Search for a Heavy Photon

Bogdan Wojtsekhowski, Jefferson Lab

• Motivation

- Possible new forces
- Dark matter observations/indications
- A theory of DM (one of them)
- Heavy photon
- Axion-like/Heavy photon searches
- Experiments under preparation
- Proposal for the storage ring VEPP-3

Where is new physics

In the middle of the 18th century:

Clairaut suggested that the strength of gravity was proportional not to $\frac{1}{r^2}$, but the more complicated

$$\frac{1}{r^2} + \frac{c}{r^4}$$

for some constant c. Over large distances, the c/r^4 term would effectively disappear, accounting for the utility of the inverse square law over large distances. He then began

Where is new physics

Table I. Results of various tests of Coulomb's law and tests for a nonzero photon rest mass.

		Coulomb's Law violation of form r ^{2+q}		Photon rest mass
		q	$\mu^2 = \left(\frac{m_o c}{\hbar}\right)^2$	m
-	Cavendish (1773)	2×10^{-2}		
	Coulomb (1785)	4×10^{-2}		
	Maxwell (1873)	4.9×10^{-5}		
Î	Plimpton and Lawton (1936)	2.0×10^{-9}	$1.0 \times 10^{-12} \mathrm{cm}^{-2}$	\leq 3.4 x 10 ⁻⁴⁴ g
	Cochran and Franken (1967)	9.2×10^{-12}	$7.3 \times 10^{-15} \text{cm}^{-2}$	\leq 3 x 10 ⁻⁴⁵ g
	Bartlett, Goldhagen, Phillips (1970)	1.3×10^{-13}	$1 \times 10^{-16} \text{ cm}^{-2}$	\leq 3 x 10 ⁻⁴⁶ g
	Williams, Faller, Hill	$(2.7 \pm 3.1) \times 10^{-16}$	$(1.04 \pm 1.2) \times 10^{-19} \text{cm}^{-2}$	$\leq 1.6 \times 10^{-47} g$
	Schroedinger (1943)		$3 \times 10^{-19} \text{cm}^{-2}$	\sim 2 x 10 ⁻⁴⁷ g
\rangle	Gintsburg (1963)	Test of Ampere's	$5 \times 10^{-20} \text{ cm}^{-2}$	\leq 8 x 10 ⁻⁴⁸ g
	Nieto and Goldhaber (1968)	Law from Geo- magnetic Data	$1.3 \times 10^{-20} \text{ cm}^{-2}$	\leq 4 x 10 ⁻⁴⁸ g
	Feinberg (1969) ^a	Dispersion of light	$8 \times 10^{-14} \text{cm}^{-2}$	10^{-44} g

SM tests, constraints on new physics (per PDG)

column denoted Pull gives the standard deviations for the principal fit with M_H free, while the column denoted Dev. (Deviation) is for $M_H = 124.5$ GeV [215] fixed.

Quantity	Value	Standard Model	Pull	Dev.
$m_t [{ m GeV}]$	173.4 ± 1.0	173.5 ± 1.0	-0.1	-0.3
M_W [GeV]	80.420 ± 0.031	80.381 ± 0.014	1.2	1.6
	80.376 ± 0.033		-0.2	0.2
$g_V^{ u e}$	-0.040 ± 0.015	-0.0398 ± 0.0003	0.0	0.0
$g_A^{\nu e}$	-0.507 ± 0.014	-0.5064 ± 0.0001	0.0	0.0
$\hat{Q}_W(e)$	-0.0403 ± 0.0053	-0.0474 ± 0.0005	1.3	1.3
$Q_W(Cs)$	-73.20 ± 0.35	-73.23 ± 0.02	0.1	0.1
$Q_W(\mathrm{Tl})$	-116.4 ± 3.6	-116.88 ± 0.03	0.1	0.1
$ au_{ au}~[{ m fs}]$	291.13 ± 0.43	290.75 ± 2.51	0.1	0.1
$rac{1}{2}(g_{\mu}-2-rac{lpha}{\pi})$	$(4511.07 \pm 0.77) \times 10^{-9}$	$(4508.70\pm0.09)\times10^{-9}$	3.0	3.0

SM tests, constraints on new physics (per PDG) g - 2 for the muon

 $a_{\mu} = \frac{\alpha}{2\pi} \approx \frac{1}{800}$

Other standard model contributions :

Largest contribution :

from STORY05, Y. Semertzidis

The motivation is the nature of dark matter

Dark Matter: In 1933 by F. Zwicky. This plot from D. Clemens, 1985

The motivation is the nature of dark matter

Wednesday, July 18, 12

The motivation is the nature of dark matter

D. Clowe et al., "A direct empirical proof of the existence of dark matter", Astrophys. J., Vol.648, L109 (2006). doi:10.1086/508162

B. Wojtsekhowski, April 12, 2013

The DAMA/LIBRA experiment

Bernabei et al. 250 kg radiopure NaI(Tl) the Gran Sasso

NIM A592:297-315,2008

The DAMA/LIBRA experiment

DAMA collab., arXiv:0884.2741

The DAMA/LIBRA experiment

2-6 keV

DAMA collab., arXiv:0884.2741

Recoil detection of the massive particle.

Where is the gauge boson?

The theory of DM

Arkani-Hamed, Finkbeiner, Slatyer, Weiner Pospelov & Ritz

$$\alpha' \equiv \frac{g'^2}{4\pi}$$

- Large interest in A' search
- Number of considerations

naturally give A' mass ~ 1 - 100s MeV

$$\alpha' \equiv \frac{g'^2}{4\pi}$$

• Large interest in A' search

• Number of considerations

naturally give A' mass ~ 1 - 100s MeV

Positron/electron intensity ratio

- [•] Large interest in A' search
- Number of considerations

naturally give A' mass ~ 1 - 100s MeV

Antiproton/proton intensity ratio

$$\alpha' \equiv \frac{g'^2}{4\pi}$$

- Large interest in A' search
- Number of considerations

naturally give A' mass ~ 1 - 100s MeV

DM annihilation Positron/electron

Antiproton/proton

 $\alpha' \equiv \frac{g'^2}{4\pi}$

- Large interest in A' search
- Number of considerations

naturally give A' mass ~ 1 - 100s MeV

DM annihilation Positron/electron

Antiproton/proton

How to search for new physics

The photon and A' can mix !

Holdom Galison, Manohar

mixing induces coupling between ordinary matter and hidden sector matter

Where to search for new physics

Report of the Workshop held December 2011 in Rockville, MD

arXiv:1205.2671v1 [hep-ex] 11 May 2012

S. Andreas, C. Niebuhr, A. Ringwald, arXiv:1209.6083

S. Andreas, C. Niebuhr, A. Ringwald, arXiv:1209.6083

S. Andreas, C. Niebuhr, A. Ringwald, arXiv:1209.6083

Ways to search for a new particle

$$e^+e^- \leftrightarrow \gamma^* \text{ and } e^+e^- \leftrightarrow A'$$

- Search for a bump in the mass spectra
- As it was done Vector Mesons, Z, H
- Required beam: energy, intensity, duty factor
- How small is the e+e- decay branching fraction?

Ways to search for a new particle

 $e^+e^- \leftrightarrow \gamma^* \text{ and } e^+e^- \leftrightarrow A'$

- Maximize production rate of virtual photons, γ^*
- Optimization of the mass resolution, $\sigma_{m_{\gamma^*}}$

Optimization of the detector acceptance

How look for A' with MeV-GeV mass?

e⁺e⁻ colliders

RE, Schuster, Toro Batell, Pospelov, Ritz Reece, Wang Borodatchenkova et.al. Fayet

Rare meson decays

 $\phi \rightarrow \eta A'$ $\pi^0 \rightarrow \gamma A'$

slide from R.Essig lecture at PATRAS2012

How look for A' with MeV-GeV mass?

New e⁻ fixed target experiments

Bjorken, RE, Schuster, Toro Freytsis, Ovanesyan, Thaler Reece & Wang

Detect both e⁺ and e⁻: mass reconstruction

Experiments done/planned at Jefferson Lab (APEX, HPS, DarkLight)

slide from R.Essig lecture at PATRAS2012

Searches for a gauge boson A' at JLab

Searches for a gauge boson A' at JLab Experimental signature

Direct production at JLab

- Produce low mass hidden gauge bosons with weak coupling to SM via high energy electron beam incident on fixed high-Z (Ta) target
- A' decays to e^+e^- pair with opening angle $\sim m_{A'}/E_b$

Searches for a gauge boson A' at JLab

APEX

Bump hunt / resonance search

Final invariant mass spectrum QED radiative trident / Bethe-Heitler events

• Bump hunt for small, narrow resonance

Searches for a gauge boson A' at JLab

Heavy Photon Search

- Compact large forward acceptance spectrometer
- Silicon tracker/vertexer, inside magnet close (10cm!) to target

- All detectors split vertically to avoid "sheet of flame"
 - Primary beam, degraded electrons, bremsstrahlung photons, etc.

HEAVY PHOTON

Searches for a gauge boson A'

only g-2= a_e , a_μ ,

VEPP-3 and a portion of DarkLight

are sensitive

to "invisible" A' decay modes

Searches for a gauge boson A'

The recent meeting

The part of Snowmass 2013 <u>http://www.snowmass2013.org</u> /tiki-index.php?page=Intensity+Frontier

The Intensity Frontier Workshop at Argonne on 4/25-4/27, 2013

http://www.lnf.infn.it/conference/dark

Options for an e⁺e⁻ experiment at low s

A "very" low energy, $s^{1/2} \sim 10-30$ MeV

- a) 5 MeV x 5 MeV head-head collider of e+e- => $\mathcal{L} \sim 10^{24}$
- b) Sliding beams of e+e- (250 MeV x 250 MeV)=>
 Project needs a specialized accelerator with two rings
- c) Our approach is a positron beam + atomic electrons

Luminosity of the colliders

from W. Panovsky's article in BEAM LINE

Luminosity using initial state radiation

FIG. 2 The lowest-order Feynman diagram describing the initial state radiation process $e^+e^- \rightarrow \gamma +$ hadrons.

 $\Delta {\cal L} \sim 10^{-4} {\cal L}$

BABAR search using initial state radiation

PRL 107, 221803 (2011) Search for Hadronic Decays of a Light Higgs Boson in the Radiative Decay

BABAR search using initial state radiation

10k events/10 MeV

Where to find a positron beam?

- A beam of 25 nA 400 MeV was produced at Saclay in 1980s
- Beam of 1 μA was used for SLC (120 Hz)
- SLAC positron damping ring up to 1.2 GeV, 200 mA
- DORIS
- VEPP-3 energy of 0.5-2 GeV, 50 mA

A few pictures of VEPP-3

Bend magnets RF cavity – Injector Fix target expt.

B. Wojtsekhowski, April 12, 2013

The photo-production processes

Basic QED: $e^+e^- \rightarrow \gamma \gamma$ (mono-energetic) Search for : $e^+e^- \rightarrow \gamma U$ (*peak below main*) Basic QED: $e^+Z \rightarrow \gamma$ (smooth brems.)

- Detect γ at fixed angle with the beam:
 reconstruct the mass
- Variation with the angle: control systematic
- Target Z Hydrogen vs. ¹²C

Concept of an experiment with a positron beam

Concept of an experiment with a positron beam

Proposal of an experiment at VEPP-3: BW, Nikolenko, Rachek, arXiv:1207.5089

Experimental layout

Positron beam on internal Hydrogen target

Physics background is the bremsstrahlung radiation

Anti-coincidence with the positron counters reduce QED background

Positron beam on internal Hydrogen target

VEPP-3 operation during Two-Photon Exchange experiment

Photon detector

The photon detector can be placed at a distance of between 4 m and 8 m from the target. The requirements for the detector are:

- Energy resolution on the level of $\sigma_E/E = 5\%$ for photons with energy $E_{\gamma} = 100 450$ MeV.
- Angular resolution on a level of 0.1°.
- Angular acceptance as defined by a requirement to detect both photons from two-photon annihilation:
 - in ϕ : either total 2π , or two symmetrical sectors, e.g. (ϕ_1, ϕ_2) and $(\phi_1 + \pi, \phi_2 + \pi)$;
 - in θ : symmetrical range in θ_{γ}^{CM} around 90°, e.g. $\theta_{\gamma}^{CM} = 60^{\circ} 120^{\circ}$, which corresponds to $\theta_{\gamma}^{LAB} = 1.5^{\circ} 4.5^{\circ}$.
- The detector should be able to sustain a modest photon rate of several hundred kHz over its whole area.

Potential source of crystals:

The electromagnetic calorimeter of the CLEO-II detector³⁵ consists of 8000 CsI(Tl) crystals of $5 \times 5 \times 30 \ cm^3$ size (16.2 X_0). It is used to measure electron and photon energy in a wide range; therefore, a direct measurement of its performance at a photon energy of interest for the proposed experiment is available:

 $\delta E/E = 3.8\%$ and $\delta x = 12$ mm for $E_{\gamma} = 180$ MeV

One can see that in the energy range of the proposed experiment, a CsI(Tl)-based calorimeter provides better energy resolution but a worse spatial one than that based on PbWO₄-crystals. Therefore, the CsI(Tl)-calorimeter must be placed as far as possible from the target, i.e. about 8 m. In this case it would take ab<u>out 800 crystals</u> to cover the required angular ra

Internal target for Two-Photon Exchange experiment

Kinematical correlation

The U(or A') mass resolution $\sim 3\%$

Projected sensitivity in the parameter space

Projected sensitivity in the parameter space

Summary

- Search for the A'/U boson in the photon recoil spectra is possible using a positron beam and internal hydrogen target in the 500 MeV storage ring.
- Available luminosity (~10³²) allows a 10-100+ improvement over the (g-2) limit in mass range 7-15 MeV. The range could be extended to 50 MeV with 5 GeV beam.
- Segmented high-resolution electromagnetic calorimeter is a key new part of the setup.