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Past: Neutrinos have mass.

On the Verge: 0,3 is Large!

Next: Neutrinos are Majorana?



ReVvolution

Pronunciation: /reva'lulf(o)n/

Fundamental change in the way of
thinking about or visualizing something.

Neutrinos have mass!



Remember:

When | started graduate
school neutrinos were
believed to be massless.



Let's hypothesize that neutrinos have
tiny masses and some flavor mixing:
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For Two Neutrinos....

flavor mass
Ve [ cos@ sind 1
Vy —sinf cosf V9

The mixing of the states Is
expressed by a rotation matrix.

Ve) = cosf |vy) +sinf |vg)

v,) = —sinf |v1) + cosé 1)



Neutrinos are produced and detected via their flavor states...

A R R
e AN AN AT
N~ NS ‘ ______________________ | —
Vi
|
0 Time, t

From Celebrating the Neutrino, LANL

but it’s their mass states that propagate through space...




Neutrino Oscillation
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Neutrino Oscillation
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The Mixing Angle determines the amplitude.



Neutrino Oscillation
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E A

Distance between your source and detector.
Units are km.



Neutrino Oscillation
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A

Energy of the neutrinos
Units are GeV



Neutrino Oscillation
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Mass Squared Difference
Am? = m? - m?
Units are eV?



KamLAND Data:
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“Solar” (because solar v experiments saw it first)
Am?=7.5x107 eV?



Results > 5 sigma in 2001



> 5 sigma NOW!

Look how tiny!
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reVqution

You say you want a revolution
Well, you know
we all want to change the world.



ReVvolution

Pronunciation: /reva'lulf(o)n/

A change in daily life especially
related to technology.

0.3 is Large!



In January:

lgor presented to you the first results from Double Chooz,

-

Measuring the neutrino mixing ar&e 0,5 with
the Double Chooz far detector

- —_—
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Igor Ostrovskiy



From November:

The first results from Double Chooz found,
sin?203 = 0.08 * 0.04 (stat) + 0.03 (sys).

This is not significant by itself...
Why do | think we are on the verge of a technical revolution!?

Because of what it brings to the global fits.



From Pier Oddone’s LBNE
Presentation two weeks ago

The gate is likely open: sin?20., > 0

) 1 4 T T L I
2 Combined

Current knowledge of sin?26,, from T2K, MINOS and Double Chooz.
Current reactor experiments like Daya Bay, T2K and NOvVA will measure
sin?26,, for all values > 0.01

Presentation to Office of Science, February 21st, 2012 & Fermilab




From November:

The first results from Double Chooz found,
sin?203 = 0.08 * 0.04 (stat) + 0.03 (sys).

This is not significant by itself...
Why do | think we are on the verge of a technical revolution!?

Because of what it brings to the global fits.

I. What we used to think.
II. The measurement from Double Chooz.
[II. The global view and future directions.
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Three neutrino mixing will
be defined by three mixing

angles and two independent
mass differences.
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Solar/KamLAND

Here is the mixing and Am?
which I1s measured by the

Solar neutrino experiments
and KamLAND.
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neutrino measurements.

g Atmospheric/Accelerator
S | This mixing and Am? which is
P 25 B | measured by the Accelerator

= | 1  experiments like MINOS/T2K
«& T 1 and Super-K's atmospheric
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Everyone is excited by ® the CP violating phase.
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What is CP Violation?

P(a — b) # P(a — b)

or

Py, — v.) # P(v, — V)

If observed this would be a revolution.



But | would argue the last mixing angle Is
interesting all In rtself.



This i1s Quark Mixing This is Neutrino Mixing

TR (i)
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[t Is a fundamental parameter that contributes to
many calculations involving electron neutrinos.



Theory favors small sin?203:

Order of Magnitude

Masses

Model Review

Theory Prediction b)’ Albl"lght et. al.
ArXiv:0803.4176
Le-Ly-Le 0.00001
SO(3) 0.00001 Neutrino
_——> Factory
S3 and S4 0.001 Dreams
A4 Tetrahedral 0.001
Texture Zero 0.001 Modern
-_— > ,
RH Dominance 0.0l DeSIgn
SO(10) with Sym/Antisym 00| .
Contributions ' It looks like
SO(10) with lopsided o1 we are here!



The most talked about beam designs:

Neutrino
Factories

* These are particularly needed if 03 is small

* [hese are enormous investments.
* We may still want one but they are not critical.




:
i

i

It's Chooz Time!




arXiv:1112.6353
Submitted to PRL



Double Chooz Collaboration!

STTLIC

RN

Brazil France Germany Japan Russia Spain UK USA
CBPF APC EKU Tibingen Tohoku U. INR RAS CIEMAT-Madrid Sussex U. Alabama
UNICAMP CEA/DSM/IRFU: MPIK Heidelberg Tokyo Inst. Tech. IPC RAS ANL
UFABC SPP RWTH Aachen Tokyo Metro. U. RRC Kurchatov U. Chicago
SPhN TU Minchen Niigata U. Columbia U.
SEDI U. Hamburg Kobe U. UCDavis
SIS Tohoku Gakuin U. Drexel U.
SENAC Hiroshima Inst 1T
CNRS/IN2P3: Tech. KSU
Subatech LLNL
IPHC MIT
ULB/vUB U. Notre Dame
Sandia National
Laboratories

Spokesperson: H. de Kerret (IN2P3) U. Tennessee

Project Manager: Ch. Veyssiere (CEA-Saclay) Web Site: www.doublechooz.org/



Double Chooz is an
antineutrino disappearance
experiment.



Reactors P
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The Prediction:

Fission rates [s™]

Fission Rates
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Well understood, isotropic source

/ of electron anti-neutrinos Oscillations observed
(E<8MeV) as a deficitof v,

b

Unoscillated flux
observed here

Probability

Survival Probability
P =1 -sin?20,; sin*(1.27 Am? L/E)

|,
Distance ~1000 meters

Drawing by A. Kaboth



The Signal: Inverse Beta Decay

Event #| Ee= Ey- 0.8MeV
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Target

0.3 m3 (8 tons)
Gd Doped Scintillator

g N\ Gamma Catcher
- 223m3
2~ I\ Plain Scintillator

Buffer

| 1O m3 Mineral Ol
with

390 10" PMTs



N T A

Inner Veto

90 m3 LAB Scintillator
with

/8 8" PMTs




Outer Veto
Precision muon
tracking with plastic
scintillator readout

with fibers and multi-
anode PMTs.




DCO‘i‘i“‘; -

Calibration Systems

e /-AXIs

e Guide Tube in Gamma Catcher
e Buffer Tube

e Articulated Arm

‘Most robust calibration
plan among the reactor
experiments.
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Collecting Data Since April | 3:

l T

T ] T T T T T I T T T I
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We see 4121 candidates in 96.8 live days.
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Background Summary:

Events per Day

’L 2.3+1.2
Fast-N + Stopped Muons 0.83£0.38
Accidental 0.33£0.03
Total 3.46%1.29
Candidates 42.6

We have 3.0% uncertainty due to the
backgrounds, but they can be
constrained in a Rate + Shape analysis. Y



Reactor Off-Off,
great verification for first result!




Statistics 1.6%
Reactor 1.7%
Detector 1.1%

Energy Scale 1.8%
Backgrounds 3.0%




Example Prediction:

Entries per 0.50 MeV

DOC%‘%’: -

SEREE RN U I LR L I B I TS
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- sin?2613=0.2 -
100 =
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0 2 3 4 7 8 9 10

Visible Energy [MeV]



Two ways to do the analysis:
Rate

or
Rate+Shape




Rate Only:
sin220,3 = 0.104 * 0.081



Rate + Shape

sin220,3 = 0.086 * 0.05 |

x2/NDF = 237/17
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The other way Is...

Appearance
Vi = Ve

sin® (Az; Fal)
(ABI + (IL)2 3

sin? fo3 sin? 2613

sin (Az; Fal) sin (aL)

F sin 0 sin 26,3 sin 2653 sin 26,5 sin A3, Ay Fal) Asq (aL) JADS!
. . . sin (A al sin (aL
+ cos 0 sin 26,3 sin 2655 sin 26,5 cos Asg; (A(313;:T1L) ) Asq (a.(L) ) Aoy

sin? (aL) .,

+ cos? B3 sin? 26,5 (aL)Q 21-

0.3, CP Violation, Mass Hierarchy, Oh My!



Neutrino Mass Squared
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NORMAL INVERTED

Fractional Flavor Content



VWe are the strongest disappearance
result to date. The strongest
appearance result is from T2K

—+4— Data
< Osc. v, CC

w
L || L

N
N
NN

Number of events /(250 MeV)

Reconstructed v energy (MeV)



Plotti mg the T2K Result:

1 Normal hierarchy, allowed
] parameter space for mixing
] angle and CP phase.

Inverted hierarchy, allowed
] parameter space for mixing
] angle and CP phase.

From now on, | will just
show normal hierarchy...




There are NO systematics
in common between T2K
and Double Chooz.
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With just T2K+DC,
sin?2013=0
s ruled out at > 30



Impact of the Double Chooz first result
* First in the new generation of reactor experiments.
* Provides strong bound at high sin?20s.

e Compliments T2K's bound at low sin?20s.

* When combined with T2K, pushes global fit to non-zero at 30.

* For the first time, values for entries of this mixing matrix.

Bigger than we
thought!

lll
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The MIT Double Chooz Group:
Analyses Today!

Lindley - Analysis of 300 day data sample
Josh - Lorentz violation analysis
Kazu - Analysis expanding the fiducial volume using nH captures

Chris - Writing his thesis on the reactor flux prediction



reVqution

You say you want a revolution
Well, you know
we all want to change the world.

You ask me for a contribution
Well, you know
We are all doing what we can



ReVvolution

Pronunciation: /reva'lulf(o)n/

Overthrow in favor of a new system.

Neutrinos are there own
anti-particle i.e.
Majorana?



The Majorana Neutrino Revolution:

I. Double Beta Decay
II. CUORE - My Next Experiment

III. The Next Generation? - First results from quantum dots!



There I1s one process that I1s feasible for
determining the Majorana nature of
the neutrino.

Neutrinoless Double Beta Decay



Double Beta Decay

Due to energy conservation some nuclel can't decay to their daughter

nucleus, but can skip to their granddaughter nucleus.

A Z

A, L+

Just a few isotopes!

A L+

Nuclear
Energy
Level



The Standard Model Process

This process is completely allowed and the rate was first calculated by
Maria Goeppert-Mayer in 1935.

Nucleus Z > f—-——) > Nucleus Z+2

Nuclear Process
Phys.Rev. 48,512-516 (1935)




dN/d(E/Q,)

Double Beta Decay

The sum of the electron energies gives a spectrum
similar to the standard beta decay spectrum.

\\“m'ln,
2.0= Rev.Mod.Phys., 481-516 (2008)
1.5
1.0-
0.5+
O -O 4}\ N I I I;""ln“""
0.0 0.2 0.4 0.6 0.8 1.0

E/Q..

This has been observed in isotopes such as '3Te and ''eCd.



Neutrinoless Double Beta Decay

Nucleus Z > ' ' > Nucleus Z+2

Nuclear Process



Neutrinoless Double Beta Decay

The sum of the electron energies gives a spike at the endpoint of
the “neutrino-full” double beta decay.
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What is measured is a half-life...

The half-life of the neutrinoless decay:

(TO )~ b= GOV(QlBlBaz)IMOV|2<mIBIB>2

/

Phase space factor
Notice higher endpoint means faster rate.



What is measured is a half-life:

(T(l)/vz)_1 = GOV(QlBlBa Z) |¥0V|2<m,3’8>2

Nuclear Matrix Element

This is a difficult calculation with large errors and
substantial variation between isotopes..motivates
searches with multiple isotopes.



What is measured is a half-life:

(T?/Vz)_1 = GOV(QlBlBa Z) |MOV|2<mﬁﬁ>2
A

Effective Majorana Mass of
the neutrino



Effective Majorana Mass:

- i vz 2 . 2
Mee = E V2 m; = cos® 013(7721622'3 cos® 019 + moe*® sin® 015) + ma sin® 05

ooh...look 63!

Electron Neutrino Mass:

m? = E [VZ|m; = cos? 13(m7 cos® 612 + m3 sin® 1) + mj sin® 613

’ Ve

2

measured by KATRIN



my meV

Visualizing the Equations:

= E [VZm; = cos® 613(m7 cos® 012 + m3 sin® f12) + m3 sin® 613

3 BoundfromMAINZandTROlTSK 1 vem Vum  vrm
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hghtest neutrino mass in eV



my meV

Visualizing the Equations:

= 3 V2jm? = cos? fra(om
1

cos? 01 + mg sin? 012) + mg sin? ;3

3+ BoundfromMAINZandTROlTSK

Sensitivity of KATRIN
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Double Beta Decay Visualizing the Equations:

Mee = E V2 m; = cos® 013(m,€*” cos?® 015 + mye®™ sin® 0)5) + masin® 03

arXiv:hep-ph/0606054v3

107!

1072

| mee | ineV

1073

99% CL (1 d¢
10-4 | R | L1 Lt

1074 1073 1072 107! 1

lightest neutrino mass in eV



Design Issues:

Size
e Natural Abundance
* Detector technology

Backgrounds

(2.6 MeV is the highest energy U/Th gamma ray)
* Energy of endpoint

e Cleanliness

* Particle/Event identification

Energy resolution



Pick your favorite candidate isotope......

Isotope Endpoint Abundance
%Ca 4271 MeV 0.0035%
EUNF 3.367 MeV 5.6%
%7 3.350 MeV 2.8%
100Mg 3.034 MeV 9.6%
825e 2.995 MeV 9.2%
16Cd 2.802 MeV 7.5%
30Te 2.533 MeV 34.5%
136)e 2479 MeV 8.9%
76Ge 2.039 MeV 7.8%
128Te 0.868 MeV 31.7%




Pick your favorite candidate isotope......

Isotope Endpoint Abundance

483 . 4271 MeV 0.0035%
%

150N/ £ 3367 MeV 5.6%

97} go 3.350 MeV 2.8%
v

0Mo 0 3.034 MeV 9.6%
m

826 . 2995 MeV 9.2%
Q

16Cd % 2.802 MeV 7.5%
-

30Te 7533 MeV 34.5%

366 2479 MeV 8.9%

76Ge 2.039 MeV 7.8%

28T 0.868 MeV 317%




Avalanche
Photodiodes

Because of the sensitivity needed almost all experiments have the
source = detector.



CUORE
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Super Cool and a Big Deal



Super cool

TeO, crystals operated as bolometers in a
dilution refrigerator at approximately ~10mK.

bolometer = temperature measurement

Big Deal

Largest detector currently under
construction, 750kg with 206 kg of 39Te.

Next largest are EXO and KamLAND Xen
with 140kg and 29kg of '3%Xe respectively.




Thermal Reservoir: T ~ 10 mK

TeO; crystals are in a

dilution refrigerator at N
. lermal 11nkKe

approximately ~10mK. Teflon fittings,

gold wires

Temperature
Sensor:
NTD

H Germanium
Thermistors

A very sensitive

thermometer glued onto Absorber |
; TeO, crystals | - o -
the crystal Is used to A K MO
measure the heat at 10 mK. (NTD = Neutron Transmutation Doped)
genera:lt.ed by the energy R
deposition. -
1_
0.8
0.6
The pealk pulse height Is s
proportional to the energy, -
oy 0.2
but it's not very fast. -
°F N N P N T T R N
0 0.5 1 1.5 2 2.5 3 3.5 4

Time (s)



The Next Generation of

Bolometer Experiments:

s L

CUORE

2013-2018

CUORE-O

Cuoricino

2012—-2014
11 kg 2°Te

2003—2008
11 kg 13%Te

206 kg 13°Te
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This is the only experiment currently under
construction that pushes into the inverted hierarchy.



counts

The Controversial Signal

Heidelberg-Moscow Experiment using °Ge......
25
20 | l Final Analysis of the data using more
I " advanced technigues makes the
15 |
_ o measurement almost background free.
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This is the only experiment currently under
construction that pushes into the inverted hierarchy.



It CUORE sees
something by 2020

If another experiment
sees something and

CUORE doesn't

If no experiments
see a signal.

Go after more rare processes to

determine whether its the “vanilla”
standard model or new physics.

Bigger

Cleaner

Better
Detector



First Results from V e

FOR WOMEN IN SCIENCI

— ’
[T OREAL AYAAAS
USA

Because V’s are worth it.
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Characterizing Quantum-Dot-Doped Liquid
Scintillator for Applications to Neutrino Detectors

Lindley Winslow** and Raspberry Simpson®

“Massachusetts Insiute of Technology,
77 Massachusetts Ave Cambridge, MA 02139, USA

E-mail: lwinzslowPmit.adu

ABSTRACT: Liguid scintillator detectors are widely used in modern neutrino studies. The unique
optical properties of semiconducting nanocry stals, known as quantum dots, offer intriguing possi-
bilities for improving standard liquid scintillator, especially when combined with new photodetec-
tion technology. Quantum dots also provide a means to dope scintillator with candidate isotopes for
neutrinoless double beta decay searches. In this work, the first studies of the scintillation properties
of quantum-dot-doped liquid scintillator using both UV light and radioactive sources are presented.
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What are Quantum Dots?

Quantum Dots are semiconducting nanocrystals.

Most of the time a shell of organic molecules Is used to
suspend them in an organic solvent (toluene) or water.




Why are they so popular?

Because of their small size, their electrical and optical properties
are more similar to atoms than bulk semiconductors.

In fact, the optical properties of guantum dots with
diameter <|0nm Is completely determined by their size.
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Finally:

Thelir synthesis allows precise control
of the size of the quantum dots.

Can use them to make
any wavelength of light
that you want!



Example CdS Quantum Dot Spectra:

These are 400nm dots made from CdS. They absorb all
ight shorter than 400nm and re-emit it in a narrow
resonance around this wavelength.
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Other types of quantum dots include
CdSe, CdTe, and ZnS....



What can quantum dots do for
neutrino experiments especially
neutrinoless double beta decay?

Reminder: liquid scintillator makes light when
charged particles go through it, and we know how
- to make very large liquid scintillator detectors.




What can quantum dots do?

Perfectly tune the wavelength of your scintillator's emission
* |ncreases total light collected by photomultiplier tubes.

e Match photo-cathode efficiency of new devices.

An example of a new devices being design
by the LAPPD collaboration (Large Area
Picosecond Photodetectors). Such a device
could be made cheaper than a PMT, covers
more area, and improves timing resolution
by an order of magnitude.




Remember:

Scintillator detectors still have Cerenkov light 1t just
gets overwhelmed by the scintillation light.

KamLAND Event Display
Run/Subrun/Event ; 110/0/19244
UT: Sat Feb 23 15:25:11 2002
TimeStamp : 13052924536
TriggerType : 0x3al0 / 0x2

Time Difference 28,3 msec
NumHit/Nsum/Nsum2/NumHitA : 1317/264/1322/46
Total Charge : 3.,21e+05 (465)

Max Charge (ch): 2,22e+03 (640)

Scintillation: A KamLAND Muon Cerenkov: A MiniBooNE Muon



Event Topology:

* Some fraction of the Cerenkov light is produced above
the scintillation absorption cut-off. 3 ©

e Cerenkov light travels to PMTs faster.

e Use quantum dots to tune the absorption cut-off.
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This application is perfect for the LAPPD’s.

A

First P is for picosecond.



What can quantum dots do?

They provide you a robust way to dope liquid
scintillator with heavy metals.... especially Cd!

Why do we like Cd so much?



Double Beta Decay Candidate!

Danevich et al. PHYSICAL REVIEW C 68, 035501 !12003"
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Also Double Positron + Electron Capture
Decay Candidate!

Danevich et al. PHYSICAL REVIEW C 68, 035501 !12003"
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Now for some basic measurements

(Because no one has done this before!)



How much light?
Excite the scintillator with a 280nm LED.
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How much light?
Excite the scintillator with a 280nm LED.
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Do Quantum Dots Age?

One of the NSF reviewers asked if this was an issue.
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No evidence for aging.
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The bigger issue for us seems to be batch to batch variations.



Does the scintillator still scintillate?
Study the scintillator with a ?°Sr beta source.

Rate per 20.0 ADC Units [Hz]
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The light yield is reduced compared to the standard scintillator



Do they change the timing
characteristics of the scintillator?
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The answer Is no, though the quantum dot scintillator
seems to have a slightly larger late light component.



Next Steps: Ve

IL Detector - This Summer

e More quality control of the dots before using.
* Nrtrogen purging for better light yield

* [ arger quantum quantrties

e Attenuation length measurements

Im?3 Detector

e Make use of knowledge from |L detector
* Perhaps collaborate with LAPPD collaboration
e Make measurement of two neutrino double beta decay in '"*Cd.

With [0g of | 16Cd, | expect 1000 events in 6 months.



reVqution

You say you want a revolution
Well, you know
we all want to change the world.

You ask me for a contribution
Well, you know
We are all doing what we can

You say we want a real solution
Well, you know
Wed all love to see the plan
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What next? Depends on the results!



The Neutrino Revolution

Don’t you know its
gonna be alright!

Many apologies to the
Beatles and the OED.



