

Search For W'→ tb All-Hadronic

Kevin Nash

Introduction

Searching for BSM physics

Top quarks play an important role

- New massive gauge bosons (W', Z')
- Heavy quark partners (t',b')
- Kaluza-Klein excitations
- SUSY
- etc...
- Until recently
 - Leptonic channel searches dominated
 - All-hadronic channel was swamped in QCD background
- $Z' \rightarrow t\overline{t}$
 - First analysis to use jet substructure to reduce QCD background
 - Hadronic channel comparable to semileptonic!
- $W' \to t\overline{b}$
 - Apply substructure tools
 - Hadronic channel *might* be competitive

W Prime

- Search for heavy tb resonance
 - W prime
- Predicted by many models
 - KK models, Little Higgs, Composite Higgs etc

- All-hadronic W' decay
 - $W' \rightarrow tb$
 - $t \rightarrow W + b \rightarrow (jj) + b$

Boosted Final State

- Primary focus high mass W'
- Top daughter jets highly boosted
 - Merged into a single jet
- b candidate jet in opposite hemisphere
- $\ensuremath{\bullet}$ Interested in high p_T range
 - $p_T > 450$ GeV for top candidate
 - $p_T > 370$ GeV for b candidate

Event Topology

Boosted Final State

- Top quark daughters merge at high boost
 - Boosted top quark identification
 - Sensitivity in very high resonant mass regions.
 - Hadronic top decay resolved as single jet p_T ≥ 400 GeV

300ST 2014

Analysis Strategy

- Boosted top jet identification
- b-tagging
- QCD background estimate from data
- tt background shape from Monte Carlo
 - Normalization taken from data
- Place limits on right-handed W'
- Place limits on left- and right-handed W' couplings

Signal Generation

- Using the CompHEP package
- Generate right, left, and mixed coupling W' samples
 - Standard model interference on left-handed and mixed
 - 200 GeV generator level p_T cut is applied to the b

CMS Top-Tagging Algorithm

 Try to decompose merged jet into two, and then three or four primordial "subjets"

The top jet should contain three subjets

- Two from the W decay
- One from the b quark hadronization
- Use Nsubjets ≥ 3

CMS Top-Tagging Algorithm

•
$$m_{ij} = \sqrt{(E_i + E_j)^2 - (\vec{p}_i + \vec{p}_j)^2}$$

- Put a subjet pair within the range of a W boson mass.
 - Cut on minimum $m_{ij} > 50 \text{ GeV}$
- Put jet within top mass range
 - Use 140 GeV < M < 250 GeV

CMS Top-Tagging Algorithm

10

Minimum Pairwise Mass in Signal, tt, and QCD Monte Carlo

QCD Monte Carlo
 tt Monte Carlo
 W_R Monte Carlo at 1700 GeV
 W_R Monte Carlo at 1900 GeV
 W_R Monte Carlo at 2100 GeV

b Candidate Jet

- W' decay produces a high p_T b-jet
- Use CSV algorithm at the medium operating point
 - CSVM > 0.679
- Use EPS13 Monte Carlo to data Scale Factor

b Candidate Jet

- After top-tagging, the qcd fraction is greatly reduced
- tt contribution reduced by approximately the same amount as signal
- High fraction of tt in full background estimate
- Suppression of tt becomes important

b Candidate Jet

- In tt

 the b candidate
 jet is commonly a W
 or merged top
- tt reduction can be performed with a simple cut on b mass
- We use b candidate mass < 70 GeV
 - tt reduction of ~80%

- QCD dijets are more likely to have a higher Δy than those from a heavy resonance
 - Similar Δy cut seen in other EXO searches
- Cut at |Δy| < 1.6
- Discrimination at high mass

Background Estimation

- Extract $t\bar{t}$ shape from Monte Carlo
 - Normalization from data
- Extract QCD background estimate from data (both shape and normalization).
 - Measure the average b-tagging rate for QCD jets in control region.
 - Apply this average b-tagging rate to the pre btagged sample in the signal region.

Control Region

$$\bar{P}_{btag} = \frac{N_{post}}{N_{pre}}$$

Signal Region

 $N_{post} \cong N_{pre} \times P_{btag}$

Background Estimation

We use the sideband Nsubjets < 3

Background Estimation

- Fit average b-tagging rate
- Three η regions
 - $0.0 < |\eta| \le 0.5$
 - $0.5 < |\eta| \le 1.15$
 - $1.15 < |\eta| \le 2.4$

tt Normalization

- Use Monte Carlo for tt prediction
- Use $t\overline{t} p_T$ reweighting
 - Using TOP PAG prescription
- Not designed for high kinematic range
- Measure tt normalization and uncertainty in data

.8

tt Normalization

- Define new control region enriched in $t\overline{t}$
 - M_b>70 GeV
- Extract normalization using template fit to the b candidate mass
 - $t\bar{t}$ as one template and QCD as the other
 - QCD moves within it's errors
 - tt is unconstrained

tt Normalization

- tt needs to be further scaled by 1.23±0.24
- Total rate uncertainty on $t\overline{t}$

Full Selection (First Iteration)

CMS top-tagger and b-tagging

Full Selection (First Iteration)

- Low sensitivity compared to semileptonic
- Need to reduce huge QCD dominated background

Full Selection (First Iteration)

- Look towards cutting edge top-tagging techniques
- N-subjettiness
 - Never before used for toptagging
- Subjet b-tagging
 - Completely new

N-subjettiness

24

 \bullet Variables τ_N describe how consistent the jet energy is with having N subjets

• Cut on τ_3/τ_2

$$\tau_N = \frac{1}{d_0} \sum_k p_{T,k} \min \left\{ \Delta R_{1,k}, \Delta R_{2,k}, \cdots, \Delta R_{N,k} \right\}$$

Plots From James Dolen: JetMET Algorithms and Reconstruction Meeting - June 6, 2013

N-subjettiness

b-tagging Subjets

- $t \rightarrow W + b \rightarrow (jj) + b$
- One of the subjets within the top should be a b-jet
- Allow for any of the three subjets to be b-tagged
- Use CSVM operating point

b-tagging Subjets

maximum b discriminant in Signal, $t\bar{t}$, and QCD Monte Carlo

Plot Signal/√Background for a cut on this variable. Use standard operating point **Cut at CSV > 0.679**

Top-Tagging Scale Factor

Event Selection - Recap

- Top candidate jet
 - p_T > 450 GeV
 - CMS top-tagging algorithm
 - N-subjettiness
 - Subjet b-tagging
- b candidate jet
 - p_T > 370 GeV
 - CSVM b tag
 - Mass < 70 GeV

• $|\Delta y|_{tb} < 1.6$

Event Selection - Recap

- Top candidate jet
 - p_T > 450 GeV
 - CMS top-tagging algorithm
 - N-subjettiness
 - Subjet b-tagging
- b candidate jet
 - p_T > 370 GeV
 - CSVM b tag
 - Mass < 70 GeV

• $|\Delta y|_{tb} < 1.6$

Can be inverted to define control regions with similar kinematics

Closure Test in Data

CMS Preliminary, 8 TeV, 19.7 fb⁻¹

Closure Test in Data II

Full Selection

Full Selection

19.7 fb⁻¹ (8 TeV)

Theta package used for limit setting

10

- Observed
 - 2.0 TeV
- Expected
- 1.99 TeV • W'_R

- Jpper Limit $\sigma_{W_R} imes B(W_R → tb)$ [pb] All-Hadronic Preliminary Observed (95% CL) ------ Expected (95% CL) \pm 1 σ Expected \pm 2 σ Expected Theory W'_R 10⁻¹ 14 2 2.2 2.4 2.6 2.8 1.8 1.6 M_{W'_₽} (TeV)
- 35

Generalized Coupling Limits

- ${\scriptstyle \bullet}$ Cross section limits set on right-handed W'
- W' could also couple to left-handed fermions
 - Set limits in a^R , a^L space
 - Weight left, right, mixed samples by

$$\sigma = \sigma_{SM} + a_{ud}^{L} a_{tb}^{L} \left(\sigma_{L} - \sigma_{R} - \sigma_{SM}\right) + \left(\left(a_{ud}^{L} a_{tb}^{L}\right)^{2} + \left(a_{ud}^{R} a_{tb}^{R}\right)^{2}\right) \left(\sigma_{R}\right) + \frac{1}{2} \left(\left(a_{ud}^{L} a_{tb}^{R}\right)^{2} + \left(a_{ud}^{R} a_{tb}^{L}\right)^{2}\right) \left(\sigma_{LR} - \sigma_{L} - \sigma_{R}\right)$$

Generalized Coupling Limits

Combination

- Semileptonic channel
 - $W' \rightarrow tb$
 - $t \rightarrow W + b \rightarrow (l\nu) + b$
 - Exclude $M_{W\prime} < 2.03 \text{ TeV}$

- Nearly identical sensitivity!
- Non-overlapping signal points
 - Combined limits for 1300GeV < $M_{W'}$
 - Semileptonic limits for M_W, < 1300GeV

Combination Right-Handed W'

Combination Generalized Coupling

Search For b*→ tW All-Hadronic

Search For $b^* \rightarrow tW$ All-Hadronic

- Recycle methods from W' search
 - QCD background estimate must be tweaked
 - Need to find new control regions
- Use CMS Top Tagger with N-subjettiness and subjet b-tagging
- Use Boosted W jet tagging

Boosted W-Tagging

- Use standard boosted W tagging techniques
- Cut on $\tau_2/\,\tau_1 < 0.5$
- 70 < M_{Jet} < 100
- Scale factor of 0.86 ± 0.065

- Extract tt shape from Monte Carlo
 - Normalization from data
- Extract QCD background estimate from data.
 - Measure the top-mistagging rate for QCD jets in control region.
 - Apply this top-mistagging rate to the pre top tagged sample in the Signal region.

- Need to find control region to extract top-mistagging rate
- Invert W candidate mass requirement
 - $\begin{cases} 30 < M_{Jet} < 70 \\ 100 < M_{Jet} \end{cases}$
- Keep top candidate mass requirement
 - Find top-mistagging probability given this jet mass

Two η regions
0.0 < |η| ≤ 1.0
1.0 < |η| ≤ 2.4

 ${\mbox{-}}\ {\mbox{Bin in }}\ p_T$

- Top mass not correctly modeled
 - Keeping the top mass window helps, but there is still a shape discrepancy
- Study effect in QCD Monte Carlo
 - Extract mass distributions before and after the number of subjets and MinMass requirements
 - Extract weights used to correct for this discrepancy

tt Normalization

- Extract tt normalization and uncertainty using a control region
 - 130 < M_{Jet}
 - $\tau_2 / \tau_1 > 0.5$

tt Normalization

- ML fit within theta
 - Fit top candidate mass distribution
 - QCD constrained to move within its errors
 - tt unconstrained
 - tt contamination in top-mistagging rate taken into account
- $t\bar{t}$ scaled by 0.78 ± 0.18

52

Find control region to test background estimation procedure

Closure

Signal Region

Limits

- Search for new physics performed at 8 TeV
- W' boson below 2.0 TeV excluded
- b^* quark excluded from 1.0 TeV to 1.4 TeV
- Cutting edge boosted top identification
- Analysis methods to prove essential at 13 TeV

(59)

HT750 Trigger used in data taking

Samples

61

Jet Datasets

Dataset	Luminosity (pb^{-1})	
/Jet/Run2012A-22Jan2013-v1/AOD	888	JEC
/JetHT/Run2012B-22Jan2013-v1/AOD	4403	ET 52 1/21 ANS
/JetHT/Run2012C-22Jan2013-v1/AOD	7052	11_33_VZ1_AN3
/JetHT/Run2012D-22Jan2013-v1/AOD	7414	AK7PFchs
Total Analyzed Luminosity	19757	
Monte Carlo Datasets		
Dataset	Cross section(pb)	
TT_Mtt-700to1000_CT10_TuneZ2star_8TeV-powheg-tauola	245 (NNLO)	
TT_Mtt-1000toInf_CT10_TuneZ2star_8TeV-powheg-tauola	245 (NNLO)	
T_t-channel_TuneZ2star_8TeV-powheg-tauola	56.4 (NNLO)	
Tbar_t-channel_TuneZ2star_8TeV-powheg-tauola	30.7 (NNLO)	
Tbar_tW-channel-DR_TuneZ2star_8TeV-powheg-tauola	11.1 (NNLO)	STADT52 1/27
T_tW-channel-DR_TuneZ2star_8TeV-powheg-tauola	11.1 (NNLO)	51AN155_V27
T_s-channel_TuneZ2star_8TeV-powheg-tauola	3.79 (NNLO)	AK7PFchs
Tbar_s-channel_TuneZ2star_8TeV-powheg-tauola	1.76 (NNLO)	
QCD_Pt-300to470_TuneZ2star_8TeV_pythia6	1759.6	
QCD_Pt-470to600_TuneZ2star_8TeV_pythia6	113.9	
QCD_Pt-600to800_TuneZ2star_8TeV_pythia6	27.0	
QCD_Pt-800to1000_TuneZ2star_8TeV_pythia6	3.57	
QCD_Pt-1000to1400_TuneZ2star_8TeV_pythia6	0.738	
QCD_Pt-1400to1800_TuneZ2star_8TeV_pythia6	0.0335	

Table 1: Primary datasets and Monte Carlo samples used. Including the corresponding integrated luminosity or cross section of each dataset.

 $t\bar{t}$ cross section: http://arxiv.org/abs/1303.6254

Samples

Left-Handed Signal Samples

Detect		(LO) Creese Section (mb)	Selection Efficiences
Dataset	TW/(Gev)	(LO) Cross-Section (pb)	Selection Emclency
SingletopWprimeTToHad_M-	43.7	0.4405	0.157
1300_left_TuneZ2star_8TeV-comphep			
SingletopWprimeTToHad_M-	50.0	0.2384	0.104
1500_left_TuneZ2star_8TeV-comphep			
SingletopWprimeTToHad_M-	57.3	0.1506	0.0679
1700_left_TuneZ2star_8TeV-comphep			
SingletopWprimeTToHad_M-	64.1	0.1120	0.0507
1900_left_TuneZ2star_8TeV-comphep			
SingletopWprimeTToHad_M-	70.9	0.0949	0.0429
2100_left_TuneZ2star_8TeV-comphep			
SingletopWprimeTToHad_M-	77.6	0.0878	0.0397
2300_left_TuneZ2star_8TeV-comphep			
SingletopWprimeTToHad_M-	91.2	0.0843	0.0379
2700_left_TuneZ2star_8TeV-comphep			
SingletopWprimeTToHad_M-	104.7	0.0849	0.0379
3100_left_TuneZ2star_8TeV-comphep			\land
		/	

Mixed Signal Samples

Dataset	Γ _{W'} (GeV)	(LO) Cross-Section (pb)	Selection Efficiency
SingletopWprimeTToHad_M-	87.4	0.8460	0.290
1300_mixed_TuneZ2star_8TeV-comphep			
SingletopWprimeTToHad_M-	101.0	0.4295	0.172
1500_mixed_TuneZ2star_8TeV-comphep			
SingletopWprimeTToHad_M-	114.6	0.2455	0.105
1700_mixed_TuneZ2star_8TeV-comphep			
SingletopWprimeTToHad_M-	128.2	0.1605	0.0711
1900_mixed_TuneZ2star_8TeV-comphep			
SingletopWprimeTToHad_M-	141.7	0.1209	0.0540
2100_mixed_TuneZ2star_8TeV-comphep			
SingletopWprimeTToHad_M-	155.3	0.1020	0.0458
2300_mixed_TuneZ2star_8TeV-comphep			
SingletopWprimeTToHad_M-	182.4	0.0893	0.0400
2700_mixed_TuneZ2star_8TeV-comphep			
SingletopWprimeTToHad_M-	209.5	0.0869	0.0388
3100_mixed_TuneZ2star_8TeV-comphep			

Signal Generation

- Generate right, left, and mixed coupling W' samples
 - For left and mixed, a loose 200 GeV generator level $p_{\rm T}$ cut is applied to the b

• Full Selection in W' Signal Monte Carlo

Comparison of kinematic variables

Left

CMS Top-Tagging Algorithm

Nsubjets in Signal, tt, and QCD Monte Carlo

QCD Monte Carlo
 tt Monte Carlo
 W_R Monte Carlo at 1700 GeV
 W_R Monte Carlo at 1900 GeV
 W_R Monte Carlo at 2100 GeV

CMS Top-Tagger

Top merging at high pt

Event Selection Cut-Flow

	Data	QCD	tī	W′ 1300	W' 1700	W' 2100	W′ 2700
2 jets	13854873		12179	6140	1467	364	48
p_{T}	4305244		4718	4951	1319	338	45
$ \Delta y $	3376771		4219	4704	1047	243	31
M _{top}	992949		3216	3021	790	189	24
N _{Subjets}	557489		2743	2512	636	148	19
Minmass	318520		2508	2265	576	129	14
SJ _{CSVMAX}	50642		1689	1450	338	69	7
τ_3/τ_2	7200		1025	825	180	35	3
M _b	4463		179	664	140	26	3
CSV	277	248	37	235	37	5	1

CMS Preliminary (S = 8 TeV, 19.7 fb⁻¹ (0.5<η<1.15)

Numerator and denominator of the average b-tagging rate

500 600 700 800 900 1000 1100 1200

Probe Jet p_ (GeV)

400

200 0

Sideband kinematics

Background Estimation

- $t\bar{t}$ subtraction
 - Subtract $t\bar{t}$ from the numerator and denominator of the average b-tagging rate
 - Subtract $t\bar{t}$ that is expected to fall through the background estimate

	η_1	η_2	η_3
pretag QCD	15922 (99.76%)	14396 (99.78%)	5494 (99.81%)
tagged QCD	924 (99.16%)	847 (99.16%)	285 (99.54%)
pretag t ī	38 (0.24%)	31 (0.22%)	11 (0.19%)
tagged t t	8 (0.84%)	7 (0.84%)	1 (0.46%)
pretag signal at 1300 GeV	101 (0.63%)	72 (0.50%)	16 (0.29%)
tagged signal at 1300 GeV	34 (3.69%)	23 (2.69%)	4 (1.35%)
pretag signal at 1500 GeV	56 (0.35%)	35 (0.24%)	7 (0.13%)
tagged signal at 1500 GeV	16 (1.70%)	10 (1.16%)	2 (0.61%)
pretag signal at 1700 GeV	28 (0.17%)	17 (0.12%)	3 (0.05%)
tagged signal at 1700 GeV	7 (0.74%)	4 (0.48%)	1 (0.22%)
pretag signal at 1900 GeV	13 (0.08%)	8 (0.05%)	1 (0.02%)
tagged signal at 1900 GeV	3 (0.28%)	2 (0.18%)	0 (0.06%)
pretag signal at 2100 GeV	6 (0.04%)	3 (0.02%)	0 (0.01%)
tagged signal at 2100 GeV	1 (0.12%)	1 (0.08%)	0 (0.03%)

Background Estimation

74

Ratio of parton flavor fraction in SB and

Background Estimation

Investigate QCD estimate of kinematic variables

Compare pileup reweighted and unweighted distributions

Pileup reweighting

• Use $\sigma_{minbias} = 69.4 \text{ mb}$

N-subjettiness

 Additional discrimination possible after application of the "CMS Top Tagger"

Top Taggers

Scale Factors

b-tagging scale factor

 $SF_b = 0.938887 + 0.00017124 \times p_t - 2.76366 \times 10^{-07} \times p_t^2$

• $t\bar{t} p_T$ reweighting

$$SF = \sqrt{e^{0.156 - .00137 p_{T_t}} e^{0.156 - .00137 p_{T_{\overline{t}}}}}$$

Top-Tagging Scale Factor

- Use simulation for tt and Signal
- Need to extract Monte Carlo to data scale factor for top-tagging.
- We investigate this using a highly pure sample of semileptonic tt
 - Documented in JME-13-007

Top-Tagging Scale Factor

Systematic Uncertainties

- Rate Uncertainties Applied
 - tt normalization (23.4%)
 - Top-tagging scale factor (13%)
 - Luminosity (2.6%)
 - CA8 b-tagging (2.0%)
- Sources found to be negligible
 - Pileup reweighting for Monte Carlo
 - pdf uncertainty for Monte Carlo
 - Jet Angular Resolution

- Shape Uncertainties Applied
 - Choice of fit for QCD
 - Uncertainty on the fit for QCD
 - Uncertainty on parameterization choice for QCD
 - b-tagging scale factor
 - $t\overline{t} p_T$ reweighting
 - Q^2 scale for $t\overline{t}$
 - Jet Energy Resolution
 - Jet Energy Scale
 - Trigger efficiency

Process	QCD	b-tagging	JES	p _T JER Reweight		Q ² Scale	Trigger	
qcd	^{+9.04} -8.93 (s)							
tī		^{+4.50} -4.50 (s)	+23.90 -24.35 (s)	^{-73.93} +77.67 (s)	^{-1.75} +15.82 (s)	+20.54 _{-15.82} (s)	+0.31 _{-0.31} (s)	
W′ 1300		+6.10 _{-6.10} (s)	+2.60 -7.51 (s)		-0.55 _{+0.38} (s)		+0.06 _{-0.06} (s)	
W′ 1500		^{+6.49} 6.49 (s)	^{-0.99} -1.11 (s)		^{-0.21} +0.05 (s)		+0.02 _{-0.02} (s)	
W′ 1700		+6.95 -6.95 (s)	^{-2.56} +1.21 (s)		^{-0.06} +0.10 (s)		+0.01 _{-0.01} (s)	
W′ 1900		^{+8.16} _{-8.16} (s)	^{-3.06} +2.07 (s)		^{-0.14} +0.15 (s)		+0.01 _{-0.01} (s)	
W′ 2100		^{+9.42} _{-9.42} (s)	^{-3.52} +2.44 (s)		+0.20 _{+0.09} (s)		+0.01 _{-0.01} (s)	
W′ 2300		+10.05 _{-10.05} (s)	^{-3.47} +1.84 (s)		^{-0.06} +0.19 (s)		+0.02 _{-0.02} (s)	86
W′ 2700		+9.51 -9.51 (s)	^{-0.74} _{-0.29} (s)		-0.27 _{+0.11} (s)		+0.04 _{-0.04} (s)	
W' 3100		^{+8.12} _{-8.12} (s)	^{+2.21} _{-4.46} (s)		^{-0.38} -0.15 (s)		+0.06 _{-0.06} (s)	

Jet Angular Resolution

• Smear η , ϕ by $\pm 10\%$

Signal at 1300,1900,2300 GeV

tĪ

- Jet Energy Scale
 - Scale $p_T \pm 5\%$
 - On top of standard JES uncertainty Signal at 1300,1900,2300 GeV

Jet Energy Resolution

Use η,φ dependent smearing (JER recommended)

Signal at 1300,1900,2300 GeV

• PDF uncertainty

- Take the average of the 1σ eigenvalues for the pdf input parameters
 - Use Cteq6M (Cteq6.6) for signal $(t\bar{t})$

• Pileup

• Use $\sigma_{mb} = 73500 \mu b$ as systematic variation

Trigger

Use ½ trigger inefficiency

Signal at 1300,1900,2300 GeV

- b-tagging Scale Factor
 - Use EPS13 prescription

p_t range	Absolute Error on <i>SF</i> _b
$320 \text{GeV}/c < p_t < 400 \text{GeV}/c$	0.0313175
$400 {\rm GeV}/c < p_t < 500 {\rm GeV}/c$	0.0415417
$500 {\rm GeV}/c < p_t < 600 {\rm GeV}/c$	0.0740446
$600 { m GeV}/c < p_t < 800 { m GeV}/c$	0.0596716

QCD parameterization uncertainty

- Parameterize average b-tagging rate in p_T and η
- Use this parameterization to predict M_{tb}
- Uncertainty in the parameterization choice is evaluated by parameterizing the average b-tagging rate in p_T , η , and M_{tb}
- Parameterization in the analysis constrains variables with known correlation with b-tagging
 - Therefore the parameterization choice uncertainty is a small and second order effect

QCD parameterization uncertainty

Choice of fit

- Extract uncertainty based on the choice of a bifurcated polynomial
- Plot alternative functional forms and take the mean squared error of the background estimates

uncertainty

Systematics

98

• For $t\bar{t} p_T$ re-weighting, take the unweighted distribution as the 1σ

99

• For $t\bar{t} Q^2$ scale uncertainty use the samples

$t\bar{t}$ systematic samples

/TT_Mtt-1000toInf_CT10_scaledown_TuneZ2star_8TeV-powhegtauola/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM

/TT_Mtt-1000toInf_CT10_scaleup_TuneZ2star_8TeV-powhegtauola/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM

AK5 to CA8 b-tagging

~2% effect

[100]

101

Nuisance Parameters after the fit

Nuisance Parameters											
Sample	JES	Q^2	b-tagging	p _T Re-weight	Trigger	CA btag SF	JER	QCD total	Lumi	Subjet SF	tt Norm
wp1300	-0.667 ± 0.669	$\textbf{-0.154} \pm \textbf{1.309}$	$\textbf{-0.031} \pm \textbf{0.993}$	$\textbf{0.199} \pm \textbf{0.701}$	$\textbf{0.002} \pm \textbf{0.993}$	-0.000 \pm 0.993	$\textbf{-0.027} \pm \textbf{0.795}$	$\textbf{-0.489} \pm \textbf{0.701}$	-0.000 \pm 0.993	$\textbf{0.000} \pm \textbf{0.994}$	$\textbf{0.080} \pm \textbf{0.997}$
wp1500	$\textbf{-0.544} \pm \textbf{1.008}$	$\textbf{0.375} \pm \textbf{1.112}$	-0.005 \pm 0.992	-0.030 ± 0.656	-0.000 ± 0.993	-0.000 ± 0.993	$\textbf{-0.021} \pm \textbf{0.929}$	-0.437 ± 0.703	-0.000 \pm 0.993	0.000 ± 0.993	$\textbf{0.101} \pm \textbf{0.993}$
wp1700	$\textbf{-0.545} \pm \textbf{1.007}$	$\textbf{0.375} \pm \textbf{1.113}$	-0.005 \pm 0.992	-0.030 ± 0.656	-0.000 ± 0.993	-0.000 ± 0.993	$\textbf{-0.022} \pm \textbf{0.911}$	$\textbf{-0.436} \pm \textbf{0.703}$	-0.000 \pm 0.993	-0.000 \pm 0.993	$\textbf{0.100} \pm \textbf{0.993}$
wp1900	$\textbf{-0.544} \pm \textbf{1.008}$	$\textbf{0.375} \pm \textbf{1.113}$	-0.005 \pm 0.992	-0.030 ± 0.656	-0.000 ± 0.993	-0.000 ± 0.993	$\textbf{-0.020} \pm \textbf{0.940}$	$\textbf{-0.437} \pm \textbf{0.703}$	-0.000 \pm 0.993	-0.000 \pm 0.993	$\textbf{0.101} \pm \textbf{0.993}$
wp2100	$\textbf{0.634} \pm \textbf{0.793}$	$\textbf{0.149} \pm \textbf{1.418}$	$\textbf{-0.018} \pm \textbf{0.993}$	0.109 ± 0.649	0.001 ± 0.993	-0.000 ± 0.993	$\textbf{-0.014} \pm \textbf{1.059}$	-0.583 ± 0.739	$\textbf{-0.000} \pm \textbf{0.993}$	0.000 ± 0.993	$\textbf{0.066} \pm \textbf{0.980}$
wp2300	$\textbf{0.659} \pm \textbf{0.788}$	$\textbf{0.132} \pm \textbf{1.446}$	-0.017 \pm 0.992	$\textbf{0.130} \pm \textbf{0.647}$	$\textbf{0.000} \pm \textbf{0.993}$	0.000 ± 0.993	$\textbf{-0.018} \pm \textbf{1.055}$	-0.537 \pm 0.721	0.000 ± 0.993	0.000 ± 0.993	$\textbf{0.071} \pm \textbf{0.981}$
wp2700	$\textbf{0.659} \pm \textbf{0.788}$	$\textbf{0.132} \pm \textbf{1.446}$	-0.017 \pm 0.992	$\textbf{0.130} \pm \textbf{0.647}$	0.000 ± 0.993	-0.000 ± 0.993	$\textbf{-0.018} \pm \textbf{1.055}$	-0.537 \pm 0.721	-0.000 \pm 0.993	-0.000 \pm 0.993	$\textbf{0.071} \pm \textbf{0.982}$
wp3100	$\textbf{-0.544} \pm \textbf{1.008}$	$\textbf{0.375} \pm \textbf{1.113}$	-0.005 \pm 0.992	-0.030 ± 0.656	-0.000 ± 0.993	-0.000 ± 0.993	$\textbf{-0.021} \pm \textbf{0.931}$	$\textbf{-0.437} \pm \textbf{0.703}$	-0.000 \pm 0.993	-0.000 \pm 0.993	$\textbf{0.101} \pm \textbf{0.993}$

Combination

- Combination of All-Hadronic and Semileptonic channels in progress
- Similar sensitivity
- Need to check for overlap

Combination

- Uncertainties Correlated
 - Jet Energy Scale
 - Jet Energy Resolution
 - Luminosity
 - b-tagging
- Uncertainties Uncorrelated
 - Q2 scale
 - ttbar normalization
 - ttbar pt-reweighting

Generalized Coupling Limits

s-channel single top

Generalized Coupling Limits

- ${\ensuremath{\,^{\circ}}} W'{\ensuremath{^{\rm L}}}$ excluded below 1.91 TeV
- ${\ensuremath{\,^{\circ}}} W'{\ensuremath{_{LR}}}$ excluded below 2.10 TeV

Signal Contamination

In average btagging rate

Signal Contamination

107

In Sideband

Review twiki

Apply generator pt cut to right handed sample

Signal Contamination

In Full Selection

[109]

Review twiki

B2G-12-009

1300 GeV: Left+Right = 9612 events Mixed = 9070 events 1700 GeV: Left+Right = 2607 events Mixed = 2572 events 2100 GeV: Left+Right = 668 events Mixed = 685 events:

. 110

Review twiki

B2G-12-010

1300 GeV: Left+Right = 434.1 events Mixed = 382.2 events 1700 GeV: Left+Right = 84.7 events Mixed = 89.8 events 2100 GeV: Left+Right = 19.6 events Mixed = 20.36 events:

- Many thanks to the ARC review for the improvements to the analysis.
- All cross checks have been performed and requested changes to AN and PAS have been implemented
 - Investigate generalized coupling limit setting procedure
 - Effect of the generator level $p_{\rm T}$ cut
 - Investigate loose selection background estimate
 - Investigate strange φ distribution in signal
 - Expand pdf uncertainty to consider multiple pdf sets
 - Investigate potential uncertainty from signal contamination in the average b-tagging rate
- All textual and minor comments have been implemented

https://twiki.cern.ch/twiki/bin/viewauth/CMS/B2G12009Review

• Effect of the generator level $p_{\rm T}$ cut on the left-handed and mixed coupling W' samples

- Disagreement seen in $W'_R + W'_L$ vs W'_{LR}
 - Similar disagreement seen in B2G-12-010
 - Does not seem to be due to generator $p_{\rm T}$ cut

- Investigate background estimate in a loose selection
 - Do not apply N-subjettiness and subjet b-tagging

\bullet Investigate φ dip for top candidate jet in signal Monte Carlo

https://hypernews.cern.ch/HyperNews/CMS/get/btag/910.html

116

- CTEQ6.6
- CTEQ6M
- MRST2006nnlo
- Same procedure as EXO-12-024
 - With the addition of CTEQ6M

Maximum uncertainty from CTEQ6.6

[118]

• Signal (1300 GeV)

Maximum uncertainty from CTEQ6M

- Investigate uncertainty due to signal contamination of the average b-tagging rate
 - Small effect

Samples

Jet Datasets

Dataset	Lumiosity (pb^{-1})
Run2012A-22Jan2013-v1	888
Run2012B-22Jan2013-v1	4403
Run2012C-22Jan2013-v1	7052
Run2012D-22Jan2013-v1	7414
Total Analyzed Luminosity	19757

$t\bar{t}$ Monte Carlo samples

Dataset	Cross Section (<i>pb</i>)	(121
TT_Mtt-700to1000_CT10_TuneZ2star_8TeV-powheg-tauola	245.8	
TT_Mtt-1000toInf_CT10_TuneZ2star_8TeV-powheg-tauola	245.8	