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Heavy Quarkonium : �(���) and �(��	)

• Very simple system – non-relativistic QM works:


�	
� �� = − ℏ����� + V �� 
� ��

BB threshold
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Bottomonium Spectroscopy
cheat sheet

� �� , � �� , � ��
radial excitations; can decay to ��� 

!� "#
P-wave states (ℓ = 1);

The decays feed down to lower mass Υ('() states

)�(��)
The ground state; not yet observed at 

hadron colliders

The � "� states are vector mesons (spin 1) – they can be polarized!
Transverse : * = ±1 Longitudinal : * = 0

The -/� system is similar, except that the charm quark is lighter.
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Can QCD Describe Heavy Quark 
Production?

Glover, Martin & Stirling:    Z. Phys. C38, 473 (1988).

Comparison with UA1 data at / = 630	234

Or not…

Einhorn & Ellis: Phys. Rev. D12, 2007 (1975).
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• Run I measurement:
– 5678 = 18	:; <
– Silicon detector allows 

measurement of prompt 
fraction

• Not explained by
– Structure functions
– Production in B decays
– Feed-down from => states 

• What about the ϒ system?
– No secondary component
– Calculations more reliable for 

heavy quarks?

CDF J/ψ Cross Section
CDF Run I – Phys. Rev. Lett. 79, 572 (1997)

X 30
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CDF ϒ(nS) Cross Section

• Run I measurement:
– 5678 = 17	:; <
– No feed-down from B decays

• Also a significant excess.

Direct

Direct + feed-down 
from =@ decays

CDF Run I – Phys. Rev. Lett. 75, 4358 (1995)

|y| < 0.4
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Color-Singlet Production Model

• Production/decay via 3�3 :

• Production at hadron colliders:

• Matrix elements also predict polarization .

A/
|C̅EFC|0 = G-/�HF
G-/� ∝ 	J(0) G!� ∝ 	J′(0)
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Non-Relativistic QCD

• Expansion in powers of LM and NO
• Factorization of different energy scales:

7P[ϒ R ] = 	T7P ;;� ', R Uϒ(')
�

• Bound states are “color singlets” – no net color charge.

• UW(�XYXZ	X�[\[) 	< 	 UW(�XYXZ	^_"`Y\[)
• 7P ;;� �XYXZ	X�[\[ 	≫ 7P ;;� �XYXZ	^_"`Y\[
• Color-octet terms might be really important!

Caswell & Lepage – Phys. Lett. 167B, 437 (1986) Bodwin, Braaten & Lepage – Phys. Rev. D 51, 1125 (1995) 

Perturbative
QCD

NRQCD matrix 
elements
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NRQCD + Color-Octet Models

• Matrix elements tuned to accommodate Tevatron results

Singlet

Octet

Sum

Cho & Leibovich,  PRD 53, 6203 (1996).

• Nearly on-shell gluons can fragment to form ϒ
• Predicted transverse ϒ polarization for :b ≫	cO

Unknown NRQCD Matrix 
Elements adjusted to match 
data.

Agreement with cross section 
is not too surprising now.

We need an independent 
observable to really test the 
model.



Another Model: “ kT factorization”

• Initial state gluon polarization related to their 
transverse momentum, de.

• No need for color-octet terms…
• Predicted longitudinal ϒ polarization for :b ≫	cO
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Higher-order QCD calculations

• Partial calculation including 
terms up to LMf…

• Large increase in cross 
section compared with LO 
calculation

• No need for color-octet 
contributions

Artoisenet, et al – Phys. Rev. Lett. 101, 152001 (2008).

• Predicts longitudinal ϒ polarization for :b ≫	cO
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Measuring “Polarization”
• We don’t really measure polarization…

• We actually measure the direction (cos j∗, l) of the �� in 
the ϒ rest frame.

��
� 

:m

� 

n̂

Boost into rest frame

��p∗
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Measuring “Polarization”

• Angular distributions depend on:
– Spin and direction of initial state (ϒ is spin 1)

– Spins of final state particles (�± are spin ½)

• Transverse polarization (helicity * = ±1):qrq stu v∗	~	<�stu� v∗
• Longitudinal polarization (helicity * = 0):qrq stu v∗	~	< stu� v∗
• Fit data using qrq stu v∗	~	<�x	stu� v∗
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ϒ(1S) Polarization in Run I

CDF Run I:  Phys. Rev. Lett. 88, 161802 (2002).
NRQCD:  Phys. Rev. D63, 071501(R) (2001).de-factorization:  JETP Lett. 86, 435 (2007).
NNLO*: Phys. Rev. Lett. 101, 152001 (2008).

No strong polarization 
observed in ϒ(1()	decays...
• What happens at high :e?
• Feed-down from =; states?
• Presumably, less feed-down for 
ϒ(2()	and ϒ(3()	states…

Different feed-down assumptions in kT
calculations:

=@ decays destroy polarization=@ decays preserve polarization

x
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ϒ Polarization from DØ in Run II

DØ Run II: Phys. Rev. Lett. 101, 182004 (2008).
CDF Run I:  Phys. Rev. Lett. 88, 161802 (2002).

NRQCD:  Phys. Rev. D63, 071501(R) (2001).de-factorization:  JETP Lett. 86, 435 (2007).
NNLO*: Phys. Rev. Lett. 101, 152001 (2008).

Similar analysis technique :

• Fit ��� mass distribution to get 
ϒ yield in bins of cos j

• Correct for detector acceptance
• Fit to 1 + L	 cos� j
Results are inconsistent…

…why?!?
What is this telling us?

15



Suggested New Paradigm
• Faccioli, et al remind us…    Phys. Rev. Lett. 102, 151802 (2009).

• Angular distribution when decaying to fermions:

qz
q{~1 + *v cos� j + *| sin� j cos 2l + *v| sin 2j cos l + …

• A pure state cannot have all *� = 0 simultaneously.
• Measured values could depend on detector acceptance.
• A different coordinate system might facilitate 

comparisons between different experiments.

• We need to measure more than just �p!
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Transverse/Longitudinal Insufficient

Transverse: �� = 0 Longitudinal: �±< = 0

But an arbitrary rotation will preserve the shape...
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Need for full polarization analysis

• The templates for 7�/7Ω are more complicated than 
simply 1 ± cos2j.

• Need to measure *j, *l and *jl simultaneously.

• Invariant under rotations: *� = (*v + 3*|)/(1 − *|)

Transverse: �� = 0 Longitudinal: �±< = 0
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�(�)

�

Which coordinate system?
• S-channel Helicity (SH) – ϒ momentum vector defines the 

z-axis, the x-axis is in the production plane

• Collins-Soper (CS) – z-axis bisects beam momentum 
vectors in ϒ rest frame, x-axis in the production plane:

: :̅
: :̅
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Could it be possible?
S-channel helicity

frame

:b

*v

* |

*v
* |

:b

Collins-Soper
frame

If *v is zero in one coordinate frame, then 
it must be non-zero in another frame!

(provided *| is not also zero) 20



New CDF Analysis

• Goals:
– Use both central and forward muon systems
– Measure all three parameters simultaneously
– Measure in Collins-Soper and S-channel helicity frame
– Test self-consistency by calculating rotationally 

invariant combinations of *j and *l
– Minimize sensitivity to modeling the ϒ('()	resonance 

line shape
– Explicit measurement of angular distribution of          

di-muon background
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The CDF II Detector
FORWARD MUON SYSTEM

CMX
0.6<|η|<1

CENTRAL MUON SYSTEM
CMU

|η|<0.6

CENTRAL MUON SYSTEM
CMP|η| ≲ 0.4

6 layers of 
double-sided 

silicon
SVX-II

Drift chamber 
1.4 Tesla field

COT

Two triggers used:

• CMU*CMP (4 GeV) + CMU (3 GeV)

• CMU*CMP (4 GeV) + CMX (3 GeV)

Both require:

• opposite charge

• 8 < m(μ+μ-) < 12 GeV/c2

Integrated luminosity : 6.7 fb-1

Sample size: 550,000 ϒ(1S)
150,000 ϒ(2S)

76,000 ϒ(3S)
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The CDF Upsilon Sample
• Two trigger scenarios:

– Two central ��� (CC)
– Central+forward ��� (CF)

• Rapidity coverage:
– CC: �(�±) ≲ 0.6
– CF:		0.6	 ≲ �(�±) ≲ 1

• Good signal separation:
– P�~	50	�34/C�

• Yields in 6.7	�; <:
550,000 ϒ(1S)

150,000 ϒ(2S)
76,000 ϒ(3S)

CENTRAL-CENTRAL

CENTRAL-FORWARD
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Analysis Method
• Previous analysis techniques do not generalize well to fits in 

both cos	j and l.
• New technique:

– Measure distribution of (cos j , l) for all ��� pairs with masses 
near an Υ '( resonance

– Split into background enhanced and background suppressed sub-
samples

– Observed distribution depends on the underlying angular 
distribution, modified by the detector acceptance:7�
7Ω ~�M	�M(cos j, l) ×�M(cos j, l; *mM)	+ (1 − �M)	�@(cos j, l) ×�@(cos j, l; *m@)	

– Calculate �(cos j , l) for signal/background using Monte Carlo

– w(cos j, l)~1 + �p cos� j + �� sin� j cos 2l + �p� sin 2j cosl
– Fit for the parameters �p, �� and �p� in both components
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Analysis Method

• Two components in each mass range: signal + background

*m�@M����q =	�M*mM + 1 − �M *m@

Υ(1()
Υ(2()

Υ(3()

0 1 … … 10 11
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Geometric Acceptance
• Geometric acceptance calculated with full detector simulation 

for each :e range analyzed
• Muon detectors simulated with 100% efficiency

Central + Central Central + Forward

G
eo

m
et

ry

Kinematics 26



Trigger Efficiency
• Muon+displaced track 

trigger:
– Selects J/ψ from B 

decays
– Trigger requires that 

only one is a muon
– Measures efficiency of 

muon trigger

• -/� →	��� 		trigger:
– Fully reconstructed �� → A/
�� decays

– Kaon is unbiased
– Measures efficiency of 

track trigger

�± matched with 
trigger track.

Matched with muon … not matched.

… not matched.
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The Background is Complicated
• Dominant background: correlated ;;� production
• Triggered sample is very non-isotropic

– :b ; spectrum falls very rapidly
– Angular distribution evolves rapidly with :b	and c(��� )

• Very simple toy Monte Carlo shows that peaking 
backgrounds may be present in some p T ranges.

|co
sj|

28



Background Structure

This is just all toy Monte Carlo 
but it makes us worried…

A polynomial may not describe 
the mass distribution under the 
signal when fitted using just the 
sidebands.

3 − 4	234/C 4 − 5	234/C

5 − 6	234/C
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Need for a New Approach
• Sideband subtraction won’t work:

• Dominant background is semi-leptonic B decays
– Angular distributions not correlated with decay time
– Muons with large impact parameters provides an almost pure 

background sample with the same angular distribution

Angular distributions in 
low-mass and high-mass 
sidebands are not the 
same as in background 
under the ϒ(nS) signals.

Beam spot

7�

�±
7� > 150	�c
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Does it work?
• We can check using the sidebands…

Beam spot

7�

�±

Displaced sample : one muon has 
impact parameter 7� > 150	�c
Prompt sample : neither muon has 
impact parameter 7� > 150	�c

Angular distributions in prompt and 
displaced samples are the same, 
both for	c ��� <	cW(<�) and for 
c ��� > cW( �).

(CS frame) 31



Measuring the Background Fraction

• The ratio of prompt/secondary distributions is almost constant.

• Simultaneous fit to displaced sample and ϒ sidebands.

• Avoids possible bias from modeling the ϒ line shape.
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Fits to signal + background

• The fit provides a good description of the angular distribution 
in both background and in signal + background samples.

Collins-Soper frame

S-channel helicity frame

Υ 1( mass	bin,2 < :b < 4	234/C
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Fit Quality is Very Good

34



Fitted Parameters

Signal and background 
have very different 
angular distributions.

Background is highly 
“polarized” but the signal 
is not.
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Consistency Tests

We observe that 
indeed it is.

It can be shown that the 
expression

is the same in all 
reference frames.

*� = *v + 3*|1 − *|
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Frame Invariance Tests

• Differences generally consistent with expected size of 
statistical fluctuations

• Differences used to quantify systematic uncertainties 
on *j, *l and *jl

*� (1
()

*� (2
()

*� (3
()
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Results for ϒ(1S) state

• Nearly isotropic… what about the ϒ(2S) and ϒ(3S) states?

λθφλφλθ

λθφλφλθ
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Results for ϒ(2S) state

• Looks isotropic, even at large values of :e…

λθφλφλθ

λθφλφλθ
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First measurement of ϒ(3S) spin alignment

• No evidence for significant polarization.

λθφλφλθ

λθφλφλθ

Statistical
Stat+syst.
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Systematic Uncertainties
• Efficiency measurement:

– Vary measured trigger efficiencies by ±1	P
• Monte Carlo statistics:

– Impact of finite sample sizes in acceptance calculated using toy 
Monte Carlo experiments

• Background scale factor:
– Compare linear and quadratic interpolation from sidebands into Υ '( signal region

• Frame invariance tests:
– Treat ¤*� = 	*�¥� − *��¦ as a systematic uncertainty
– Consistent with statistical fluctuations in almost all cases

• All are generally much smaller than statistical uncertainty

41



Comparison with Models
• Previous predictions for *v in the S-channel helicity frame:
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Comparison with previous results

Agrees with previous CDF publication from Run I

NRQCD – Braaten & Lee, Phys. Rev. D63, 071501(R) (2001)
kT – Baranov & Zotov, JETP Lett. 86, 435 (2007)
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Comparison with previous results

• Does not agree with result from DØ at about the 4.5σ level

NRQCD – Braaten & Lee, Phys. Rev. D63, 071501(R) (2001)
kT – Baranov & Zotov, JETP Lett. 86, 435 (2007)
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Comparisons with newer calculations

Nucl. Phys. B 214, 3 (2011) summary:
– NLO NRQCD – Gong, Wang & Zhang, Phys. Rev. D83, 114021 (2011)
– Color-singlet NLO and NNLO* - Artoisenet, et al. Phys. Rev. Lett. 101, 152001 (2008)

NLO NRQCD with 
color-octet matrix 
elements

NLO color- singlet

Significant 
uncertainty due to 
feed-down from =;('R)	states 
(conservative 
assumptions)

CDF Run II preliminary – 6.7 fb-1
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Active Field of Research

• P-wave states probably do feed down to the Υ 3( at some level…
• Should improve the precision of predictions from all models.

CDF Run I - Phys. Rev. Lett. 84, 2094 (2000)
ATLAS – arXiv:1112.5154
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New Cross Section Measurements

• 10-20% systematic uncertainty due to unknown polarization.

Phys. Rev. D83, 112004 (2011) arXiv:1202.6579Phys. Lett. B 705 (2011), 9

47



Summary
• Which formalism best describes A/
 and ϒ production 

in hadron collisions is still debatable…
• Angular distributions provide important tests
• New result from CDF:

– First complete measurement of angular distribution of ϒ('()
decays at a hadron collider.

– First analysis of any aspect of angular distributions of ϒ(3()
decays.

– First demonstration of consistency in two reference frames 

• The decays really look isotropic…
– As they did in Run I
– Even when :e is large
– Even for the ϒ(3()
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Phys. Rev. Lett. 108108108108, 151802 (2012)

Not pure longitudinal…

Now we know…

Not pure transverse…

It’s essentially isotropic.

49
arXiv:1112.1591 [hep-ex]



50



Tevatron Run II

Run I 

CDF J/ψ, ψ(2S) polarization

DØ ϒ(1S),  ϒ(2S) polarization

Preliminary CDF ϒ(1S) polarization

(CDF Run I ϒ(1S) polarization)

CDF ψ(2S) cross section

New CDF ϒϒϒϒ((((nSnSnSnS) ) ) ) polarization

The end!
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Another Model: “ kT factorization”

P§§̅ = 52 �<, �� 2 ��, �� P̈©©(�<, ��)	7�<7��
“un-integrated gluon densities”

⇒ Initial state gluon polarization related to de
• No need for color-octet terms…
• Predicted longitudinal ϒ polarization for :b ≫	cO
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CDF Measurement
Phys. Rev. Lett. 88, 161802 (2002).

Transverse: 1 + cos� j∗
Longitudinal: 1 − cos� j∗

Longitudinal

Transverse

Fit yield in 8 
bins of cos θ*

• Observed distribution is isotropic - neither longitudinal nor transverse.

Template distributions for 
transverse/longitudinal polarization 
strongly influenced by detector 
acceptance.
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ϒ Polarization from DØ in Run II

DØ Run II: Phys. Rev. Lett. 101, 182004 (2008).
CDF Run I:  Phys. Rev. Lett. 88, 161802 (2002).

NRQCD:  Phys. Rev. D63, 071501(R) (2001).
kT-factorization:  JETP Lett. 86, 435 (2007).

NNLO*: Phys. Rev. Lett. 101, 152001 (2008).
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Toy Monte Carlo for correlated ��	 production

pT(b) ∆φ

∆y

ApT
E(µ)

Phys. Rev. D65, 094006 (2002): R.D. Field, “The sources of b-quarks at the Tevatron
and their Correlations”.

• pT of the b-quark
• ∆φ between b-quarks
• ∆y between b-quarks
• pT asymmetry
• E(µ) in B rest frame
• Peterson fragmentation
• Boost muons into lab 

frame
• Full detector simulation 

and event reconstruction
• Same analysis cuts 

applied to data
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A New Approach – by example
• �� → A/
�� lifetime analysis:

• We do not fit m(J/ψK+) in bins of ct(J/ψK+)…
• Instead, we expect the background decay time 

distribution to be independent of mass
• Mass sidebands constrain its shape

Phys. Rev. Lett. 106, 121804 (2011)
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J/ψ polarization at ALICE

• Extract parameters from 1-dimensional projections:

ª cos j ~ 1
3 + *v 1 + *v cos� j

ª l ~1 + 2*|3 + *v cos 2l

ª l« ~1 + �¬­®
 �¬­ cosl« where   l« = ¯l − °

±², cos j < 0l − ³
±², cos j > 0

• Iteratively tune Monte Carlo to calculate polarized 
acceptance

• Hard to make it converge:
– Assume that λθφ=0.

– Impose invariance of *� as a constraint.

7Γ
7Ω~1 + *v cos� j + *| sin� j cos 2l + *v| sin 2j cosl
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• Expect to extend measurement to higher pT using 2011 data.
• No measurement in Collins-Soper frame from other collider 

experiments.

J/ψ polarization at ALICE
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Other Rotational Invariants

λ¶ = λ· + 3λ¸1 − λ¸ = 4
1 + �� � − �<∗� < − � <∗�< 	− 3 This is the part that is invariant 

under rotations.

*� = *v + 3*|1 − *|
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General proof
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Bottomonium Spectroscopy
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Theoretical Description
• Heavy quarks � non-relativistic mechanics
• Potential models:

• Reasonably good empirical description of spectrum and 
transitions.

• Small 1/mQ � Effective field theories
– HQET: 
– NRQCD: 
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Bottomonium Spectroscopy

QWG, October 2011

↳ ηb(mS) γγγγ

ϒ(5S) → Zb ππππ-+

↳ hb (nP) ππππ+
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Color Evaporation Model
• CC̅ pairs produced with 2c> < c < 2c¹ must 

eventually form a bound state.

Fritzsch - Phys. Lett. B 67, 217 (1977)

Halzen - Phys. Lett. B 69, 105 (1977)

• Unable to predict polarization…
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Color Evaporation Model
Compare the 

overall shape of 
the pT spectrum…

Maybe okay?

…but everything has 
been scaled…
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