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m Matter-antimatter asymmetry: equal amounts of matter and antimatter should have been
created in early Universe, but today (almost) everything we see 1s matter

m This asymmetry could be created from CP violation 1n the leptonic sector

m Neutrinos are a vital piece of this matter-antimatter asymmetry puzzle

m They come in 3 flavors: Ve, vy, Ve

m There 1s a given probability that a neutrino produced with flavor a will be

detected with a flavor 3 Ve Vu V1
L Bd Bd

this means neutrinos
have mass; not predicted

: . : : : : Model!

m This probability of flavor change in vacuum oscillates with L/E; this by Standard Mode

1s why neutrino flavor change is called “neutrino oscillation”
m Neutrinos oscillate because their flavor eigenstates a (o=e, W, T) are , ,

.. : . L: distance neutrinos travel
superpositions of mass eigenstates (i=1, 2, 3): | vy) = E Uai | Vi) |
p E: neutrino energy
Uai: PMNS mixing matrix

(4)
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m If probability of oscillation from flavor a to flavor P is different for neutrinos and
antineutrinos then there is CP violation in the leptonic sector:

APCBP = P(vo = vg) — P(Uq — 3) # 0, (a # B)

(87
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) = P(vy — vg) — P(ig — 73) 20, (o # )

Depends on CP-violation phase, 0
0="? —> if 00, or 07 there is CP violation in the leptonic sector

L I (1113)2 (mz)z_ —
1 l (Am?)_,
We cannot measure absolute neutrino mass (m,) —
eigenstates directly; we can measure (Amj;j)?
. []
We know: Am?2;>0, i.e. (m2)%>(m;)? (Am?),., ve
We don’t know: Am?23>0 or Am?,3<0 g vy (Am?),
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Depends on CP-violation phase, 0
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NF will produce the most intense and high purity neutrino beam ever achieved, enabling the
neutrino oscillation parameters measurement with an unprecedented precision [1]
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NF will produce the most intense and high purity neutrino beam ever achieved, enabling the
neutrino oscillation parameters measurement with an unprecedented precision [1]
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area of ellipse
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m Muons are produced with very large transverse emittance
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A A

Px

@ Muon

Emittance, €:
area of ellipse
Size of beam

depends on
E<E emittance

> >

X X

m For efficient muon transfer to downstream accelerators, transverse emittance
needs to decrease (muon cooling)

m But...muons decay very fast (~2.2 us at rest) so traditional cooling techniques
can’t be applied on muons

m So: only viable cooling technique for muons 1s ionization cooling

Androula Alekou, androula.alekou@cern.ch, Cornell seminar, 27March2014 9 |



m Jonization cooling:

Ionization Cooling (2/2)

Androula Alekou, androula.alekou@cern.ch, Cornell seminar, 27March2014



m Jonization cooling:

Ionization Cooling (2/2)

Androula Alekou, androula.alekou@cern.ch, Cornell seminar, 27March2014



Ionization Cooling (2/2)

m Jonization cooling:

® muon beam passes through absorbers: momentum is decreased 1n every direction
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Ionization Cooling (2/2)

m [onization cooling:
® muon beam passes through absorbers: momentum is decreased 1n every direction

m after the absorbers, beam passes through RF cavities: energy restored only in
longitudinal direction

net effect: transverse
emittance reduction

EH SC coils
0
agtll |11 (BR[|
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MICE

m Ionization Cooling 1s straightforward in theory but has never been
experimentally demonstrated yet

® Muon Ionisation Cooling Experiment (MICE):
m based at the Rutherford Appleton Laboratory (RAL), UK

m will be the first experiment to demonstrate muon ionization cooling [2]

m Participated in beam commissioning shifts

ooz In the MICE hall
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m based at the Rutherford Appleton Laboratory (RAL), UK

m will be the first experiment to demonstrate muon ionization cooling [2]
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m Participated in beam commissioning shifts that S me :)
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FSIIA

FSIIA*: reference 1onization cooling lattice of NF successfully reduces
transverse emittance

*FSIIA: Feasibility Study IIA
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FSIIA*: reference 1onization cooling lattice of NF successfully reduces
transverse emittance

...but has very large magnetic field at edge of RF cavities
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FSIIA

FSIIA*: reference 1onization cooling lattice of NF successfully reduces
transverse emittance

...but has very large magnetic field at edge of RF cavities

e RF edge
.-

| | ...and recent studies indicated
.“1““1....1....1““1“Aé .l 1 . ]
Qb Coil . - that high magl}e?tlc ﬁelg at
R (m) end of RF cavities can lead to
RF breakdown [3]

*FSIIA: Feasibility Study IIA
Androula Alekou, androula.alekou@cern.ch, Cornell seminar, 27March2014 12 ]
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RF breakdown

m Breakdown initiated by asperities (surface roughness), where local electric

field 1s higher
m Each asperity emits electron currents (dark current)

m In presence of external magnetic field electrons are focused; more energy
deposited locally

m This process limits maximum
achievable electric field in RF cavity
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RF breakdown

m Breakdown initiated by asperities (surface roughness), where local electric

field 1s higher
m Each asperity emits electron currents (dark current)

m In presence of external magnetic field electrons are focused; more energy
deposited locally

m This process limits maximum
achievable electric field in RF cavity
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RF breakdown

m Breakdown initiated by asperities (surface roughness), where local electric

field 1s higher
m Each asperity emits electron currents (dark current)

m In presence of external magnetic field electrons are focused; more energy
deposited locally

m This process limits maximum
achievable electric field in RF cavity

m Edge of RF: most sensitive z-position
wrt RF breakdown (especially the 1iris,
1.e. ~30 cm radius)
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RF breakdown

m Breakdown initie e local electric

field 1s higher
m Each asperity em

Since reference lattice of Neutrino

Factory, FSIIA, has large B at end

of RF cavities an alternative lattice

needs to be found that:

a) significantly reduces magnetic
field at RF cavities
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cooling efficiency (emittance
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Bucked Coils Lattice

m Proposed and designed a new lattice that uses a pair of homocentric and
opposite polarity coils, called Bucked Coils (BC), rather than a single one

g
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Bucked Coils Lattice

m Proposed and designed a new lattice that uses a pair of homocentric and
opposite polarity coils, called Bucked Coils (BC), rather than a single one

...and with every repetition of the BC
pair alternate the polarity of the coils
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m Proposed and designed a new lattice that uses a pair of homocentric and
opposite polarity coils, called Bucked Coils (BC), rather than a single one
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...and with every repetition of the BC

pair alternate the polarity of the coils -
v With every repeat of BC the
. coils’ polarity alternates
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Bucked Coils Lattice

m Proposed and designed a new lattice that uses a pair of homocentric and
opposite polarity coils, called Bucked Coils (BC), rather than a single one

@ ® o

...and with every repetition of the BC
pair alternate the polarity of the coils

+
l .‘ With every repeat of BC the
coils’ polarity alternates

1 full-cell of the Bucked Coils Lattice

Androula Alekou, androula.alekou@cern.ch, Cornell seminar, 27March2014 Ref: [4] , [5] , [6] 14 ]
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Bucked Coils Lattice
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...and with every repetition of the BC
pair alternate the polarity of the coils

=
| l .‘ With every repeat of BC the

\
- RF
1 pair of BC * |
1 full-cell of the Bucked Coils Lattice
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Bucked Coils Lattice
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...and with every repetition of the BC
pair alternate the polarity of the coils

=
| I .‘ With every repeat of BC the

coils’ polarity alternates
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1 full-cell of the Bucked Coils Lattice
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pair alternate the polarity of the coils
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Bucked Coils Lattice

y B

1 full-cell of the Bucked Coils Lattice
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Bucked Coils Lattice

A
BC
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.

1 full-cell of the Bucked Coils Latte
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Bucked Coils Lattice

m 6 different BC versions will be presented
m Only differ 1n full cell-length and current densities

-||lo
,

A
BC

1 full-cell of the Bucked Coils Latfz
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Bucked Coils Lattice

Lattice FSITA| BC-1I | BC-II | BC-III BC-V
Full cell-length (L) [m] 1.5 2.1 2.1 2.1 1.8 1.8 1.8
IC [A/mm 106.667 120 97.2 87.48 132 120 87.48
OC [A/mm N/A 90.24 77.14 66.73 99.26 90 66.73

m 6 different BC versions will be presented
m Only differ 1n full cell-length and current densities

A
BC

Androula Alekou, androula.alekou@cern.ch, Cornell seminar, 27March2014
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1 full-cell of the Bucked Coils Latte
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Magnetic field
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Magnetic field

EST) A half RF BC-I half RF
i """ z'(l‘ﬂl i | | I----zrmfl

Coil-center RF-center

Coil-center

RF-center
BC: Larger area within RF
cavity with B<1 T

Androula Alekou, androula.alekou@cern.ch, Cornell seminar, 27March2014



Magnetic field
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Magnetic field
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Cooling etficiency
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Cooling etficiency

m Emittance reduction: better cooling E__,I X
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Cooling etficiency
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m Muon transmission: FSITA~55%, BCs~70-75%

Cooling etficiency

m Emittance reduction: better cooling
for FSIIA and BC-1V

reach end of lattice
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Feasibility

m All BC versions and FSIIA require strong solenoidal magnets which can only be constructed as Superconductors (SC)
m Lorentz force acting on solenoid has a radial and axial component
m Radial component generates hoop stress, 0=JBR (approximation)

: .. : : J: current density
m Typical hoop stress limit for Nb-Ti SC coils: ~200 MPa B: magnetic field

R: radius

Androula Alekou, androula.alekou@cern.ch, Cornell seminar, 27March2014



Feasibility

m All BC versions and FSIIA require strong solenoidal magnets which can only be constructed as Superconductors (SC)

m Lorentz force acting on solenoid has a radial and axial component

m Radial component generates hoop stress, 0=JBR (approximation)

m Typical hoop stress limit for Nb-Ti SC coils: ~200 MPa

Lattice Hoop stress [MPa]
BSTIA 238.9 m BC-III and BC-VI below 200 MPa
BC-I 345 3 m FSITA and BC-II just above limit
BC-II 2499
BC-III 188.2
416.9
BC-V 304
187 .4
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Feasibility

m All BC versions and FSIIA require strong solenoidal magnets which can only be constructed as Superconductors (SC)

m Lorentz force acting on solenoid has a radial and axial component

m Radial component generates hoop stress, 0=JBR (approximation)

m Typical hoop stress limit for Nb-Ti SC coils: ~200 MPa

Lattice Hoop stress [MPa]
FSITA 238.9
BC-I 345.3
BC-II 2499
BC-III 188.2
416.9
BC-V 304
187 .4

m BC-III and BC-VI below 200 MPa
m FSIIA and BC-II just above limit

m SC magnets feasibility wrt magnetic
forces and tolerances was analyzed
taking into account their quench* limits

m Critical behavior of SC described by
critical surface: at a particular
temperature, T and current density, J,
there is specific field that transforms SC
to normal-conducting magnet

*quench effect: when a SC transforms to a normal- conductor

Androula Alekou, androula.alekou@cern.ch, Cornell seminar, 27March2014
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Feasibility

m All BC versions and FSIIA require strong solenoidal magnets which can only be constructed as Superconductors (SC)
m Lorentz force acting on solenoid has a radial and axial component

m Radial component generates hoop stress, 0=JBR (approximation)
J: current density

m Typical hoop stress limit for Nb-Ti SC coils: ~200 MPa B: magnetic field

R: radius
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*quench effect: when a SC transforms to a normal- conductor
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Outline

a LAGUNA-LBNO
m High Power Proton Synchrotron (HP-PS)

m Orbit Correction
m Collimation
a

Results and future optimizations
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Pan-European Infrastructure for Large Apparatus Studying Grand Unification,
Neutrino Astrophysics and Long Baseline Neutrino Oscillations [7/]

Main goal: assess feasibility study of new European research infrastructure able to host a
deep (~1,5 km) underground detector (mass: ~ 10° — 100 tons) for fundamental research in
particle and astroparticle physics
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LAGUNA-LBNO

Pan-European Infrastructure for Large Apparatus Studying Grand Unification,
Neutrino Astrophysics and L.ong Baseline Neutrino Oscillations [5]

Main goal: assess feasibility study of new European research infrastructure able to host a
deep (~1,5 km) underground detector (mass: ~ 10° — 100 tons) for fundamental research in
particle and astroparticle physics

Amongst other things, the LAGUNA observatory will:
m study matter-antimatter asymmetry using neutrinos produced at CERN

Pyhiésalmi,
Finland

Acme-og om

+accelerator target near detector far detector

«— 1 —>

@CERN

o

LAT: Lepton Accelerators and Test Facilities
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m 3-fold symmetry

m 3 Long Straight Sections (LSS):
m a) injection/extraction
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Orbit correction (1/2)

m In 1deal machine orbit 1s just a straight line

m In a real machine there are magnet errors and misalignments that lead to

orbit distortions
A

X X

\ 1deal orbit

A

A AT
T s

| real orbit

X

A

| corrected orbit

m Corrector magnets needed to reduce orbit distortion magnitude

m Need to check if correctors strengths needed for HP-PS are within limit
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Orbit correction (2/2)

To evaluate efficiency and performance

of orbit correction system:

1) distributed random field and
misalignments errors around ideal
HP-PS; distorted i1deal orbit

2) enabled corrector magnets and
calculated what strength needed to
reduce amplitude of distorted orbit

Androula Alekou, androula.alekou@cern.ch, Cornell seminar, 27March2014
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Orbit correction (2/2)

To evaluate efficiency and performance  Distribution of max H and V orbit deviation before and after correction
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magnitude
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Collimators

mWhy do we need collimators?

m to prevent halo particles from hitting the
superconducting magnets of the HP-PS ring
(avoid magnets quenching) Arc

m to limit equipment irradiation close to the beam

LSS

mto localize slow losses in controlled way

in properly equipped locations: LSS \ /
dedicated LSS (Long Straight Section) %
for transverse collimation
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®m Us: phase advance between HP and HS2

a for Ny=2.50 and N;=3.00: usi~34° and us-146°

LSS: Long Straight Section
@ uyss:1520 (H) & I
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m What type of collimators?

m Primaries/scrapers/scatterers (HP): increase chance that halo

. . . There are equal numbers
particles will be absorbed later on by secondary collimators

of H and V collimators;

m Secondaries/absorbers (HS1, HS2): absorb halo particles here only H are shown
H/V: Horizontal/Vertical

aperture (magnetic
elements, monitors etc)

| Primary collimator (scatterer)

N

> lSecondary collimator (absorber)
S

It was found that efficiency increases
when adding extra collimators at u=90°

| NSI=NS2=NS
dedicated LSS for collimation ®m Usi: phase advance between HP and HS1
®m Us: phase advance between HP and HS2

a for Ny=2.50 and N;=3.00: usi~34° and us-146°
| urss:152° (H)

LSS: Long Straight Section
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m What type of collimators?

m Primaries/scrapers/scatterers (HP): increase chance that halo

. . . There are equal numbers
particles will be absorbed later on by secondary collimators

of H and V collimators;

m Secondaries/absorbers (HS1, HS2): absorb halo particles here only H are shown
H/V: Horizontal/Vertical

x 1 HS1§HO90F HS2 aperture (magnetic

elements, monitors etc)

| Primary collimator (scatterer)

> lSecondary collimator (absorber)
S

It was found that efficiency increases
when adding extra collimators at u=90°

| NSI=NS2=NS
dedicated LSS for collimation ®m Usi: phase advance between HP and HS1
®m Us: phase advance between HP and HS2

a for Ny=2.50 and N;=3.00: usi~34° and us-146°
| urss:152° (H)

LSS: Long Straight Section
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Optimizing Collimation Efficiency

Parameters:

v
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m collimators thickness
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Optimizing Collimation Efficiency

Parameters:
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m collimators material (e.g. graphite (C), tungsten (W))
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Optimizing Collimation Efficiency

Parameters:
m collimators thickness

m collimators material (e.g. graphite (C), tungsten (W))

m jaw opening

For different:
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Optimizing Collimation Efficiency

Parameters:
m collimators thickness

m collimators material (e.g. graphite (C), tungsten (W))

m jaw opening

For different:
m beam halo type (H or V)
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Optimizing Collimation Efficiency

Parameters:
m collimators thickness

m collimators material (e.g. graphite (C), tungsten (W))

m jaw opening

For different:
m beam halo type (H or V)

x’ [mrad]

y’ [mrad]
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Optimizing Collimation Efficiency

Parameters:
m collimators thickness

m collimators material (e.g. graphite (C), tungsten (W))

m jaw opening

For different:
m beam halo type (H or V)

m beam halo size (Ny)/impact parameter (by)*

Androula Alekou, androula.alekou@cern.ch, Cornell seminar, 27March2014



Optimizing Collimation Efficiency

Parameters:
m collimators thickness

m collimators material (e.g. graphite (C), tungsten (W))

m jaw opening

For different:
m beam halo type (H or V)

m beam halo size (Ny)/impact parameter (by)*

H halo )

X’ [mrad]

X [mm]
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Optimizing Collimation Efficiency

Parameters:
m collimators thickness

m collimators material (e.g. graphite (C), tungsten (W))

m jaw opening

For different:
m beam halo type (H or V)

m beam halo size (Ny)/impact parameter (by)*

H halo )

X’ [mrad]

X [mm]
*Impact parameter, bx: The transverse offset
between the impact location and the edge of the jaw

Androula Alekou, androula.alekou@cern.ch, Cornell seminar, 27March2014



Optimizing Collimation Efficiency

Parameters:
m collimators thickness

m collimators material (e.g. graphite (C), tungsten (W))

m jaw opening

For different:
m beam halo type (H or V)

m beam halo size (Ny)/impact parameter (by)*

H haloA x 1

X’ [mrad]
& &l

X [mm]
*Impact parameter, bx: The transverse offset
between the impact location and the edge of the jaw
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Change thickness of primary collimators

Halo size [0] 2.5
Halo type H/V
Primary material C/W
Primary thickness changing
Secondary material W
Secondary thickness I m
Jaw opening Np_Ns [0O] 2530
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Change thickness of primary collimators

Halo size [0] 2.5
Halo type H/V
Primary material C/W
Primary thickness changing
Secondary material W
Secondary thickness I m
Jaw opening Np_Ns [0] 25 30

Graphite primaries Tungsten primaries

7.

6 * i *
6 .
5t - ¢ 25,H

="/

4 25,V
al/

0 0005 00l  00I5 0 0001 0002 0003 0004

Thickness [m] Thickness [m]

*In collaboration with

Daniel Spitzbart
aniel Spitzbar 23
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Change thickness of primary collimators

Halo size [0] 2.5
A: figure of merit: cleaning speed/losses Halo type —_—
Material | Halo |Thickness [mm]| A Primary material S
C H 10 55 Primary thickness changing
C \V/ 13 59 Secondary material W
W H 021 6.92 Secondary thickness I m
W V 0.6 R 08 Jaw opening Np_Ns [o] [ 2.5_3.0
Graphite primaries Tungsten primaries
7.
6 * ol *
6
5t - ¢ 25, H
="/
4 2.5,V
3l
0 0005 00l  00I5 0 000l 0002 0003  0.004
Thickness [m] Thickness [m]

*In collaboration with

Daniel Spitzbart
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Change thickness of primary collimators

Halo size [0] 2.5
A: figure of merit: cleaning speed/losses Halo type oV
Material | Halo | Thickness [mm] A Primary material Cw
C H Primary thickness changing
C Vv Secondary material W
W H Secondary thickness I m
\%Y V Jaw opening Np_Ns [0] 2530
Graphite primaries Tungsten primaries
7.
’ * ) %
¢l -
5t - ¢ 25, H
="/
4 2.5,V
0 0005 00l  00I5 0 000l 0002 0003  0.004
Thickness [m] Thickness [m]

*In collaboration with

Daniel Spitzbart
Androula Alekou, androula.alekou@cern.ch, Cornell seminar, 27March2014 33



Change thickness of primary collimators

Halo size [0] 2.5
A: figure of merit: cleaning speed/losses Halo type oV
Material | Halo | Thickness [mm] A Primary material Cw
C H Primary thickness changing
C Vv Secondary material W
W H Secondary thickness I m
\%Y V Jaw opening Np_Ns [0] 2530
Graphite primaries Tungsten primaries
7.
’ * ) %
— 6 ¢
. 5 3 ¢ 25, H
="/
4 2.5,V
2
0 0005 00l  00I5 0 000l 0002 0003  0.004
Thickness [m] Thickness [m]

*In collaboration with

Graphite primaries: better A for larger thickness range Daniel Spitzbart .



Change size of input beam

Halo size [0] changing
Halo type H/V
Primary material C/W
Primary thickness* constant
Secondary material A\
Secondary thickness I m
Jaw opening Np_Ns [0] 2530

*Thickness of primaries: optimum, shown in previous slide
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Change size of input beam

A: figure of merit: cleaning speed/losses

e C.H halo Halo size [0] changing
W, H halo Halo type H/V
|l iT * G Vhao Primary material C/W

1 // _— l W, V halo

/ T I Primary thickness* constant
t/“‘” \\\ Secondary material A\
f l \

Secondary thickness I m

A
— N W AU N®O

Jaw opening Np_Ns [0] 2530

o
<o

0.0025 0.005 0.0075
Impact Parameter [m]

*Thickness of primaries: optimum, shown in previous slide
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Change size of input beam

A: figure of merit: cleaning speed/losses

9 e C, Hhalo Halo size [0] changing
g W, H halo Halo type H/V
7 |l i ® C Vhalo Primary material C/W
61// W W, V halo
< 57 | I Primary thickness* constant
;t/* \\\ Secondary material %Y
2 | \ Secondary thickness 1 m
I |
0 ‘ ‘ | Jaw opening Np_Ns [0] 25_30
0. 0.0025 0.005 0.0075

Impact Parameter [m]

m Similar behavior between C and W for different impact parameters

m H halo better than V halo

*Thickness of primaries: optimum, shown in previous slide

Androula Alekou, androula.alekou@cern.ch, Cornell seminar, 27March2014



Lost particles
40;

30

20

Adding more collimators

Losses

H collimator

—iss—>

no extra
I [ collimator

Halo size [0] 2.5
Halo type H
Primary material C
Primary thickness [m] 0.01
Secondary material \\
Secondary thickness [m] |
Jaw opening Np_Ns [0] 2.5 30

Androula Alekou, androula.alekou@cern.ch, Cornell seminar, 27March2014



Adding more collimators

L osses Halo size [0] 2.5
Lostgrcies : H collimator Halo type H
E 1SS ) . Primary material C
30 i Primary thickness [m] 0.01
. Secondary material W
Secondary thickness [m] |
10- . . . no extra Jaw opening Np_Ns [0] 2530
| J | collimator
0 50 340 D360 Ci0 400 40 40 v Posml

Power deposition

m Assuming 1% halo and injection power
(500 kW) then 20 lost particles within 10 m
correspond to 5 W/m > 1 W/m limit

m Necessary to further reduce losses!
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Adding more collimators

additional
C()Himat()r Losses

Losses

Lost particles
40;

«—iss—>

H collimator

30

20
o, b no extra
| J [ collimator
o N Bl | E ““““ Mk .
07320 340 360 380 400 420 440  46d PoSIM

Power deposition

m Assuming 1% halo and injection power
(500 kW) then 20 lost particles within 10 m
correspond to 5 W/m > 1 W/m limit

m Necessary to further reduce losses!

Lost particles
40/

30

20

0

Y

55—

f : with extra
collimator

pim . o@W 0 WOQOWM O . . .
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Adding more collimators

Losses

Lost particles
40;

—iss—>

H collimator

30¢

20 .
o, TFT T no extra
I |
R J [: collimator
(. ! DI ““““ Mk .
O7320" _ 340 _ 860 380 400 420 440  46d PoSIM

Power deposition

m Assuming 1% halo and injection power
(500 kW) then 20 lost particles within 10 m
correspond to 5 W/m > 1 W/m limit

m Necessary to further reduce losses!

additional
C()Himat()r Losses

Lost particles i
40/

20

0

—iss—>

30¢

with extra

pim . o@W 0 WOQOWM O . . .

{ : collimator

Androula Alekou, androula.alekou@cern.ch, Cornell seminar, 27March2014 351



Adding more collimators

additional

Losses collimator [osses
Lost4%art|cles i

Lost particl '
ost particles H collimator

55— 55—

30 30

20 ; , 20
o P [ no extra 0 "} " f- . with extra
TR TN e by Ap o, colimator
320' 340 _ _B60 380 400 420 440  46d PosIm O 320" 340 _ 360 380 400 420 440
POW@I’ depO SlthIl Parameter without extra | with extra
m Assuming 1% halo and injection power Inefficiency [%] 0.13 0.08
(500 kW) then 20 lost particles within 10 m Cleaning Speed [%] 0.59 0.59
correspond to 5 W/m > 1 W/m limit A 468 7.17
m Necessary to further reduce losses! absorptions 1017 1052
losses 100 63

Additional collimator has a positive impact



Adding more collimators

additional

Losses collimator [osses
Lost4%art|cles i

Lost particl '
ost particles H collimator

55— 55—

30 30

20 ; , 20
o L oaf no extra o | ap e with extra
S 1 g : collimator % : collimator
| ¥l |k 1 o | NN T | P S T ] I b, som . @ % W@ . . ...,
O7320" _ 340 _ 860 380 400 420 440  46d PoSIM 0 _ _;60 380 400 420 440
need to remove peak of Losses
POW@I’ depO SlthIl Parameter without extra | with extra
m Assuming 1% halo and injection power Inefficiency [%] 0.13 0.08
(500 kW) then 20 lost particles within 10 m Cleaning Speed [%] 0.59 0.59
correspond to 5 W/m > 1 W/m limit A 4.68 7.17
m Necessary to further reduce losses! absorptions 1017 1052
losses 100 63

Additional collimator has a positive impact



Lost particles
40,

30

LSS —

20

10

- HP

HS|l

VS|

Moving collimators (1/3)

V90

L osses

VS2
H90 HS2

Ll

320

340

360 380 400 420 440 468_

Androula Alekou, androula.alekou@cern.ch, Cornell seminar, 27March2014

pos [m]

LSS: Long Straight Section



Lost particles
40,

30

LSS —

20

10

* HS|l
- HE VS|

Moving collimators (1/3)

V90

o 000— @ @O

Ll

L osses

m Long Straight Section (LSS) just long
VS2 enough to fit collimators at optimum phase
H90 HS2 .
advance positions™

320

340

360 380 400 420 440  4ed Pos(ml

LSS: Long Straight Section
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Moving collimators (1/3)

Losses
Lost particles
40- m Long Straight Section (LSS) just long

* HS| VS2 enough to fit collimators at optimum phase
- HR s ve0 K90 HS2 o
advance positions

LSS —

30

20 s I
10 | -
| ( N
O(H .
320 340 360 380 400 420 440  4ed PO M
*Remember: optimum s-location of secondary collimators is
related to phase-advance wrt primary collimator:
& us1=acos(Ny/Ns), Us2=TT-Us] LSS: Long Straight Section

| for Ny=2.50 and Ny;=3.00: us;i~34° and us-146°
| urss:152° (H) o
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Moving collimators (1/3)

Losses
Lost particles
40- m Long Straight Section (LSS) just long

* HS| VS2 enough to fit collimators at optimum phase
- HR s ve0 K90 HS2 o
advance positions

i h 1SS é m Primary cplhmators neec.1 to be placed as

upstream 1n LSS as possible

30

20 s I
10 | -
| ( N
O(H .
320 340 360 380 400 420 440  4ed PO M
*Remember: optimum s-location of secondary collimators is
related to phase-advance wrt primary collimator:
& us1=acos(Ny/Ns), Us2=TT-Us] LSS: Long Straight Section

| for Ny=2.50 and Ny;=3.00: us;i~34° and us-146°
| urss:152° (H) o
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Moving collimators (1/3)

Losses
Lost particles
40- m Long Straight Section (LSS) just long

* HS| VS2 enough to fit collimators at optimum phase
- HR s ve0 K90 HS2 o
advance positions

i h 1SS é m Primary cplhmators neec.1 to be placed as

upstream 1n LSS as possible

30

20 s I
10 | -
| ( N
O(H .
320 340 360 380 400 420 440  4ed PO M
*Remember: optimum s-location of secondary collimators is
related to phase-advance wrt primary collimator:
& us1=acos(Ny/Ns), Us2=TT-Us] LSS: Long Straight Section

| for Ny=2.50 and Ny;=3.00: us;i~34° and us-146°

Quadrupoles
[ ] /ALSS:]52O (H)
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Moving collimators (1/3)

Losses
Lost particles
40- m Long Straight Section (LSS) just long

* HS| VS2 enough to fit collimators at optimum phase
- HR s ve0 K90 HS2 o
advance positions

i h 1SS é m Primary cplhmators neec.1 to be placed as

upstream 1n LSS as possible

30

m Up to now primaries placed upstream of

20 ) quadrupoles but this can cause losses
]

10 | -

| ( N

O(H .
320 340 360 380 400 420 440  4¢d PosIM
*Remember: optimum s-location of secondary collimators is
related to phase-advance wrt primary collimator:
& us1=acos(Ny/Ns), Us2=TT-Us] LSS: Long Straight Section

| for Ny=2.50 and Ny;=3.00: us;i~34° and us-146°

Quadrupoles
[ ] /ALSS:]52O (H)
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Moving collimators (1/3)

Losses
Lost particles
40- m Long Straight Section (LSS) just long

HS| VS2 enough to fit collimators at optimum phase

- HE VS V90 H90 HS2 . "
, advance positions
30

YP
7 h 1SS é m Primary collimators need to be placed as

upstream 1n LSS as possible

m Up to now primaries placed upstream of

20 | quadrupoles but this can cause losses
! @ t m  Move primaries after quadrupoles (shift secondary

, collimators; try to keep them close to optimum

|0 | t positions)
| ( N

O(H_
320 340 360 380 400 420 440  4¢d PosIM
*Remember: optimum s-location of secondary collimators is
related to phase-advance wrt primary collimator:
& us1=acos(Ny/Ns), Us2=TT-Us] LSS: Long Straight Section

| for Ny=2.50 and Ny;=3.00: us;i~34° and us-146°

Quadrupoles
| urss:152° (H) _
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Moving collimators (1/3)

= s . e IR
HE JIVSI Vo0  |H90 HS2 | ' HSI[VSI V90 VSR H90  HSQ

YP VP .
L 30,

30

20 20

: ( ] ®
10 | - 10 | -
| : M |
O%H 0 (W{H
320 340 360 380 320 340 360 380 400 42
*Remember: optimum s-location of secondary collimators is
related to phase-advance wrt primary collimator:
| Us1=acos(Np/Ns), Us2=7T-Us] LSS: Long Straight Section
| for Ny=2.50 and N;=3.00: us1~34° and ps2-146° Quadrupoles

| urss:152° (H)
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Moving collimators (1/3)

Losses Losses
Lost particles Lost particles
40 40
: HS| VS2 | s - . .
- R fvST o ve  IR90 HS2 | ' HsIIVSI V90 VSR W90  HSR

VP ¢
30

| — S m—

30

| 155 —>

20 20

0 == || . 0 -4+ . -
IR R At
O;H'ﬂﬂ A L. 1
30 340 360 380 330 340 360 380 400 42

*Remember: optimum s-location of secondary collimators is
related to phase-advance wrt primary collimator:

| Us1=acos(Np/Ns), Us2=7T-Us] LSS: Long Straight Section
| for Ny=2.50 and Ny;=3.00: us;i~34° and us-146°

Quadrupoles
| urss:152° (H) _
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Moving collimators (1/3)

Losses Losses
Lost particles Lost particles
40 40
: HS| VS2 | s ) ) s,
- R fvST o ve  IR90 HS2 | ' HsIIVSI V90 VSR W90  HSR

VP ¢
30

| — S m—

30

| 155 —>

20 20

I W (I

0 =1 % s I H S

E E' E M 7 E E E ° : E.
oiﬂl% L Irh%: 0 : i :.------:( m

380 400 42

Wi
o
w
N
o
w
o
o

320 340 360 380

*Remember: optimum s-location of secondary collimators is
related to phase-advance wrt primary collimator:

| Us1=acos(Np/Ns), Us2=7T-Us] LSS: Long Straight Section
| for Ny=2.50 and Ny;=3.00: us;i~34° and us-146°

Quadrupoles
| urss:152° (H) —
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Moving collimators (1/3)

Losses Losses
Lost particles Lost particles
= HSll - vsall = - 1 - - 9 s
j CE vsE Vag 90 HS2 e HSIVSI V90 VSR H90  HS$p

| e [ S ey

20 .
LR T e A .
IR RNEE TR
Oiﬁj I( — :hﬁﬂ-ﬂ#-;—ilrhﬁﬂ -
320 340 360 380

30

| —SS —

20

Wi
o

*Remember: optimum s-location of secondary collimators is
related to phase-advance wrt primary collimator:

| us;=acos(Ny/Ns), Us2=TT-Us]

| for Ny=2.50 and Ny;=3.00: us;i~34° and us-146°

| urss:152° (H)

LSS: Long Straight Section

Quadrupoles
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Moving collimators (1/3)

Losses
Lost particles
40,
’ HS|I VS2
- HR VS| &l H90 HS2
- VP

30

| —LSS —

20 s

IOI--: :--—--P--I Ir ------
| ! i | . ]
! n S | M . ]
L - . '
I | 1 % 1 | .
O‘L-—ﬁ—.l : ‘ : : I—i—-4-—ﬁﬂL—-!—h—i—-*-—h—i m
320 340 360 380
Parameter not moved moved
Inefficiency [%] 0.17 0.12
Cleaning Speed [%] 0.50 0.61
A 2.94 5.08
absorptions 1067 1060
losses 150 86

Lost particles
40-

30

20

Losses
) ) ) o
HP’ o0
o HSEVSI Vo vs2 k90  HS

G LSS ey

o Jhu Sl ) O ity !
:--: | :.------:(:.----Wﬂ”.: e
320 340 360 380 400 42
Moving primary
collimators after
quadrupoles has a
positive impact »



Lost particles
40,

* HS|l
- HE VS|

VP
30

Moving collimators (1/3)
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Moving collimators (2/3)

Losses 1n aperture (X-, y-trajectories)
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Moving collimators (2/3)

Losses 1n aperture (X-, y-trajectories)

Before moving the primaries After moving the primaries
x/y/r [mm] s | x/y/r [mm] |
xly e o) perture Losses, x/y/r trajectory o Aperture Losses, x/y/r trajectory
§i /ol e ’
e . s-pos m] B = . | S-pos [m]

s-position of x/y losses

*different trajectory colors only to distinguish amongst lines -,



Moving collimators (3/3)

Particles absorbed in collimators

Before moving primaries
Absorbed particles
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*Remember: input halo in this case was H
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Moving collimators (3/3)

Particles absorbed in collimators

Before moving primaries
Absorbed particles
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Moving collimators (3/3)

Particles absorbed in collimators

Before moving primaries After moving primaries
Absorbed particles Absorbed particles
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Moving collimators (3/3)

Particles absorbed in collimators

Before moving primaries After moving primaries
Absorbed particles Absorbed particles
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Absorptions from HS1* increase ~x3

*Remember: input halo in this case was H
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Changing Secondary Material
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Changing Secondary Material

Graphite primaries ¢ W
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Further optimisations
Goal: achieve <1 W/m power deposition
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Further optimisations
Goal: achieve <1 W/m power deposition

Add more collimators

Change location of secondary collimators (taking into account quadrupoles’
location)

m Increase thickness of secondary collimators

m Change size of jaw opening
For different:

m beam halo type (H or V)

m beam halo size/impact parameter
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Outline

m Summary and Conclusions
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Summary and Conclusions

m Future neutrino projects will study neutrino oscillations parameters with great

precision: Neutrino Factory (NF) and LAGUNA-LBNO

Ionization cooling essential for NF

High magnetic field (B) at RF of reference cooling lattice can lead to RF breakdown

Bucked Coils Lattice reduces B without compromising cooling efficiency, and is well
within feasibility limits: main alternative of reference lattice

High Power Proton Synchrotron (HP-PS) conceptual design within LAGUNA-LBNO

Random errors distributed in HP-PS to evaluate efficiency and performance of orbit
correction system; correctors’ strength needed well within the limit

Collimation essential to protect SC magnets of HP-PS

Thorough optimization of different parameters that affect collimation efficiency performed

Best primaries/secondaries material: C/W; efficiency improves when moving primaries
after quadrupoles, and with additional collimators
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Summary and Conclusions

m Future neutrino projects will study neutrino oscillations parameters with great

precision: Neutrino Factory (NF) and LAGUNA-LBNO

Ionization cooling essential for NF

High magnetic field (B) at RF of reference cooling lattice can lead to RF breakdown

Bucked Coils Lattice reduces B without compromising cooling efficiency, and is well
within feasibility limits: main alternative of reference lattice

High Power Proton Synchrotron (HP-PS) conceptual design within LAGUNA-LBNO

Random errors distributed in HP-PS to evaluate efficiency and performance of orbit
correction system; correctors’ strength needed well within the limit

Collimation essential to protect SC magnets of HP-PS

Thorough optimization of different parameters that affect collimation efficiency performed

Best primaries/secondaries material: C/W; efficiency improves when moving primaries
after quadrupoles, and with additional collimators

To guarantee power deposition <1 W/m further optimisations are ongoing (e.g. increase
thickness of secondaries)

Energy deposition and longitudinal collimation studies will soon follow
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Thank you very much!

Any questions?

4



Extra Shides

Androula Alekou, androula.alekou@cern.ch, Cornell seminar, 27March2014

(45)

4



Am2. L
Mg Am32, [107°] eV? | 7.59+0.21

Parameter Value
4F )

P(va > vs) = bap—4Y R(UpUxiUsUs;) sin® (

i>j |Am3,| [107°] eV? | 2.327F0%

Am2 L sin? (20:2) 0861730
+ 2} S(U5UailUUs;) sin ( ¥ ) sin? (2023) > 0.90,90% C.L.
8>3 sin?(2613) 0.09240.016(stat.)=0.005(syst.)
Uai: PMNS mixing matrix
A L A L Am2,L a S
APO%P = —1@81_‘(1 m12 sm m23 sin M3 _
1k 4F sij=sin0j;
:'& O \-/#; 0 Cij=c0s0jj
_ * mixing angles: 012, 023, 013
Jap = <U U 2U31UB2 i612812623823013813% d: CP-violation phase

+0

RF breakdown: worse at high gradient locations:
electrostatic forces will pull the molten metal out and
away from the surface. As the metal leaves the now
damaged location, it will be exposed to field emitted
electrons from the damaged area, and will be
vaporised and 1onised. This will lead to a local
plasma and a subsequent breakdown

: RF cavity
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a G4AMICE

m 1,000 muons

m Gaussian P distribution
centered at 232 MeV/c

m 10 mm transverse emittance

m 0.07 ns longitudinal emittance

m Muon decays, MCS,
straggling: ON

~ 4r LI AL B LN LR B .
% E Br \3.1.{ atendRF | %K .'ﬂ.. E
& 35 [Th S
- |+ BCn . ]
3 | BC-1 . . -
[~ BC-IV - i
B -=- BC-VY e -
2.5F BC-VI -' . 3
2F N -
1.5} o -
- " Cl
l,__ l.‘f .n-
0.5:_ JA.. .. .
OE ,.1.“.1.1.,1‘.,.1..1":
0 0.1 02 03 04 05 0.6
R (m)
FSITA>4 T

BC-I, BC-II, -III, -VI~x3.5-5 lower
BC-1V, -V~x2-3 lower

Lattice FSIIA | BC-I
Full-cell Length [m] 1.5 2.1
Number of RF cavities 2 2
Number of Absorbers 4 4
Number of Coils 2 4 (2 pairs)
RF Cavities
Peak Electric Field [MV/m]| | 15.000 | 16.585
Phase |[degrees| 40 30
Length [m] 0.5 0.5
Radius [m] 0.3 0.3
Absorbers
Length [m] 0.0115 | 0.0100
Radius |m)] 0.25 0.30
Coils
Current Density [A/mm’] 106.667 | 1C: 120.000;
N/A 0OC: 90.240
Inner Radius [m] 0.35 1C: 0.30;
N/A 0OC: 0.60
Thickness |m] 0.15 IC: 0.15;
N/A 0C: 0.15
Length [m] 0.15 IC: 0.15;
N/A 0C: 0.15
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LAGUNA observatory will:

m search for proton decay: direct evidence for unification of elementary forces

m allow detection of neutrinos from distant galactic supernovae: understand their
explosion mechanism

m perform precision study of terrestrial, solar and atmospheric neutrinos
m study matter-antimatter asymmetry using neutrinos produced at CERN

Sixtrack tracking
Proton scattering in various collimator materials,
including:

Detector options: 0 Multiple Coulomb scattering,
0 lonization of the collimator material,
GLACIER: LAr; 1,424 m deep; 2x50 kt 0 Elastic proton-proton (pp) scattering, and
LENA: LSc; 1,500 m deep; 50 kt inelastic diffractive pp scattering (single
diffractive scattering),
MEMPHYS: Water Cherenkov:; 0 Inelastic proton-nucleon scattering,
1,700 m deep; 500 kt 0 Elastic and inelastic proton-nucleus scattering,

0 Rutherford scattering.

MEMPHYS: MEgatonMassPHY Sics

GLACIER (Giant Liquid Argon Charge Imaging ExpeRiment) App“ed random errors
LENA (Low Energy Neutrino Astronomy) .
LAr: Liquid Argon Gaussian cut @ 30

L>c: Liquid seintillator Relative dipole field error 5.00E-04

Phase advance before Transverse quadrupole shift
moving collimators: 150 H

and 200V Longitudinal dipole shift |~ 03mm
After moving collimators: - -

145 H and 185V Dipole tile
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HP-PS parameters

Accelerator complex layout at CERN

~1 Hz (00
EE R = »
present, p

2 Hz

LINAC 4
upgrade, H-

S
Y

Parameter

Inj. / Extr. Kinetic Energy
Beam power

Repetition rate

frev / fre @ inj.

RF harmonic

fo / fre @ extr.

rev
Bunch spacing @ extr.
Intensity per pulse
Number of bunches
Intensity per bunch

Main dipole field inj. / extr.

50 GeV 75 GeV
4 /50 4/75
2
1
0.234 /39.31 [MHz]
168 -
0.238/40.08  0.238/40.08 [MHz] Tune and working point of HP-PS
25 [ns] @ 01 sle 13.23595626
25 %10 1.7x10% : o bol sle  -0.00047281167¢2
157 - @ DQ2 3le ~0.001804231898
1.6x10%2 1.1x10%2 -
0.19/2.1 0.19/3.1 [T] pcern.ch, Cornell seminar, 27March2014 (49



Absorbed particles
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HP: Horizontal Primary
VP: Vertical Primary

m  W: less absorptions in primaries (for all beam sizes)

Halo size changing | [Np_Ns|Halo| <A>

Halo type v 2530 H | 548
Primary materal T {|2530] v | 386
Primary thickness constant | 55 5ol 4 [ 624
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