|^2 \\ \bar{q}\gamma^{\mu}(1+\gamma^5)q \end{aligned}$ 

QCD rescattering, penguin annihilation ??? no satisfactory solution...

# What we have learned

from  $\boldsymbol{B}$  decays:

- power of spin correlations
- extract maximum information
- production and decay angular formalism
- surprises (either within or beyond SM)
- better to look for beyond SM in direct production

LVI

if energy reachable at LHC

![](_page_55_Figure_11.jpeg)