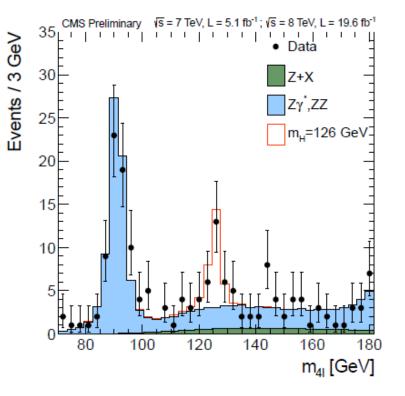
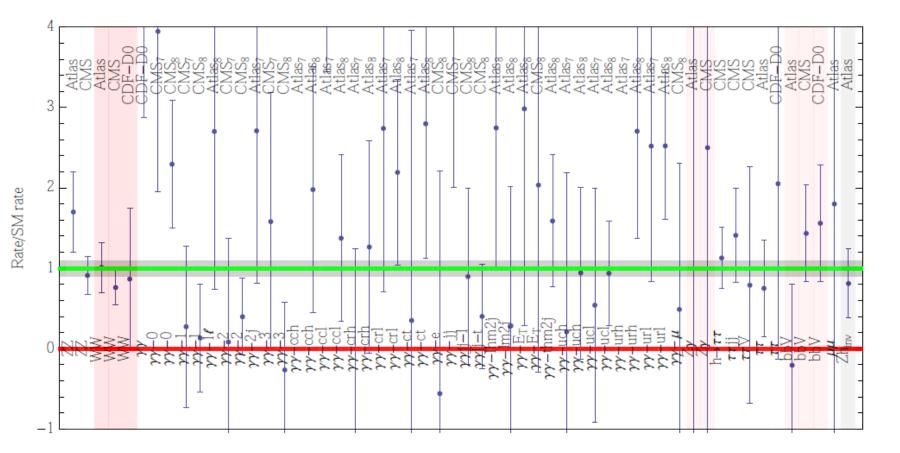
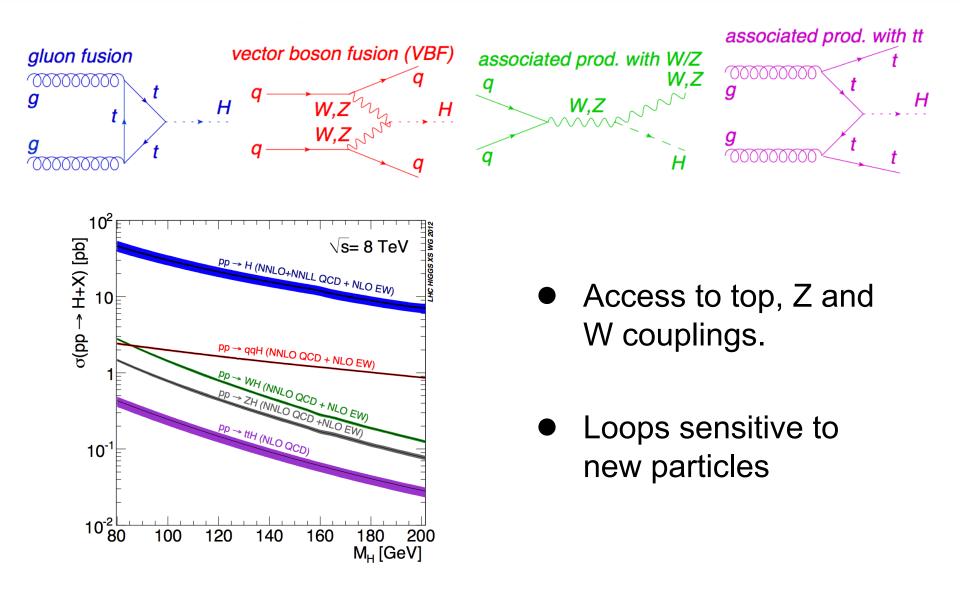

Higgs: Interpretation and Implications


Marco Farina April 19, 2013

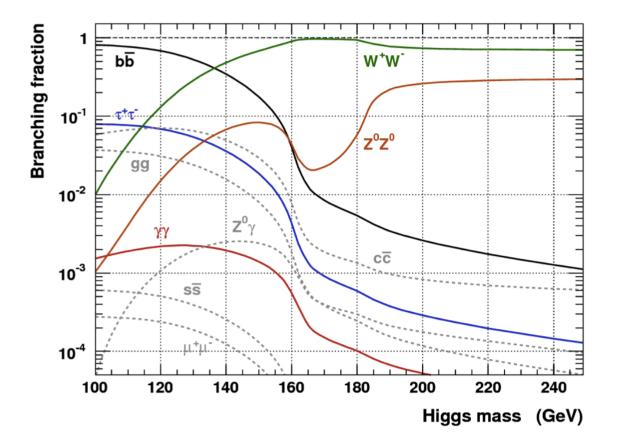
Discovery!



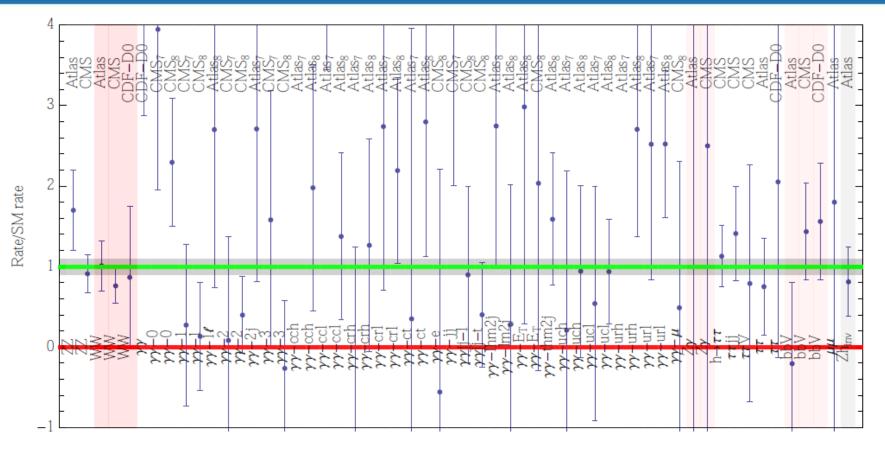
ATLAS coll. ATLAS-CONF-2013-034.


CMS coll. CMS-PAS-HIG-13-002

Data



Giardino et al. 1303.3570


Higgs Production

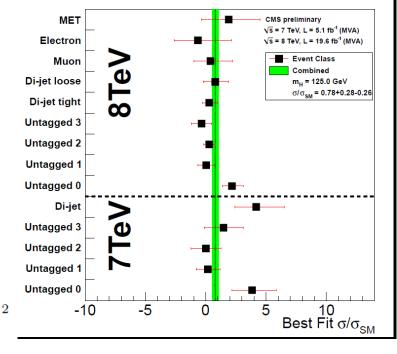
Higgs Decays

Data

Giardino et al. 1303.3570

$$R_f = \frac{\sum_p \sigma \left(pp \to h + X^{(p)} \right) \times \zeta_f^{(p)} \times \mathrm{BR}(h \to f)}{\sum_p \sigma \left(pp \to h + X^{(p)} \right)_{\mathrm{SM}} \times \zeta_f^{(p)} \times \mathrm{BR}(h \to f)_{\mathrm{SM}}}$$

How to make a fit


Is it really the SM higgs? Simple recipe:

- Take your favorite set of parameters
- Define rates as function

• **Construct**
$$\chi^2(\{p_i\}) = \sum_j \left(\frac{R_j(\{p_i\}) - R_j^{exp}}{\sigma_j}\right)$$

$$R_f = \frac{\sum_p \sigma \left(pp \to h + X^{(p)} \right) \times \zeta_f^{(p)} \times \mathrm{BR}(h \to f)}{\sum_p \sigma \left(pp \to h + X^{(p)} \right)_{\mathrm{SM}} \times \zeta_f^{(p)} \times \mathrm{BR}(h \to f)_{\mathrm{SM}}}$$

Issues: no correlation, data taking, uncertainties in the production efficiencies, "cherry picking"

CMS coll. CMS-PAS-HIG-13-001

Minimal Lagrangian

Assuming:

 A unique neutral scalar, color-singlet, CP-even, near 126 GeV

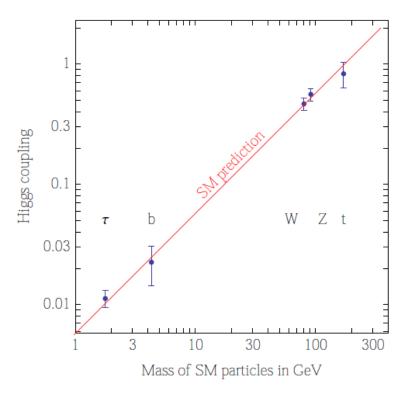
$$\mathcal{L}_{(0)} = \frac{h}{v} \left[c_V \left(2m_W^2 W_{\mu}^{\dagger} W^{\mu} + m_Z^2 Z_{\mu} Z^{\mu} \right) - c_t \sum_{f=u,c,t} m_f \bar{f} f - c_b \sum_{f=d,s,b} m_f \bar{f} f - c_\tau \sum_{f=e,\mu,\tau} m_f \bar{f} f \right]$$
$$\mathcal{L}_{(2)} = -\frac{h}{4v} \left[2c_{WW} W_{\mu\nu}^{\dagger} W^{\mu\nu} + c_{ZZ} Z_{\mu\nu} Z^{\mu\nu} + 2c_{Z\gamma} A_{\mu\nu} Z^{\mu\nu} + c_{\gamma\gamma} A_{\mu\nu} A^{\mu\nu} - c_{gg} G_{\mu\nu}^a G^{a,\mu\nu} \right]$$

Standard Model

$$c_V = c_t = c_b = c_\tau = 1$$

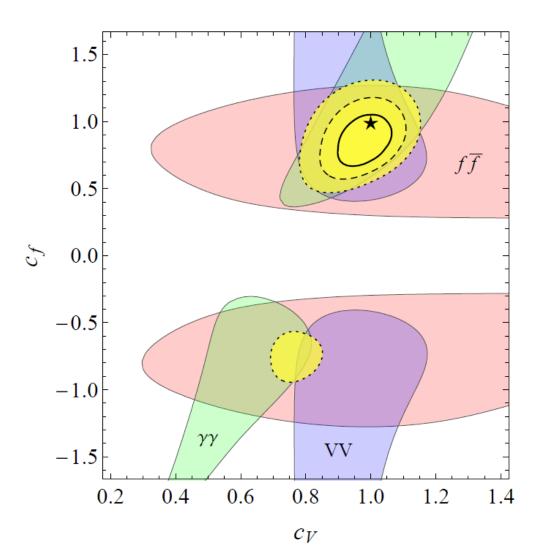
$$c_{\gamma\gamma} = c_{Z\gamma} = c_{gg} = 0$$

Taming the fit


O(10) parameters: too many!

To have more handle:

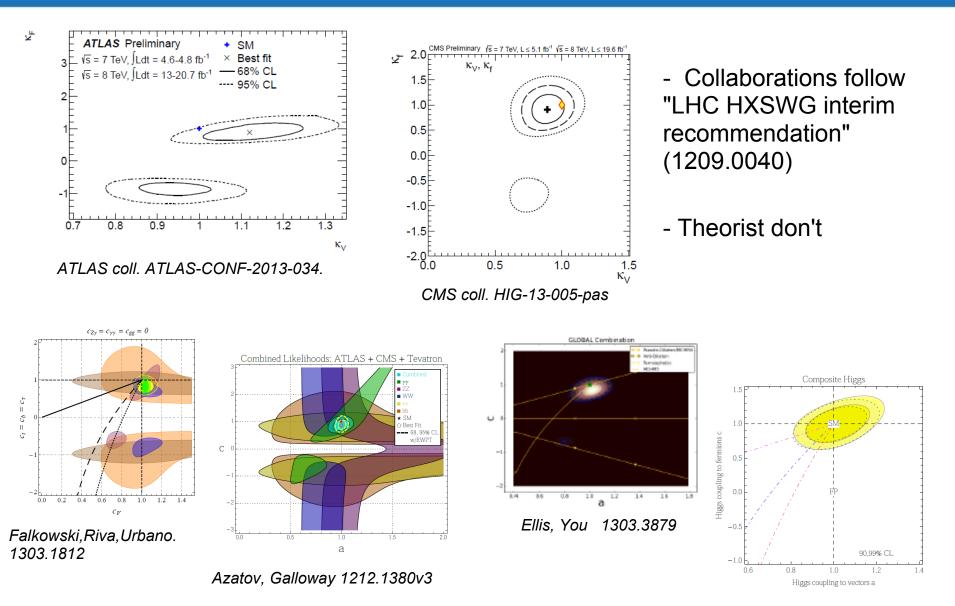
- Fix parameters and relations
- Marginalize


 $\chi^2(\{p_i\}) = \min_{\{p_j\}} \ \chi^2(\{p_i\}, \{p_j\})$

Giardino et al. 1303.3570

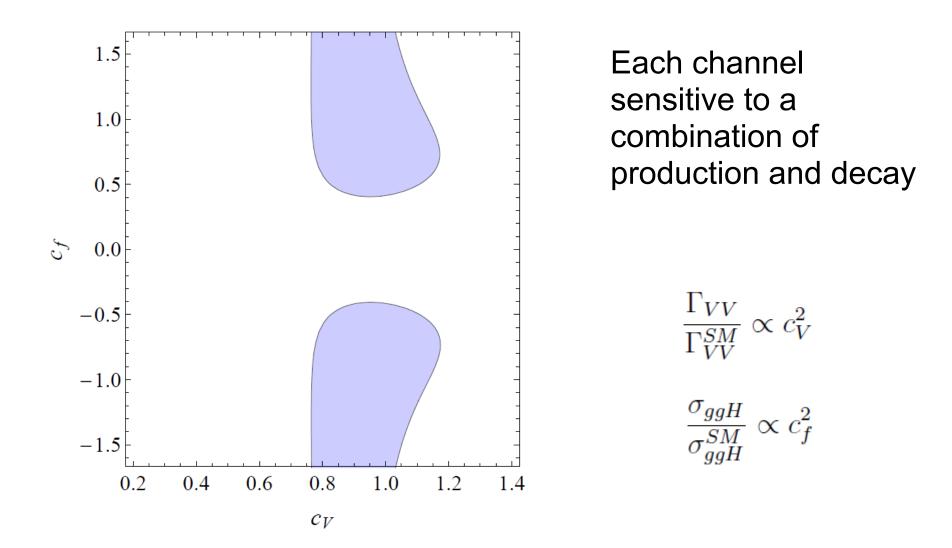
Composite Higgs Inspired Fit

Simplest thing to do:

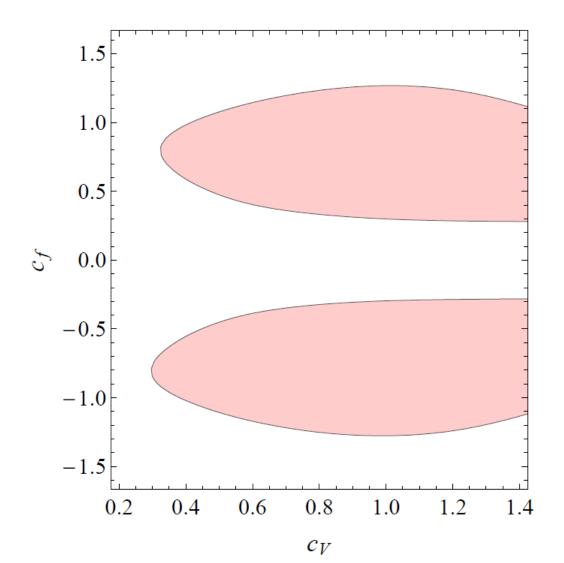

Bosons VS Fermions

$$c_V, \quad c_f = c_b = c_t = c_\tau$$

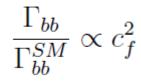
• No new particle in the loop


$$c_{\gamma\gamma} = c_{\gamma Z} = c_{gg} = 0$$

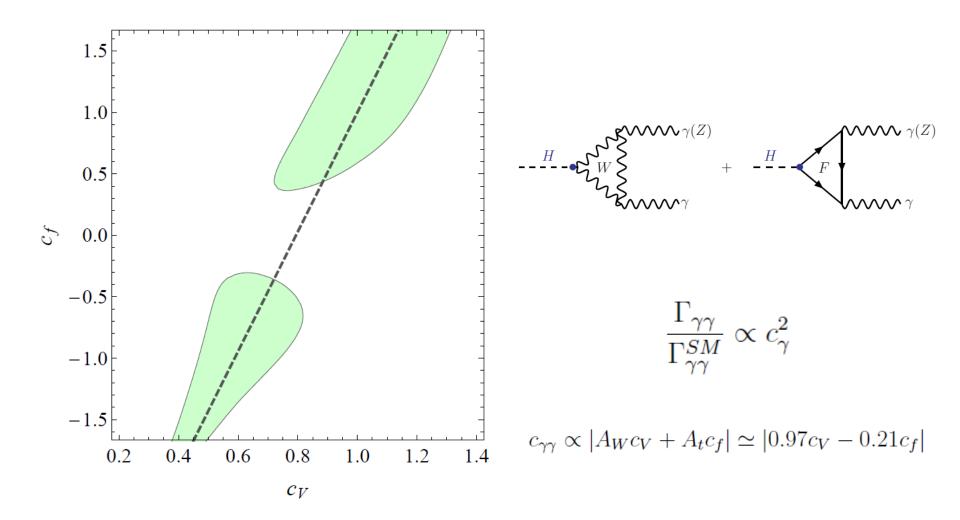
Confused?



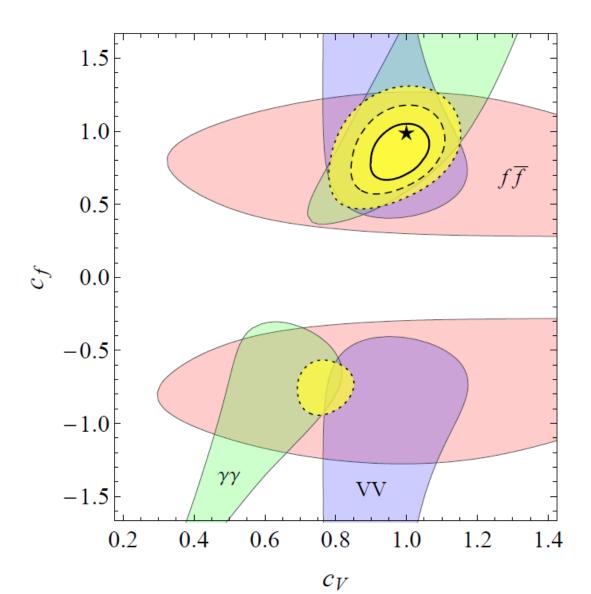
Giardino et al. 1303.3570


Dissecting the fit: vectors

Dissecting the fit: fermions

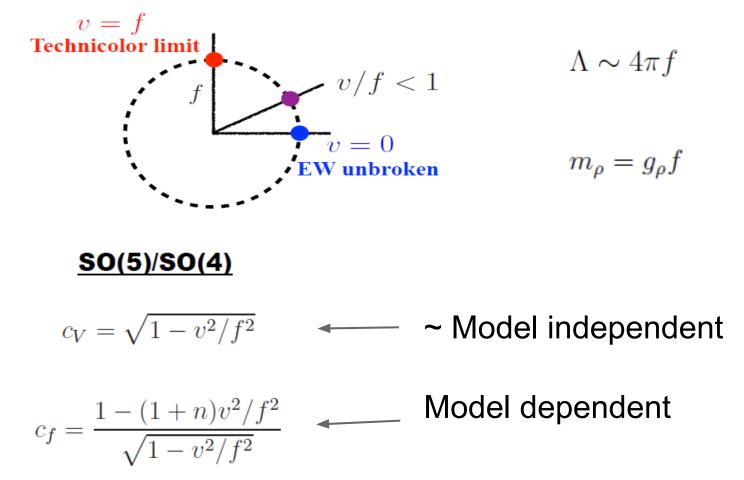


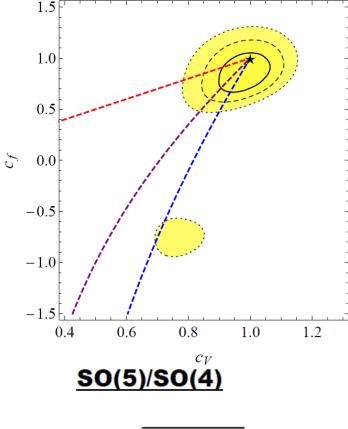
Each channel sensitive to a combination of production and decay



 $\frac{\sigma_{VH}}{\sigma_{VH}^{SM}} \propto c_V^2$

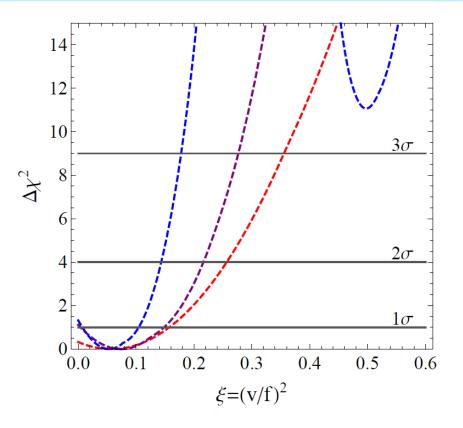
Dissecting the fit: photons


Composite Higgs Inspired Fit


- Best Fit
 (0.98, 0.86)
- SM well within 68% CL

Composite Higgs

Higgs remnant of strong dynamic with global symmetry pattern G/H



Composite Higgs Implications

$$c_V = \sqrt{1 - v^2/f^2}$$

$$c_f = \frac{1 - (1+n)v^2/f^2}{\sqrt{1 - v^2/f^2}}$$

- n fixes the trajectory (n=0,1,2)
- Fine tuning ~v/f

Two Higgs Doblet Models

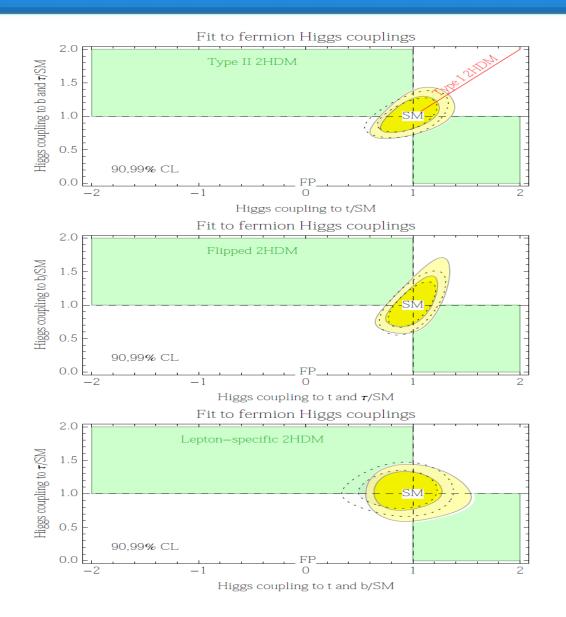
- Extra doublet describe many models (SUSY included)
- Details of the potential are not important
- Couplings described by 2 parameters only

$$H_1 = \begin{pmatrix} H_1^0 \\ H_1^- \end{pmatrix} \qquad H_2 = \begin{pmatrix} H_2^+ \\ H_2^0 \end{pmatrix}$$

$$\langle H_1^0 \rangle = \frac{v_1}{\sqrt{2}} \ , \ \langle H_2^0 \rangle = \frac{v_2}{\sqrt{2}}$$

$$\tan \beta = \frac{v_2}{v_1}$$

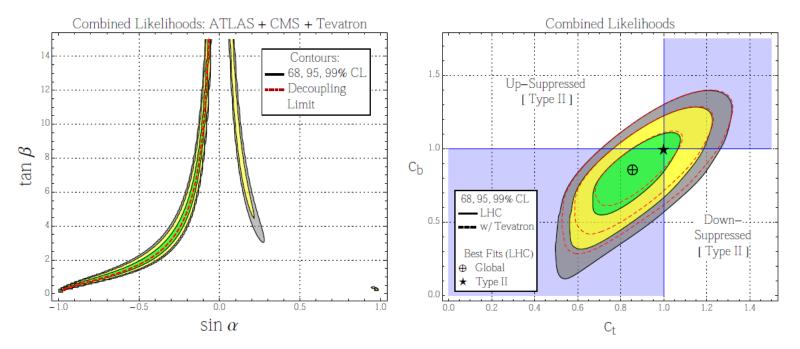
$$\begin{pmatrix} H \\ h \end{pmatrix} = \begin{pmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{pmatrix} \begin{pmatrix} H_1^0 \\ H_2^0 \end{pmatrix}$$


2HDM

Given the angles remains to assign doublet-fermion couplings

	Type I	Type II	Type X (lepton-specific)	Type Y (flipped)
r_t	$\cos \alpha / \sin \beta$	1 .	$\cos \alpha / \sin \beta$	$\cos \alpha / \sin \beta$
r_b	$\cos \alpha / \sin \beta$	$-\sin lpha / \cos eta$	$\cos lpha / \sin eta$	$-\sin lpha / \cos eta$
$r_{ au}$	$\cos \alpha / \sin \beta$	$-\sin\alpha/\cos\beta$	$-\sin \alpha / \cos \beta$	$\cos \alpha / \sin \beta$

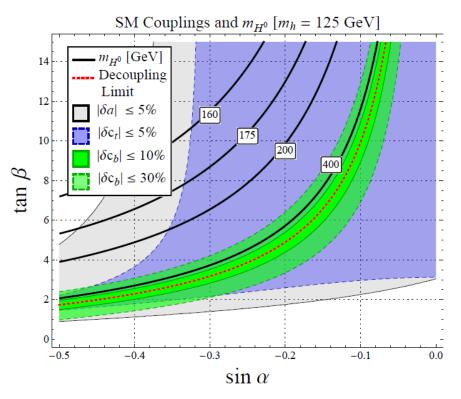
 $r_W = r_Z = \sin(\beta - \alpha)$


2HDM

Giardino et al. 1303.3570

2HDM Type-II - MSSM

Type-II describes MSSM like Higgs Doublets


Azatov, Galloway 1212.1380v3

MSSM Heavier Scalar

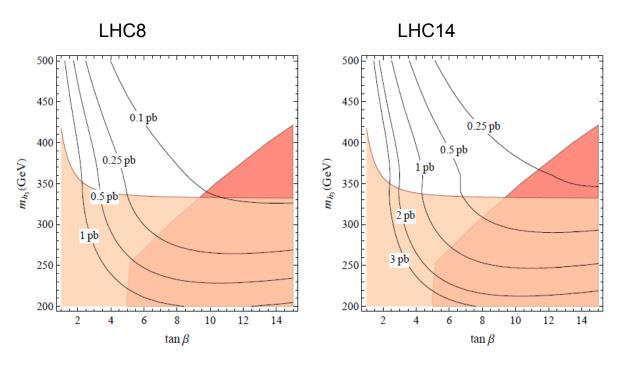
SUSY constraints the potential

Fixed Higgs mass: prediction for the heavier scalar mass

Fit gives a lower bound on mH

Azatov, Galloway 1212.1380v3

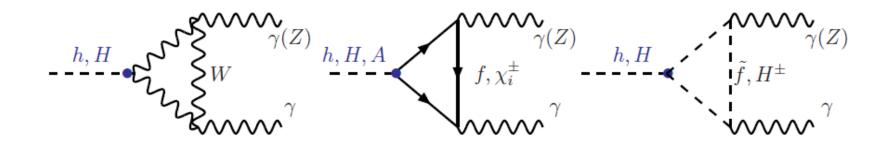
Decoupling limit is favored

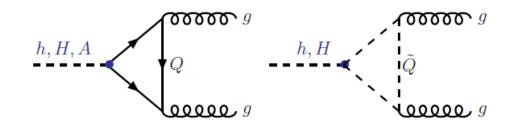

 $M_H \simeq M_{H^{\pm}} \simeq M_A$

MSSM Heavier Scalar

Fit gives a lower bound on mH

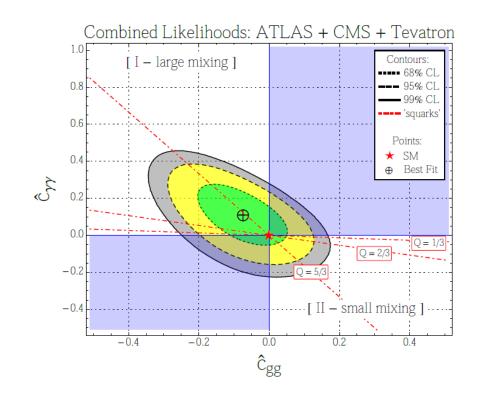
Prediction on production cross section


Interplay between direct searches and Higgs data fits


Barbieri et al. 1304.3670

Darker red: excluded by pseudoscalar direct searches

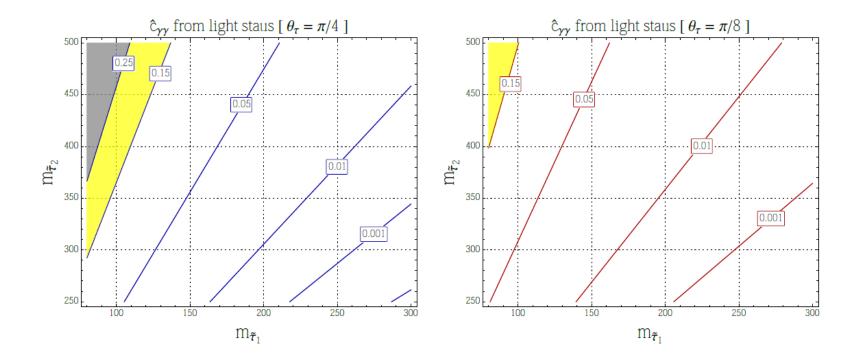
Loop corrections



Loop corrections encode new particles information e.g. superpartners

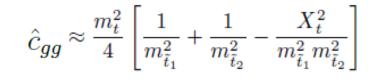
 $\mathcal{L}_{(2)} = -\frac{h}{4v} \left[2c_{WW} W^{\dagger}_{\mu\nu} W^{\mu\nu} + c_{ZZ} Z_{\mu\nu} Z^{\mu\nu} + 2c_{Z\gamma} A_{\mu\nu} Z^{\mu\nu} + c_{\gamma\gamma} A_{\mu\nu} A^{\mu\nu} - c_{gg} G^{a}_{\mu\nu} G^{a,\mu\nu} \right]$

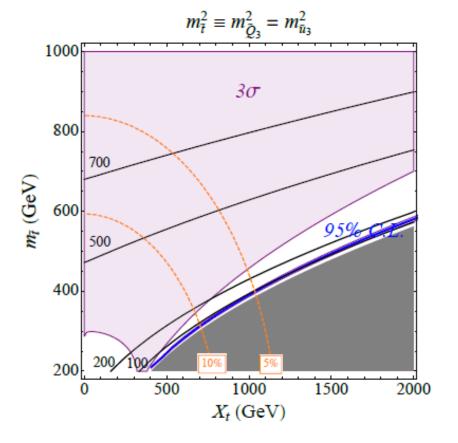
Loop coefficients fit


Azatov, Galloway 1212.1380v3

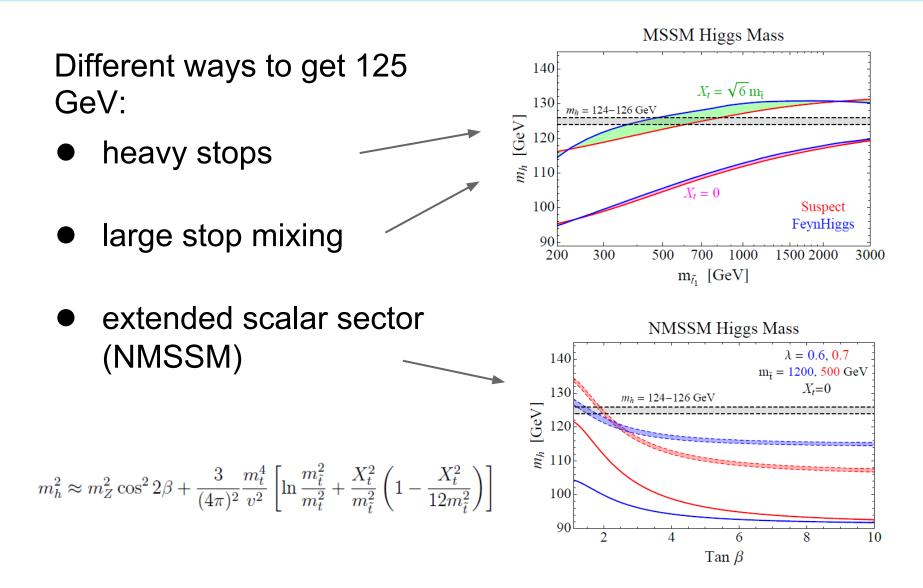
- Slope is set by representation
- Position on the line depends on the model (mass of the particle, etc.)

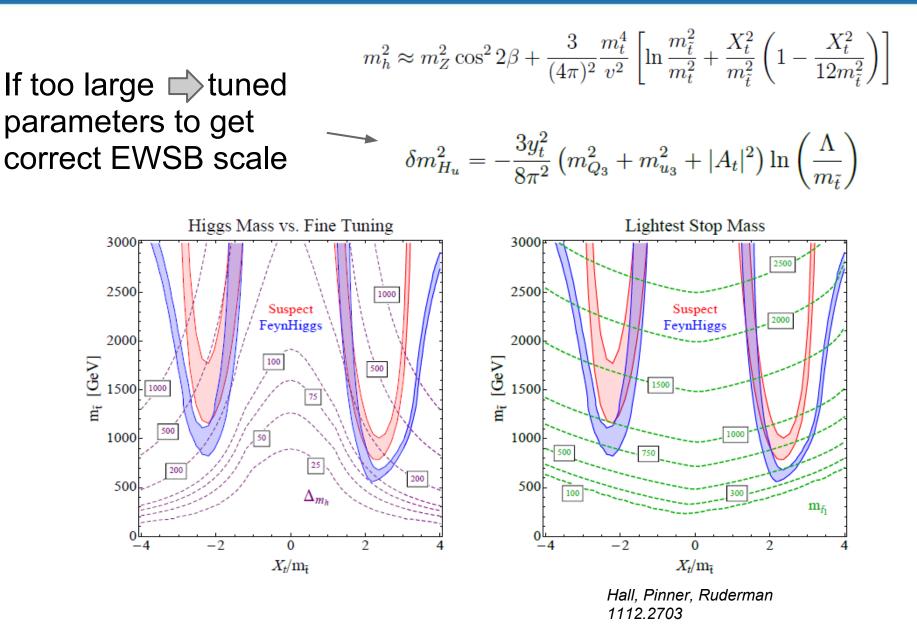
$$c_{\gamma\gamma} = -\frac{d(r)Q^2}{C_2(r)}\frac{\alpha}{\alpha_s}c_{gg}$$


Loop in susy - e.g. Stau

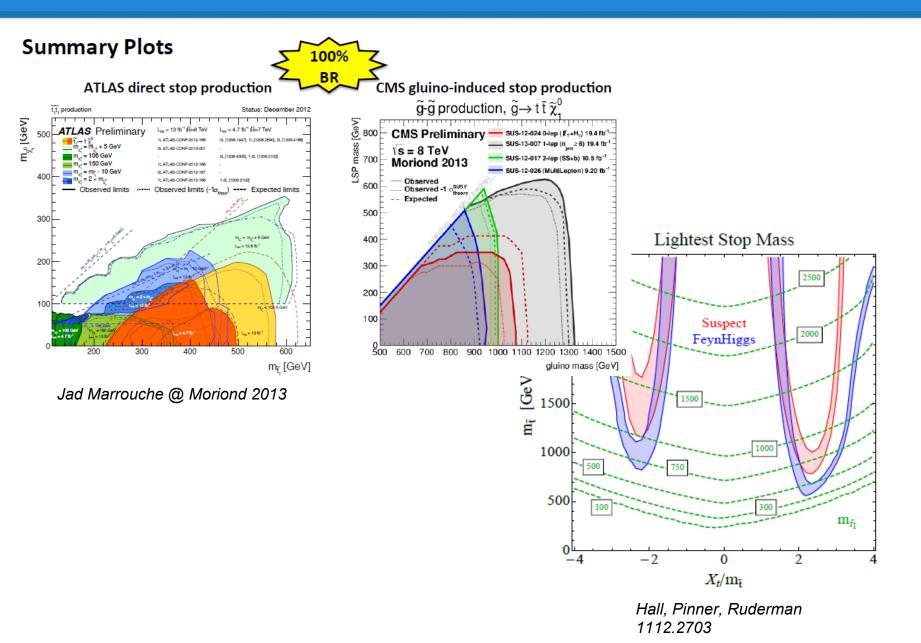

Light Stau enter only in correction to diphoton decay Popular given last year excess

Loop in susy - e.g. Stops


 $\tan\beta >>1$ limit used to study stops


D'Agnolo, Kuflik, Zanetti 1212.1165

What the mass is telling us



Hall, Pinner, Ruderman 1112.2703

Stops and Naturalness

Stops and Naturalness

There are more things

Not enough time to talk about:

- Non minimal scalar sector (SUSY or Composite Higgs)
- Non minimal composite partners
- Invisible Width
- Dilaton
- Social Higgs (more than one scalar @125GeV)
- EWPT
- Vacuum stability
- More...

Conclusions

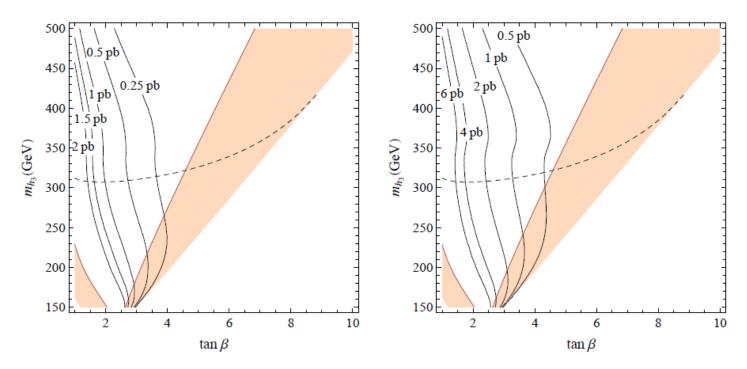
- Light Higgs driving EWSB. Consistent with SM prediction.
- Current Higgs data can be used to extract information about EWSB and beyond the SM physics.
 Precision era is approaching fast.
- Interplay between direct searches and fits
- Discovery+Naturalness VS Fine Tuning

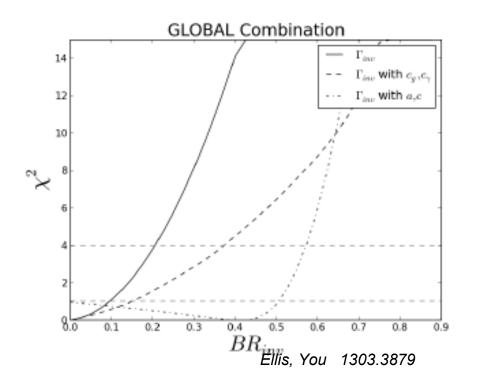
Backup

Atlas Channels

Channel	ggF	VBF	VH	ttH	Mass	Spin	Dataset
ΥY	√	V	V		\checkmark	√	25 fb ⁻¹
$Z \rightarrow 4\ell$	√	V	V		√	√	25 fb ⁻¹
WW $\rightarrow \ell\ell + 2v$	√	√				√	25 fb ⁻¹
ττ	1	1	1				18 fb-1
bb			1	√			18 fb ⁻¹
μμ	√						21 fb-1
Zγ	√						25 fb ⁻¹
2HDM (WW)	√	1					13 fb ⁻¹
Invisible			1				18 fb ⁻¹

Heavier Higgs 2



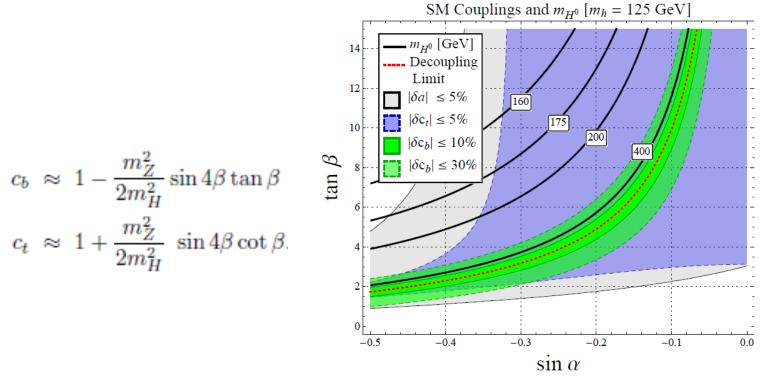

Figure 10. Singlet decoupled. Isolines of gluon fusion production cross section $\sigma(gg \rightarrow h_3)$. The colored regions are excluded at 95%C.L., and the dashed line shows $m_{H^{\pm}} = 300$ GeV. Left: LHC8. Right: LHC14.

Barbieri et al. 1304.3670

Lagrangian 2HDM MSSM

$$\Delta V = m_{H_u}^2 \left| H_u^0 \right|^2 + m_{H_d}^2 \left| H_d^0 \right|^2 - B\mu \left(H_u^0 H_d^0 + \text{c.c.} \right) + \frac{1}{8} \left(g^2 + g'^2 \right) \left[\left(1 + \delta \lambda_1 \right) \left| H_u^0 \right|^4 + \left| H_d^0 \right|^4 - 2 \left| H_u^0 \right|^2 \left| H_d^0 \right|^2 \right]$$

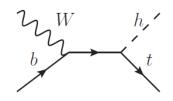
Invisible Width

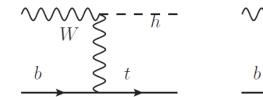

Various models predict light particles leading to invisible decay, e.g.:

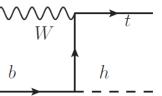
• DM models

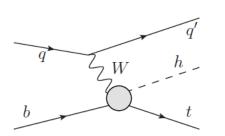
- Non-minimal Supersymmetry
- Composite Models with extended scalar sector

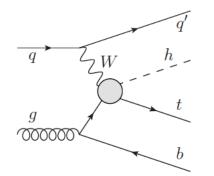
MSSM Heavier Scalar

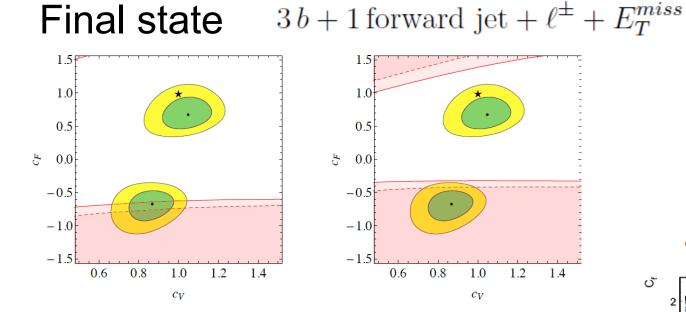



Azatov, Galloway 1212.1380v3

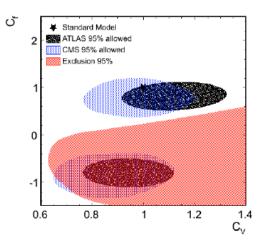

Decoupling limit is favored


 $M_H \simeq M_{H^{\pm}} \simeq M_A$


Yt<0



Final state


3b + 1 forward jet $+ \ell^{\pm} + E_T^{miss}$

Yt<0

MF, Grojean, Maltoni, Salvion, Thamm. 1211.3736

 $q b \rightarrow t q' H \rightarrow (b q q') q' \gamma \gamma$

Biswas et al. 1304.1822

Data Tables ATLAS

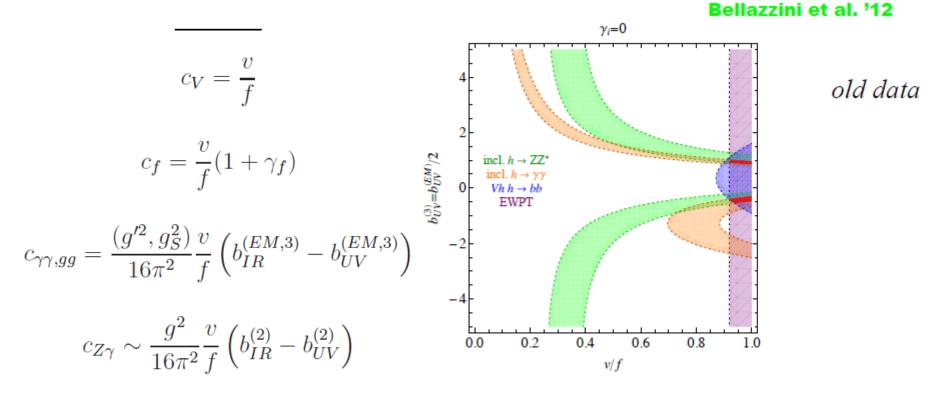
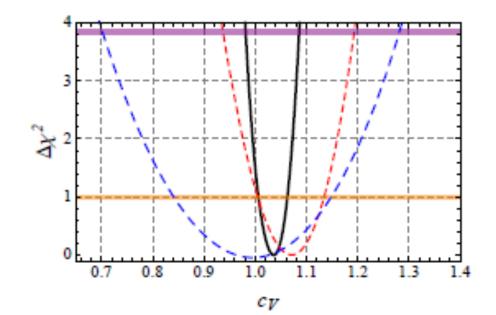

Channel	$\hat{\mu}$ (7 TeV)	$\zeta_i^{(\mathrm{G},\mathrm{V},\mathrm{T})} \ (\%)$	$\hat{\mu}$ (8 TeV)	$\zeta_i^{(\mathrm{G},\mathrm{V},\mathrm{T})}$ (%)	Refs.
$b\bar{b}$	comb. w/8		-0.42 ± 1.05	(0, 100, 0)	[66, 67]
$b\bar{b} \ (ttH)$	$3.81 \pm 5.78^{**}$	(0, 30, 70)			
ττ	comb. w/8		$0.7\pm0.7^{*}$	(20, 80, 0)	[68]
WW(0j)	$0.06\pm0.60^*$	inclusive	$0.92^{+0.63*}_{-0.49}$	inclusive	
WW(1j)	$2.04^{+1.88*}_{-1.30}$	inclusive	$1.11^{+1.20*}_{-0.82}$	inclusive	[69]
WW(2j)			$1.79^{+0.94*}_{-0.75}$	(20, 80, 0)	
ZZ	comb. w/8		$1.7^{+0.5}_{-0.4}$	inclusive	[70]
$\gamma \gamma_{(L)} (uc ct)$	$0.53^{+1.37}_{-1.44}$	(93, 7, 0)	0.86 ± 0.67	(93.7, 6.2, 0.2)	
$\gamma \gamma_{(\mathrm{H})} \; (\mathrm{uc} \mathrm{ct})$	$0.17^{+1.94}_{-1.91}$	(67, 31, 2)	$0.92^{+1.1}_{-0.89}$	(79.3, 19.2, 1.4)	
$\gamma \gamma_{(L)} (uc ec)$	$2.51^{+1.66}_{-1.69}$	(93, 7, 0)	$2.51_{-0.75}^{+0.84}$	(93.2, 6.6, 0.1)	
$\gamma \gamma_{\rm (H)} \ (\rm uc ec)$	$10.39^{+3.67}_{-3.67}$	(65, 33, 2)	$2.69^{+1.31}_{-1.08}$	(78.1, 20.8, 1.1)	
$\gamma \gamma_{(L)} (c ct)$	$6.08^{+2.59}_{-2.63}$	(93, 7, 0)	$1.37^{+1.02}_{-0.88}$	(93.6, 6.2, 0.2)	
$\gamma \gamma_{(\mathrm{H})} \ (\mathrm{c} \mathrm{ct})$	$-4.40^{+1.80}_{-1.76}$	(67, 31, 2)	$1.99^{+1.50}_{-1.22}$	(78.9, 19.6, 1.5)	
$\gamma \gamma_{(L)} (c ec)$	$2.73^{+1.91}_{-2.02}$	(93, 7, 0)	$2.21^{+1.13}_{-0.95}$	(93.2, 6.7, 0.1)	
$\gamma \gamma_{\rm (H)} \ (\rm c ec)$	$-1.63^{+2.88}_{-2.88}$	(65, 33, 2)	$1.26^{+1.31}_{-1.22}$	(77.7, 21.2, 1.1)	[71, 72]
$\gamma\gamma$ (c trans.)	$0.35^{+3.56}_{-3.60}$	(89, 11, 0)	$2.80^{+1.64}_{-1.55}$	(90.7, 9.0, 0.2)	
$\gamma\gamma$ (dijet)	$2.69^{+1.87}_{-1.84}$	(23, 77, 0)			
$\gamma\gamma$ (loose high mass jj)			$2.76^{+1.73}_{-1.35}$	(45, 54.9, 0.1)	
$\gamma\gamma$ (tight high mass jj)			$1.59_{-0.62}^{+0.84}$	(23.8, 76.2, 0)	
$\gamma\gamma$ (low mass jj)			$0.33^{+1.68}_{-1.46}$	(48.1, 49.9, 1.9)	
$\gamma\gamma$ ($E_{\rm T}^{\rm miss}$ significance)			$2.98^{+2.70}_{-2.15}$	(4.1, 83.8, 12.1)	
$\gamma\gamma$ (lepton tag)			$2.69^{+1.95}_{-1.66}$	(2.2, 79.2, 18.6)	

Table 2: ATLAS data used in fits. Best fits on signal strength modifier μ with efficiencies ζ (when


Data Tables CMS

Channel	$\hat{\mu}$ (7 TeV)	$\zeta_i^{(\mathrm{G,V,T})}$ (%)	$\hat{\mu}$ (8 TeV)	$\zeta_i^{(\mathrm{G},\mathrm{V},\mathrm{T})}(\%)$	Refs.
$b\bar{b}$	comb. $w/8$		$1.30\substack{+0.68\\-0.59}$	(0, 100, 0)	[73]
$b\bar{b} \ (ttH)$	$-0.81^{+2.05}_{-1.75}$	(0, 30, 70)			[74]
au au (0/1j)	comb. $w/8$		$0.74_{-0.52}^{+0.49}$	inclusive	
$\tau\tau$ (VBF)	comb. $w/8$		$1.38^{+0.61}_{-0.57}$	(0, 100, 0)	[75]
$\tau\tau$ (VH)	comb. $w/8$		$0.76^{+1.48}_{-1.43}$	(0, 100, 0)	
$WW\left(0/1j\right)$	comb. $w/8$		0.76 ± 0.21	inclusive	
WW(2j)	comb. $w/8$		$-0.05\substack{+0.73\\-0.56}$	(17, 83, 0)	[76]
WW (VH)	comb. $w/8$		$-0.31^{+2.24}_{-1.96}$	(0, 100, 0)	
ZZ (untagged)	comb. $w/8$		$0.84^{+0.32}_{-0.26}$	(95, 5, 0)	[77]
ZZ (dijet tag)			$1.22_{-0.57}^{+0.84}$	(80, 20, 0)	
$\gamma\gamma$ (untagged 0)	$3.78^{+2.01}_{-1.62}$	(61.4, 35.5, 3.1)	$2.12^{+0.92}_{-0.78}$	(72.9, 24.6, 2.6)	
$\gamma\gamma$ (untagged 1)	$0.15\substack{+0.99\\-0.92}$	(87.6, 11.8, 0.5)	$-0.03^{+0.71}_{-0.64}$	(83.5, 15.5, 1.0)	
$\gamma\gamma$ (untagged 2)	-0.05 ± 1.21	(91.3, 8.3, 0.3)	$0.22_{-0.42}^{+0.46}$	(91.7, 7.9, 0.4)	
$\gamma\gamma$ (untagged 3)	$1.38^{+1.66}_{-1.55}$	(91.3, 8.5, 0.2)	$-0.81\substack{+0.85\\-0.42}$	(92.5, 7.2, 0.2)	
$\gamma\gamma$ (dijet)	$4.13^{+2.33}_{-1.76}$	(26.8, 73.1, 0.0)			[78]
$\gamma\gamma$ (dijet loose)			$0.75_{-0.99}^{+1.06}$	(46.8, 52.8, 0.5)	
$\gamma\gamma$ (dijet tight)			$0.22_{-0.57}^{+0.71}$	(20.7, 79.2, 0.1)	
$\gamma\gamma$ (MET)			$1.84^{+2.65}_{-2.26}$	(0.0, 79.3, 20.8)	
$\gamma\gamma$ (Electron)			$-0.70^{+2.75}_{-1.94}$	(1.1, 79.3, 19.7)	
$\gamma\gamma$ (Muon)			$0.36^{+1.84}_{-1.38}$	(21.1, 67.0, 11.8)	

Dilaton

EWPT

