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This probability of flavor change in vacuum oscillates with L/E; this 
is why neutrino flavor change is called “neutrino oscillation”

L: distance neutrinos travel	


E: neutrino energy
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Uai: PMNS mixing matrix

1.4. NEUTRINO OSCILLATIONS

mental and theoretical interest since its observation implies non-zero neutrino
mass, something that cannot be explained by the Standard Model.

The Super-Kamiokande experiment [20] obtained the first model indepen-
dent evidence for neutrino oscillations in 1998, when a significant up-down
asymmetry of the atmospheric high-energy ⌫µ events was discovered. Atmo-
spheric neutrinos with energy greater than a few GeV, can be traced back
to primary cosmic rays. These high energy cosmic rays arrive at the Earth
almost isotropically which results in the prediction that the flux of atmo-
spheric neutrinos should be equal for equal solid angles. However, the up/down
asymmetry (A = Up�Down

Up+Down) for high energy ⌫µ events was found to be A =

0.296 ± 0.048 (stat.) ± 0.01 (syst.).
The first experimental solar neutrino measurements were reported in 1968,

by Ray Davis et al. The experiment used a tank of chlorine in the Homes-
take mine in South Dakota. Chlorine can absorb a neutrino and convert into
argon [2]:

⌫e + 37Cl ! 37Ar + e�. (1.4.1)

Several argon atoms were collected within several months. However, the total
accumulation was about a third of what John N. Bahcall predicted6, giving rise
to the “solar neutrino problem”. The Sudbury Neutrino Observatory (SNO) [21]
proved in 2001 that the long-standing solar neutrino puzzle was a result of
neutrino oscillations. Although, in the case where no oscillation occurs, all
neutrinos coming from the sun should be ⌫e, SNO had shown that the ratio of
the flux of the solar ⌫e to the total flux of ⌫e, ⌫µ and ⌫⌧ is ⇠ 1/3.

The first confirmed observation of neutrino oscillations from terrestrial neu-
trino sources was obtained by KamLAND [22] from the measurement of the
energy spectrum of neutrinos produced in nuclear reactors. A significant dis-
tortion of the reactor antineutrino spectrum was found in this experiment.

There are three known types (flavours) of neutrinos: electron, muon and tau.
Although neutrinos are created or detected with a well defined flavour, flavour
transitions are possible while propagating in vacuum or matter. The transitions
occur because the neutrino mass eigenstates i (i=1, 2, 3) are superpositions of
the flavour eigenstates ↵ (↵=e, µ, ⌧). Therefore, a neutrino that was produced
as a neutrino of flavour ↵ at a given location has a calculable probability to be
detected as a neutrino of flavour � after travelling to another location.

The relation between flavour and mass eigenstates is [23]:

| ⌫↵i =
X

i

U↵i | ⌫ii, (1.4.2)

where U↵i is the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) mixing matrix.

6Bahcall was responsible for most of the calculations of solar neutrino abundances.
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Neutrinos oscillate because their flavor eigenstates α (α=e, μ, τ) are 
superpositions of mass eigenstates (i=1, 2, 3):

This probability of flavor change in vacuum oscillates with L/E; this 
is why neutrino flavor change is called “neutrino oscillation”

L: distance neutrinos travel	


E: neutrino energy
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holds (which is believed to be the case for neutrino oscillations in vacuum):

P (⌫̄↵ ! ⌫̄�) = P (⌫� ! ⌫↵), (1.4.11)

and:

P (⌫̄↵ ! ⌫̄�) = �↵� � 4
X

i>j

<(U⇤
�iU↵iU�jU

⇤
↵j) sin2

 
�m2

ijL

4E

!

� 2
X

i>j

=(U⇤
�iU↵iU�jU

⇤
↵j) sin

 
�m2

ijL

2E

!
.(1.4.12)

Since ⌫̄↵ ! ⌫̄� is the CP -mirror image of ⌫↵ ! ⌫� , then P (⌫↵ ! ⌫�) 6=
P (⌫̄↵ ! ⌫̄�) would imply CP violation. T violation can be tested if the
probabilities of ⌫↵ ! ⌫� are different from the T conjugate process ⌫� ! ⌫↵.
If CPT conservation holds then violation of T is equivalent to that of CP .
Using U (eq. 1.4.3) it can be shown that CP violation in vacuum means that
�PCP

↵� = �P T
↵� , where �PCP

↵� and �P T
↵� are [23]:

�PCP
↵� = P (⌫↵ ! ⌫�) � P (⌫̄↵ ! ⌫̄�) 6= 0, (↵ 6= �)

�P T
↵� = P (⌫↵ ! ⌫�) � P (⌫� ! ⌫↵) 6= 0, (↵ 6= �), (1.4.13)

and that:

�PCP
↵� = �P T

↵� = �16J↵� sin

✓
�m2

12

L

4E

◆
sin

✓
�m2

23

L

4E

◆
sin

✓
�m2

13

L

4E

◆
,

(1.4.14)
where:

J↵� ⌘ =(U↵1

U⇤
↵2

U⇤
�1

U�2

) = ±c
12

s
12

c
23

s
23

c2

13

s
13

sin �, (1.4.15)

with +(-) denoting cyclic (anticyclic) permutation of (↵, �) = (e, µ), (µ, ⌧), (⌧, e).
It should be emphasised that from 1.4.15, for CP (or T ) violation effects to be
present, all the angles must be non-zero, and therefore a three-flavour mixing
is essential. Hence, provided ✓

13

is nonzero10 then � 6= 0, or � 6= ⇡, allows the
possibility of CP violation in the leptonic sector [23].

From equations 1.4.9 and 1.4.12 it can be seen that the observation that
neutrinos can change from one flavour to another implies neutrino mass and
mixing. In addition, it can be seen that the probability of flavour change in
vacuum oscillates with L/E, and this behaviour led neutrino flavour change
to be called “neutrino oscillation”. Finally from equations 1.4.9, 1.4.12 and
the unitarity of the U matrix it follows that the probability that a neutrino

10The Daya Bay ✓13 measurement [27] was published after the conclusion of this thesis.
Nonetheless, the result is mentioned in section 1.4 and table 1.1.
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If probability of oscillation from flavor α to flavor β is different for neutrinos and 
antineutrinos then there is CP violation in the leptonic sector:

Neutrino Oscillations Theory (2/3)



Androula Alekou, androula.alekou@cern.ch, Cornell seminar, 27March2014 ���5

1.4. NEUTRINO OSCILLATIONS

holds (which is believed to be the case for neutrino oscillations in vacuum):

P (⌫̄↵ ! ⌫̄�) = P (⌫� ! ⌫↵), (1.4.11)

and:

P (⌫̄↵ ! ⌫̄�) = �↵� � 4
X

i>j

<(U⇤
�iU↵iU�jU

⇤
↵j) sin2

 
�m2

ijL

4E

!

� 2
X

i>j

=(U⇤
�iU↵iU�jU

⇤
↵j) sin

 
�m2

ijL

2E

!
.(1.4.12)

Since ⌫̄↵ ! ⌫̄� is the CP -mirror image of ⌫↵ ! ⌫� , then P (⌫↵ ! ⌫�) 6=
P (⌫̄↵ ! ⌫̄�) would imply CP violation. T violation can be tested if the
probabilities of ⌫↵ ! ⌫� are different from the T conjugate process ⌫� ! ⌫↵.
If CPT conservation holds then violation of T is equivalent to that of CP .
Using U (eq. 1.4.3) it can be shown that CP violation in vacuum means that
�PCP

↵� = �P T
↵� , where �PCP

↵� and �P T
↵� are [23]:

�PCP
↵� = P (⌫↵ ! ⌫�) � P (⌫̄↵ ! ⌫̄�) 6= 0, (↵ 6= �)

�P T
↵� = P (⌫↵ ! ⌫�) � P (⌫� ! ⌫↵) 6= 0, (↵ 6= �), (1.4.13)

and that:

�PCP
↵� = �P T

↵� = �16J↵� sin

✓
�m2

12

L

4E

◆
sin

✓
�m2

23

L

4E

◆
sin

✓
�m2

13

L

4E

◆
,

(1.4.14)
where:

J↵� ⌘ =(U↵1

U⇤
↵2

U⇤
�1

U�2

) = ±c
12

s
12

c
23

s
23

c2

13

s
13

sin �, (1.4.15)

with +(-) denoting cyclic (anticyclic) permutation of (↵, �) = (e, µ), (µ, ⌧), (⌧, e).
It should be emphasised that from 1.4.15, for CP (or T ) violation effects to be
present, all the angles must be non-zero, and therefore a three-flavour mixing
is essential. Hence, provided ✓

13

is nonzero10 then � 6= 0, or � 6= ⇡, allows the
possibility of CP violation in the leptonic sector [23].

From equations 1.4.9 and 1.4.12 it can be seen that the observation that
neutrinos can change from one flavour to another implies neutrino mass and
mixing. In addition, it can be seen that the probability of flavour change in
vacuum oscillates with L/E, and this behaviour led neutrino flavour change
to be called “neutrino oscillation”. Finally from equations 1.4.9, 1.4.12 and
the unitarity of the U matrix it follows that the probability that a neutrino

10The Daya Bay ✓13 measurement [27] was published after the conclusion of this thesis.
Nonetheless, the result is mentioned in section 1.4 and table 1.1.

30

If probability of oscillation from flavor α to flavor β is different for neutrinos and 
antineutrinos then there is CP violation in the leptonic sector:

Depends on CP-violation phase, δ

Neutrino Oscillations Theory (2/3)



Androula Alekou, androula.alekou@cern.ch, Cornell seminar, 27March2014 ���5

1.4. NEUTRINO OSCILLATIONS

holds (which is believed to be the case for neutrino oscillations in vacuum):

P (⌫̄↵ ! ⌫̄�) = P (⌫� ! ⌫↵), (1.4.11)

and:

P (⌫̄↵ ! ⌫̄�) = �↵� � 4
X

i>j

<(U⇤
�iU↵iU�jU

⇤
↵j) sin2

 
�m2

ijL

4E

!

� 2
X

i>j

=(U⇤
�iU↵iU�jU

⇤
↵j) sin

 
�m2

ijL

2E

!
.(1.4.12)

Since ⌫̄↵ ! ⌫̄� is the CP -mirror image of ⌫↵ ! ⌫� , then P (⌫↵ ! ⌫�) 6=
P (⌫̄↵ ! ⌫̄�) would imply CP violation. T violation can be tested if the
probabilities of ⌫↵ ! ⌫� are different from the T conjugate process ⌫� ! ⌫↵.
If CPT conservation holds then violation of T is equivalent to that of CP .
Using U (eq. 1.4.3) it can be shown that CP violation in vacuum means that
�PCP

↵� = �P T
↵� , where �PCP

↵� and �P T
↵� are [23]:

�PCP
↵� = P (⌫↵ ! ⌫�) � P (⌫̄↵ ! ⌫̄�) 6= 0, (↵ 6= �)

�P T
↵� = P (⌫↵ ! ⌫�) � P (⌫� ! ⌫↵) 6= 0, (↵ 6= �), (1.4.13)

and that:

�PCP
↵� = �P T

↵� = �16J↵� sin

✓
�m2

12

L

4E

◆
sin

✓
�m2

23

L

4E

◆
sin

✓
�m2

13

L

4E

◆
,

(1.4.14)
where:

J↵� ⌘ =(U↵1

U⇤
↵2

U⇤
�1

U�2

) = ±c
12

s
12

c
23

s
23

c2

13

s
13

sin �, (1.4.15)

with +(-) denoting cyclic (anticyclic) permutation of (↵, �) = (e, µ), (µ, ⌧), (⌧, e).
It should be emphasised that from 1.4.15, for CP (or T ) violation effects to be
present, all the angles must be non-zero, and therefore a three-flavour mixing
is essential. Hence, provided ✓

13

is nonzero10 then � 6= 0, or � 6= ⇡, allows the
possibility of CP violation in the leptonic sector [23].

From equations 1.4.9 and 1.4.12 it can be seen that the observation that
neutrinos can change from one flavour to another implies neutrino mass and
mixing. In addition, it can be seen that the probability of flavour change in
vacuum oscillates with L/E, and this behaviour led neutrino flavour change
to be called “neutrino oscillation”. Finally from equations 1.4.9, 1.4.12 and
the unitarity of the U matrix it follows that the probability that a neutrino

10The Daya Bay ✓13 measurement [27] was published after the conclusion of this thesis.
Nonetheless, the result is mentioned in section 1.4 and table 1.1.

30

If probability of oscillation from flavor α to flavor β is different for neutrinos and 
antineutrinos then there is CP violation in the leptonic sector:

Depends on CP-violation phase, δ

Neutrino Oscillations Theory (2/3)

if δ≠0, or δ≠π there is CP violation in the leptonic sector δ=?



Androula Alekou, androula.alekou@cern.ch, Cornell seminar, 27March2014 ���5

We cannot measure absolute neutrino mass  
eigenstates directly; we can measure (Δmij)2

1.4. NEUTRINO OSCILLATIONS

holds (which is believed to be the case for neutrino oscillations in vacuum):

P (⌫̄↵ ! ⌫̄�) = P (⌫� ! ⌫↵), (1.4.11)

and:

P (⌫̄↵ ! ⌫̄�) = �↵� � 4
X

i>j

<(U⇤
�iU↵iU�jU

⇤
↵j) sin2

 
�m2

ijL

4E

!

� 2
X

i>j

=(U⇤
�iU↵iU�jU

⇤
↵j) sin

 
�m2

ijL

2E

!
.(1.4.12)

Since ⌫̄↵ ! ⌫̄� is the CP -mirror image of ⌫↵ ! ⌫� , then P (⌫↵ ! ⌫�) 6=
P (⌫̄↵ ! ⌫̄�) would imply CP violation. T violation can be tested if the
probabilities of ⌫↵ ! ⌫� are different from the T conjugate process ⌫� ! ⌫↵.
If CPT conservation holds then violation of T is equivalent to that of CP .
Using U (eq. 1.4.3) it can be shown that CP violation in vacuum means that
�PCP

↵� = �P T
↵� , where �PCP

↵� and �P T
↵� are [23]:

�PCP
↵� = P (⌫↵ ! ⌫�) � P (⌫̄↵ ! ⌫̄�) 6= 0, (↵ 6= �)

�P T
↵� = P (⌫↵ ! ⌫�) � P (⌫� ! ⌫↵) 6= 0, (↵ 6= �), (1.4.13)

and that:

�PCP
↵� = �P T

↵� = �16J↵� sin

✓
�m2

12

L

4E

◆
sin

✓
�m2

23

L

4E

◆
sin

✓
�m2

13

L

4E

◆
,

(1.4.14)
where:

J↵� ⌘ =(U↵1

U⇤
↵2

U⇤
�1

U�2

) = ±c
12

s
12

c
23

s
23

c2

13

s
13

sin �, (1.4.15)

with +(-) denoting cyclic (anticyclic) permutation of (↵, �) = (e, µ), (µ, ⌧), (⌧, e).
It should be emphasised that from 1.4.15, for CP (or T ) violation effects to be
present, all the angles must be non-zero, and therefore a three-flavour mixing
is essential. Hence, provided ✓

13

is nonzero10 then � 6= 0, or � 6= ⇡, allows the
possibility of CP violation in the leptonic sector [23].

From equations 1.4.9 and 1.4.12 it can be seen that the observation that
neutrinos can change from one flavour to another implies neutrino mass and
mixing. In addition, it can be seen that the probability of flavour change in
vacuum oscillates with L/E, and this behaviour led neutrino flavour change
to be called “neutrino oscillation”. Finally from equations 1.4.9, 1.4.12 and
the unitarity of the U matrix it follows that the probability that a neutrino

10The Daya Bay ✓13 measurement [27] was published after the conclusion of this thesis.
Nonetheless, the result is mentioned in section 1.4 and table 1.1.

30

If probability of oscillation from flavor α to flavor β is different for neutrinos and 
antineutrinos then there is CP violation in the leptonic sector:

Depends on CP-violation phase, δ

Neutrino Oscillations Theory (2/3)

if δ≠0, or δ≠π there is CP violation in the leptonic sector δ=?



Androula Alekou, androula.alekou@cern.ch, Cornell seminar, 27March2014

ντ

νe

normal hierarchy inverted hierarchy

νμ
We know: Δm221>0, i.e. (m2)2>(m1)2	


We don’t know: Δm223>0 or Δm223<0	



if (m3)2>(m2)2>(m1)2: normal hierarchy	


if (m2)2>(m1)2>(m3)2: inverted hierarchy

���5

We cannot measure absolute neutrino mass  
eigenstates directly; we can measure (Δmij)2

1.4. NEUTRINO OSCILLATIONS

holds (which is believed to be the case for neutrino oscillations in vacuum):

P (⌫̄↵ ! ⌫̄�) = P (⌫� ! ⌫↵), (1.4.11)

and:

P (⌫̄↵ ! ⌫̄�) = �↵� � 4
X

i>j

<(U⇤
�iU↵iU�jU

⇤
↵j) sin2

 
�m2

ijL

4E

!

� 2
X

i>j

=(U⇤
�iU↵iU�jU

⇤
↵j) sin

 
�m2

ijL

2E

!
.(1.4.12)

Since ⌫̄↵ ! ⌫̄� is the CP -mirror image of ⌫↵ ! ⌫� , then P (⌫↵ ! ⌫�) 6=
P (⌫̄↵ ! ⌫̄�) would imply CP violation. T violation can be tested if the
probabilities of ⌫↵ ! ⌫� are different from the T conjugate process ⌫� ! ⌫↵.
If CPT conservation holds then violation of T is equivalent to that of CP .
Using U (eq. 1.4.3) it can be shown that CP violation in vacuum means that
�PCP

↵� = �P T
↵� , where �PCP

↵� and �P T
↵� are [23]:

�PCP
↵� = P (⌫↵ ! ⌫�) � P (⌫̄↵ ! ⌫̄�) 6= 0, (↵ 6= �)

�P T
↵� = P (⌫↵ ! ⌫�) � P (⌫� ! ⌫↵) 6= 0, (↵ 6= �), (1.4.13)

and that:

�PCP
↵� = �P T

↵� = �16J↵� sin

✓
�m2

12

L

4E

◆
sin

✓
�m2

23

L

4E

◆
sin

✓
�m2

13

L

4E

◆
,

(1.4.14)
where:

J↵� ⌘ =(U↵1

U⇤
↵2

U⇤
�1

U�2

) = ±c
12

s
12

c
23

s
23

c2

13

s
13

sin �, (1.4.15)

with +(-) denoting cyclic (anticyclic) permutation of (↵, �) = (e, µ), (µ, ⌧), (⌧, e).
It should be emphasised that from 1.4.15, for CP (or T ) violation effects to be
present, all the angles must be non-zero, and therefore a three-flavour mixing
is essential. Hence, provided ✓

13

is nonzero10 then � 6= 0, or � 6= ⇡, allows the
possibility of CP violation in the leptonic sector [23].

From equations 1.4.9 and 1.4.12 it can be seen that the observation that
neutrinos can change from one flavour to another implies neutrino mass and
mixing. In addition, it can be seen that the probability of flavour change in
vacuum oscillates with L/E, and this behaviour led neutrino flavour change
to be called “neutrino oscillation”. Finally from equations 1.4.9, 1.4.12 and
the unitarity of the U matrix it follows that the probability that a neutrino

10The Daya Bay ✓13 measurement [27] was published after the conclusion of this thesis.
Nonetheless, the result is mentioned in section 1.4 and table 1.1.
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mixing. In addition, it can be seen that the probability of flavour change in
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Full determination and precise measurement of neutrino oscillation parameters possible 
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Beam can be characterized using near detector placed close the production point (O(1 km)), 
and then measured again at a far location placed at adequate distance for neutrinos to have 
undergone flavor change (O(100 km))
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Beam can be characterized using near detector placed close the production point (O(1 km)), 
and then measured again at a far location placed at adequate distance for neutrinos to have 
undergone flavor change (O(100 km))

For full determination and precise measurement of δ and sign of Δm223 we need: 	



>100 kW neutrino beam power	



near-far detector distance: L~O(100 km)	



high energy beam
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Neutrino Factory (NF)
NF will produce the most intense and high purity neutrino beam ever achieved, enabling  the 
neutrino oscillation parameters measurement with an unprecedented precision [1]
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neutrino oscillation parameters measurement with an unprecedented precision [1]
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Muons are produced with very large transverse emittance
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For efficient muon transfer to downstream accelerators, transverse emittance 
needs to decrease (muon cooling)
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Muons are produced with very large transverse emittance

For efficient muon transfer to downstream accelerators, transverse emittance 
needs to decrease (muon cooling)
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For efficient muon transfer to downstream accelerators, transverse emittance 
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For efficient muon transfer to downstream accelerators, transverse emittance 
needs to decrease (muon cooling)

But...muons decay very fast (~2.2 μs at rest) so traditional cooling techniques 
can’t be applied on muons
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Muons are produced with very large transverse emittance

For efficient muon transfer to downstream accelerators, transverse emittance 
needs to decrease (muon cooling)

But...muons decay very fast (~2.2 μs at rest) so traditional cooling techniques 
can’t be applied on muons

So: only viable cooling technique for muons is ionization cooling

Px

x

Emittance, ε: 
area of ellipse

Size of beam 
depends on 
emittance 

Muon

ε1
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x
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muon beam passes through absorbers: momentum is decreased in every direction
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muon beam passes through absorbers: momentum is decreased in every direction
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after the absorbers, beam passes through RF cavities: energy restored only in 
longitudinal direction
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Ionization Cooling (2/2)
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...repeat as 
necessary
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net effect: transverse 
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net effect: transverse 
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MICE
Ionization Cooling is straightforward in theory but has never been 
experimentally demonstrated yet	



Muon Ionisation Cooling Experiment (MICE):	



based at the Rutherford Appleton Laboratory (RAL), UK 	



will be the first experiment to demonstrate muon ionization cooling [2]	



Participated in beam commissioning shifts
In the MICE hall

Working hard in the MICE control room
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MICE
Ionization Cooling is straightforward in theory but has never been 
experimentally demonstrated yet	



Muon Ionisation Cooling Experiment (MICE):	



based at the Rutherford Appleton Laboratory (RAL), UK 	



will be the first experiment to demonstrate muon ionization cooling [2]	



Participated in beam commissioning shifts
In the MICE hall

Working hard in the MICE control room

that’s me :)
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FSIIA
FSIIA*: reference ionization cooling lattice of NF successfully reduces 
transverse emittance

*FSIIA: Feasibility Study IIA
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FSIIA
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...and recent studies indicated 
that high magnetic field at 
end of RF cavities can lead to 
RF breakdown [3]
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B=0 T B=0.1 T B=1 T

RF cavity
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In presence of external magnetic field electrons are focused; more energy 
deposited locally

Edge of RF: most sensitive z-position 
wrt RF breakdown (especially the iris, 
i.e. ~30 cm radius)

Since reference lattice of Neutrino 
Factory, FSIIA, has large B at end 
of RF cavities an alternative lattice 
needs to be found that: 	


a) significantly reduces magnetic 

field at RF cavities	


b) performs equally well in 

cooling efficiency (emittance 
reduction and muon 
transmission)
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Lattice FSIIA BC-I BC-II BC-III BC-IV BC-V BC-VI

Full cell-length (L) [m] 1.5 2.1 2.1 2.1 1.8 1.8 1.8

IC [A/mm 106.667 120 97.2 87.48 132 120 87.48

OC [A/mm N/A 90.24 77.14 66.73 99.26 90 66.73

L/2
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Bz at 35 cm, iris:	


FSIIA~2.5 T	


BCs~0 T
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Emittance reduction: better cooling 
for FSIIA and BC-IV

BC-IV, -V: best transmission (z=90 m)	


At z=70 m, where FSIIA achieves max transmission, 
BCs achieve equal or insignificantly lower transmission 
than FSIIA

Muon transmission: FSIIA~55%, BCs~70-75% 
reach end of lattice

Cooling efficiency
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Feasibility
All BC versions and FSIIA require strong solenoidal magnets which can only be constructed as Superconductors (SC)	



Lorentz force acting on solenoid has a radial and axial component	



Radial component generates hoop stress, σ=JBR (approximation) 	



Typical hoop stress limit for Nb-Ti SC coils: ~200 MPa
J: current density 	


B: magnetic field 	


R: radius
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SC magnets feasibility wrt magnetic 
forces and tolerances was analyzed 
taking into account their quench* limits	



Critical behavior of SC described by 
critical surface: at a particular 
temperature, T and current density, J, 
there is specific field that transforms SC 
to normal-conducting magnet

*quench effect: when a SC transforms to a normal- conductor
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All BC versions and FSIIA require strong solenoidal magnets which can only be constructed as Superconductors (SC)	



Lorentz force acting on solenoid has a radial and axial component	



Radial component generates hoop stress, σ=JBR (approximation) 	



Typical hoop stress limit for Nb-Ti SC coils: ~200 MPa
J: current density 	


B: magnetic field 	


R: radius

SC magnets feasibility wrt magnetic 
forces and tolerances was analyzed 
taking into account their quench* limits	



Critical behavior of SC described by 
critical surface: at a particular 
temperature, T and current density, J, 
there is specific field that transforms SC 
to normal-conducting magnet

*quench effect: when a SC transforms to a normal- conductor
All lattices within limits of SC 

operation

Bmax [T]

4.2 K
1.9 K

���17

Lattice Hoop stress [MPa]
FSIIA 238.9
BC-I 345.3
BC-II 249.9
BC-III 188.2
BC-IV 416.9
BC-V 304
BC-VI 187.4

BC-III and BC-VI below 200 MPa

FSIIA and BC-II just above limit



Androula Alekou, androula.alekou@cern.ch, Cornell seminar, 27March2014

Feasibility
All BC versions and FSIIA require strong solenoidal magnets which can only be constructed as Superconductors (SC)	



Lorentz force acting on solenoid has a radial and axial component	



Radial component generates hoop stress, σ=JBR (approximation) 	



Typical hoop stress limit for Nb-Ti SC coils: ~200 MPa
J: current density 	


B: magnetic field 	


R: radius

SC magnets feasibility wrt magnetic 
forces and tolerances was analyzed 
taking into account their quench* limits	



Critical behavior of SC described by 
critical surface: at a particular 
temperature, T and current density, J, 
there is specific field that transforms SC 
to normal-conducting magnet

*quench effect: when a SC transforms to a normal- conductor
All lattices within limits of SC 

operation

Bmax [T]

4.2 K
1.9 K

���17

Lattice Hoop stress [MPa]
FSIIA 238.9
BC-I 345.3
BC-II 249.9
BC-III 188.2
BC-IV 416.9
BC-V 304
BC-VI 187.4

BC-III and BC-VI below 200 MPa

FSIIA and BC-II just above limit

The Bucked Coils Lattice successfully reduces 
B at positions of RF cavities and also results 

in equal or better cooling efficiency than 
FSIIA (and is within the engineering 

feasibility limits!)	


Main alternative for FSIIA
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Neutrino Oscillations Theory
Neutrino Factory (NF)	



Muon ionization cooling	


Reference NF cooling lattice	


Bucked Coils Lattice 	


Results

LAGUNA-LBNO 	


High Power Proton Synchrotron (HP-PS)	


Orbit Correction	


Collimation 	


Results and future optimizations

Summary and Conclusions
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LAGUNA-LBNO
Pan-European Infrastructure for Large Apparatus Studying Grand Unification, 
Neutrino Astrophysics and Long Baseline Neutrino Oscillations [7]
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LAGUNA-LBNO
Pan-European Infrastructure for Large Apparatus Studying Grand Unification, 
Neutrino Astrophysics and Long Baseline Neutrino Oscillations [7]

Main goal: assess feasibility study of new European research infrastructure able to host a 
deep (~1,5 km) underground detector (mass: ~ 105 – 106 tons) for fundamental research in 
particle and astroparticle physics
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LAGUNA-LBNO
Pan-European Infrastructure for Large Apparatus Studying Grand Unification, 
Neutrino Astrophysics and Long Baseline Neutrino Oscillations [5]

Main goal: assess feasibility study of new European research infrastructure able to host a 
deep (~1,5 km) underground detector (mass: ~ 105 – 106 tons) for fundamental research in 
particle and astroparticle physics

Amongst other things, the LAGUNA observatory will:	


study matter-antimatter asymmetry using neutrinos produced at CERN

LAT: Lepton Accelerators and Test Facilities
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HP-PS
3-fold symmetry	


3 Long Straight Sections (LSS): 	



a) injection/extraction	


b) collimation	


c) RF cavities	



Protons final energy: 50 GeV
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HP-PS: High Power Proton Synchrotron
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Orbit correction (1/2)

In a real machine there are magnet errors and misalignments that lead to 
orbit distortions
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In a real machine there are magnet errors and misalignments that lead to 
orbit distortions
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Orbit correction (1/2)

In a real machine there are magnet errors and misalignments that lead to 
orbit distortions
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Corrector magnets needed to reduce orbit distortion magnitude

x

s

ideal orbit

In ideal machine orbit is just a straight line

x

s

real orbit

Need to check if correctors strengths needed for HP-PS are within limit

x

s

corrected orbit
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Orbit correction (2/2)
To evaluate efficiency and performance 
of orbit correction system: 	


1) distributed random field and 

misalignments errors around ideal 
HP-PS; distorted ideal orbit 	



2) enabled corrector magnets and 
calculated what strength needed to 
reduce amplitude of distorted orbit
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Orbit correction (2/2)
To evaluate efficiency and performance 
of orbit correction system: 	


1) distributed random field and 

misalignments errors around ideal 
HP-PS; distorted ideal orbit 	



2) enabled corrector magnets and 
calculated what strength needed to 
reduce amplitude of distorted orbit

Distribution of max H and V orbit deviation before and after correction

Before Correction After Correction

H

V

Orbit distortions reduced by an order of 
magnitude	


Small orbit deviation for machine operation
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Orbit correction (2/2)
To evaluate efficiency and performance 
of orbit correction system: 	


1) distributed random field and 

misalignments errors around ideal 
HP-PS; distorted ideal orbit 	



2) enabled corrector magnets and 
calculated what strength needed to 
reduce amplitude of distorted orbit

Distribution of max H and V orbit deviation before and after correction

Before Correction After Correction

H

V

Orbit distortions reduced by an order of 
magnitude	


Small orbit deviation for machine operation

Distribution of max H and V kicker strength

Correctors’ strength needed <0.2 mrad 
(~0.05 T for E=50 GeV), i.e. well 

within the limits
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to prevent halo particles from hitting the 
superconducting magnets of the HP-PS ring 
(avoid magnets quenching)
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Collimators
Why do we need collimators?
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to prevent halo particles from hitting the 
superconducting magnets of the HP-PS ring 
(avoid magnets quenching)

to limit equipment irradiation close to the beam

to localize slow losses in controlled way 
in properly equipped locations: 
dedicated LSS (Long Straight Section) 
for transverse collimation

Arc

LSS

Arc LSS
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H/V: Horizontal/Vertical

What type of collimators? 
Primaries/scrapers/scatterers (HP): increase chance that halo 
particles will be absorbed later on by secondary collimators	


Secondaries/absorbers (HS1, HS2): absorb halo particles

There are equal numbers 
of H and V collimators; 
here only H are shown
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H/V: Horizontal/Vertical

What type of collimators? 
Primaries/scrapers/scatterers (HP): increase chance that halo 
particles will be absorbed later on by secondary collimators	


Secondaries/absorbers (HS1, HS2): absorb halo particles

There are equal numbers 
of H and V collimators; 
here only H are shown

lost in aperture

dedicated LSS for collimation

LSS: Long Straight Section
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Optimizing Collimation Efficiency

collimators thickness 
collimators material (e.g. graphite (C), tungsten (W))
jaw opening 

beam halo size (Nσ)/impact parameter (bx)*
beam halo type (H or V) 

*Impact parameter, bx: The transverse offset 
between the impact location and the edge of the jaw

s

x

bx

x’ [mrad]

x [mm]

H halo

Nσ

For different:
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Halo size [σ] 2.5

Halo type H/V

Primary material C/W

Primary thickness changing

Secondary material W

Secondary thickness 1 m

Jaw opening Np_Ns [σ] 2.5_3.0

Change thickness of primary collimators
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**

*In collaboration with 
Daniel Spitzbart

Halo size [σ] 2.5

Halo type H/V

Primary material C/W

Primary thickness changing

Secondary material W

Secondary thickness 1 m

Jaw opening Np_Ns [σ] 2.5_3.0

Change thickness of primary collimators
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**

*In collaboration with 
Daniel Spitzbart

Halo size [σ] 2.5

Halo type H/V

Primary material C/W

Primary thickness changing

Secondary material W

Secondary thickness 1 m

Jaw opening Np_Ns [σ] 2.5_3.0

Material Halo Thickness [mm] λ

C H 10 5.52
C V 13 5.2
W H 0.21 6.92
W V 0.6 8.08

λ: figure of merit: cleaning speed/losses

Change thickness of primary collimators
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**

*In collaboration with 
Daniel Spitzbart

Halo size [σ] 2.5

Halo type H/V

Primary material C/W
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Secondary material W

Secondary thickness 1 m

Jaw opening Np_Ns [σ] 2.5_3.0

Material Halo Thickness [mm] λ

C H 10 5.52
C V 13 5.2
W H 0.21 6.92
W V 0.6 8.08

λ: figure of merit: cleaning speed/losses

Change thickness of primary collimators

Too thin
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**

*In collaboration with 
Daniel Spitzbart

Halo size [σ] 2.5

Halo type H/V

Primary material C/W

Primary thickness changing

Secondary material W

Secondary thickness 1 m

Jaw opening Np_Ns [σ] 2.5_3.0

Material Halo Thickness [mm] λ

C H 10 5.52
C V 13 5.2
W H 0.21 6.92
W V 0.6 8.08

λ: figure of merit: cleaning speed/losses

Change thickness of primary collimators

Too thin

Graphite primaries: better λ for larger thickness range ���33
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Halo size [σ] changing

Halo type H/V

Primary material C/W

Primary thickness* constant

Secondary material W

Secondary thickness 1 m

Jaw opening Np_Ns [σ] 2.5_3.0
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Change size of input beam

*Thickness of primaries: optimum, shown in previous slide
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Halo size [σ] changing

Halo type H/V

Primary material C/W

Primary thickness* constant

Secondary material W

Secondary thickness 1 m

Jaw opening Np_Ns [σ] 2.5_3.0
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Change size of input beam
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0.
1
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Impact Parameter @sD

La
m
bd
a

Lambda vs Impact Parameter

W, V halo
C, V halo
W, H halo
C, H halo

[m]

λ

λ: figure of merit: cleaning speed/losses

*Thickness of primaries: optimum, shown in previous slide
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Similar behavior between C and W for different impact parameters	


H halo better than V halo

Halo size [σ] changing

Halo type H/V

Primary material C/W

Primary thickness* constant

Secondary material W

Secondary thickness 1 m

Jaw opening Np_Ns [σ] 2.5_3.0
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Change size of input beam
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Lambda vs Impact Parameter
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λ: figure of merit: cleaning speed/losses

*Thickness of primaries: optimum, shown in previous slide
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no extra 
collimator

320 340 360 380 400 420 440 460
s-pos @mD0

10

20

30

40
Lost particles

Losses

Adding more collimators
Halo size [σ] 2.5

Halo type Η

Primary material C

Primary thickness [m] 0.01

Secondary material W

Secondary thickness [m] 1

Jaw opening Np_Ns [σ] 2.5_3.0
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H collimator	


V collimatorLSS
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no extra 
collimator
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s-pos @mD0
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Lost particles
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Adding more collimators
Halo size [σ] 2.5

Halo type Η

Primary material C

Primary thickness [m] 0.01

Secondary material W

Secondary thickness [m] 1

Jaw opening Np_Ns [σ] 2.5_3.0
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H collimator	


V collimator

Assuming 1% halo and injection power 
(500 kW) then 20 lost particles within 10 m 
correspond to 5 W/m > 1 W/m limit	


Necessary to further reduce losses!

Power deposition

LSS
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Assuming 1% halo and injection power 
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no extra 
collimator
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s-pos @mD0
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Lost particles

Losses

Adding more collimators
Halo size [σ] 2.5

Halo type Η

Primary material C

Primary thickness [m] 0.01

Secondary material W

Secondary thickness [m] 1

Jaw opening Np_Ns [σ] 2.5_3.0
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H collimator	


V collimator

Assuming 1% halo and injection power 
(500 kW) then 20 lost particles within 10 m 
correspond to 5 W/m > 1 W/m limit	


Necessary to further reduce losses!

Power deposition

LSS

Additional collimator has a positive impact

Parameter without extra with extra

Inefficiency [%] 0.13 0.08
Cleaning Speed [%] 0.59 0.59

λ 4.68 7.17
absorptions 1017 1052

losses 100 63
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no extra 
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s-pos @mD0

10

20

30

40
Lost particles

Losses

Adding more collimators
Halo size [σ] 2.5

Halo type Η

Primary material C

Primary thickness [m] 0.01

Secondary material W

Secondary thickness [m] 1

Jaw opening Np_Ns [σ] 2.5_3.0
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H collimator	


V collimator

Assuming 1% halo and injection power 
(500 kW) then 20 lost particles within 10 m 
correspond to 5 W/m > 1 W/m limit	


Necessary to further reduce losses!

Power deposition

LSS

Additional collimator has a positive impact

Parameter without extra with extra

Inefficiency [%] 0.13 0.08
Cleaning Speed [%] 0.59 0.59

λ 4.68 7.17
absorptions 1017 1052

losses 100 63
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Moving collimators (1/3)

LSS

LSS: Long Straight Section
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Moving collimators (1/3)

Long Straight Section (LSS) just long 
enough to fit collimators at optimum phase 
advance positions*

LSS

*Remember: optimum s-location of  secondary collimators is 
related to phase-advance wrt primary collimator: 

μs1=acos(Np/Ns), μs2=π-μs1	



for Np=2.5σ and Ns=3.0σ: μs1~34o and  μs2~146o	



μLSS:152o (H)

LSS: Long Straight Section
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Before moving the primaries

Losses in aperture (x-, y-trajectories)
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s-position of x/y losses

Moving collimators (2/3)
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Particles absorbed in collimators
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Before moving primaries

*Remember: input halo in this case was H
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Moving collimators (3/3)
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4-VS1	
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6-VS2	


7-H90	


8-V90
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Particles absorbed in collimators

���38

Before moving primaries

HP

*Remember: input halo in this case was H
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Particles absorbed in collimators
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Before moving primaries
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Absorptions from HS1* increase ~x3
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Further optimisations  
Goal: achieve <1 W/m power deposition
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Increase thickness of secondary collimators
Change size of jaw opening

beam halo size/impact parameter

beam halo type (H or V) 

For different:

Add more collimators
Change location of secondary collimators (taking into account quadrupoles’ 
location)
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Neutrino Oscillations Theory
Neutrino Factory (NF)	



Muon ionization cooling	


Reference NF cooling lattice	


Bucked Coils Lattice 	


Results

LAGUNA-LBNO 	


High Power Proton Synchrotron (HP-PS)	


Orbit Correction	


Collimation 	


Results and future optimizations

Summary and Conclusions
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Thank you very much!	


Any questions?

���44



Androula Alekou, androula.alekou@cern.ch, Cornell seminar, 27March2014

Extra Slides

���45



Androula Alekou, androula.alekou@cern.ch, Cornell seminar, 27March2014

sij=sinθij	


cij=cosθij	


mixing angles: θ12, θ23, θ13	


δ: CP-violation phase

1.4. NEUTRINO OSCILLATIONS

holds (which is believed to be the case for neutrino oscillations in vacuum):

P (⌫̄↵ ! ⌫̄�) = P (⌫� ! ⌫↵), (1.4.11)
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Since ⌫̄↵ ! ⌫̄� is the CP -mirror image of ⌫↵ ! ⌫� , then P (⌫↵ ! ⌫�) 6=
P (⌫̄↵ ! ⌫̄�) would imply CP violation. T violation can be tested if the
probabilities of ⌫↵ ! ⌫� are different from the T conjugate process ⌫� ! ⌫↵.
If CPT conservation holds then violation of T is equivalent to that of CP .
Using U (eq. 1.4.3) it can be shown that CP violation in vacuum means that
�PCP

↵� = �P T
↵� , where �PCP

↵� and �P T
↵� are [23]:

�PCP
↵� = P (⌫↵ ! ⌫�) � P (⌫̄↵ ! ⌫̄�) 6= 0, (↵ 6= �)

�P T
↵� = P (⌫↵ ! ⌫�) � P (⌫� ! ⌫↵) 6= 0, (↵ 6= �), (1.4.13)

and that:
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where:
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with +(-) denoting cyclic (anticyclic) permutation of (↵, �) = (e, µ), (µ, ⌧), (⌧, e).
It should be emphasised that from 1.4.15, for CP (or T ) violation effects to be
present, all the angles must be non-zero, and therefore a three-flavour mixing
is essential. Hence, provided ✓

13

is nonzero10 then � 6= 0, or � 6= ⇡, allows the
possibility of CP violation in the leptonic sector [23].

From equations 1.4.9 and 1.4.12 it can be seen that the observation that
neutrinos can change from one flavour to another implies neutrino mass and
mixing. In addition, it can be seen that the probability of flavour change in
vacuum oscillates with L/E, and this behaviour led neutrino flavour change
to be called “neutrino oscillation”. Finally from equations 1.4.9, 1.4.12 and
the unitarity of the U matrix it follows that the probability that a neutrino

10The Daya Bay ✓13 measurement [27] was published after the conclusion of this thesis.
Nonetheless, the result is mentioned in section 1.4 and table 1.1.

30

1.4. NEUTRINO OSCILLATIONS

holds (which is believed to be the case for neutrino oscillations in vacuum):

P (⌫̄↵ ! ⌫̄�) = P (⌫� ! ⌫↵), (1.4.11)

and:

P (⌫̄↵ ! ⌫̄�) = �↵� � 4
X

i>j

<(U⇤
�iU↵iU�jU

⇤
↵j) sin2

 
�m2

ijL

4E

!

� 2
X

i>j

=(U⇤
�iU↵iU�jU

⇤
↵j) sin

 
�m2

ijL

2E

!
.(1.4.12)

Since ⌫̄↵ ! ⌫̄� is the CP -mirror image of ⌫↵ ! ⌫� , then P (⌫↵ ! ⌫�) 6=
P (⌫̄↵ ! ⌫̄�) would imply CP violation. T violation can be tested if the
probabilities of ⌫↵ ! ⌫� are different from the T conjugate process ⌫� ! ⌫↵.
If CPT conservation holds then violation of T is equivalent to that of CP .
Using U (eq. 1.4.3) it can be shown that CP violation in vacuum means that
�PCP

↵� = �P T
↵� , where �PCP

↵� and �P T
↵� are [23]:

�PCP
↵� = P (⌫↵ ! ⌫�) � P (⌫̄↵ ! ⌫̄�) 6= 0, (↵ 6= �)

�P T
↵� = P (⌫↵ ! ⌫�) � P (⌫� ! ⌫↵) 6= 0, (↵ 6= �), (1.4.13)

and that:

�PCP
↵� = �P T

↵� = �16J↵� sin

✓
�m2

12

L

4E

◆
sin

✓
�m2

23

L

4E

◆
sin

✓
�m2

13

L

4E

◆
,

(1.4.14)
where:

J↵� ⌘ =(U↵1

U⇤
↵2

U⇤
�1

U�2

) = ±c
12

s
12

c
23

s
23

c2

13

s
13

sin �, (1.4.15)

with +(-) denoting cyclic (anticyclic) permutation of (↵, �) = (e, µ), (µ, ⌧), (⌧, e).
It should be emphasised that from 1.4.15, for CP (or T ) violation effects to be
present, all the angles must be non-zero, and therefore a three-flavour mixing
is essential. Hence, provided ✓

13

is nonzero10 then � 6= 0, or � 6= ⇡, allows the
possibility of CP violation in the leptonic sector [23].

From equations 1.4.9 and 1.4.12 it can be seen that the observation that
neutrinos can change from one flavour to another implies neutrino mass and
mixing. In addition, it can be seen that the probability of flavour change in
vacuum oscillates with L/E, and this behaviour led neutrino flavour change
to be called “neutrino oscillation”. Finally from equations 1.4.9, 1.4.12 and
the unitarity of the U matrix it follows that the probability that a neutrino

10The Daya Bay ✓13 measurement [27] was published after the conclusion of this thesis.
Nonetheless, the result is mentioned in section 1.4 and table 1.1.

30

Uai: PMNS mixing matrix

≠0

≠0 ≠0≠0
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RF breakdown: worse at high gradient locations: 
electrostatic forces will pull the molten metal out and 
away from the surface. As the metal leaves the now 
damaged location, it will be exposed to field emitted 
electrons from the damaged area, and will be 
vaporised and ionised. This will lead to a local 
plasma and a subsequent breakdown	



Outer	


Inner	


Both

B z
 [T
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**

FSIIA>4 T	



BC-I, BC-II, -III, -VI~x3.5-5 lower  
BC-IV, -V~x2-3 lower
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G4MICE	


1,000 muons	


Gaussian P distribution 
centered at 232 MeV/c	


10 mm transverse emittance	


0.07 ns longitudinal emittance	


Muon decays, MCS, 
straggling: ON
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LAGUNA observatory will:	


search for proton decay: direct evidence for unification of elementary forces	


allow detection of neutrinos from distant galactic supernovae: understand their 
explosion mechanism	


perform precision study of terrestrial, solar and atmospheric neutrinos	


study matter-antimatter asymmetry using neutrinos produced at CERN

MEMPHYS: MEgatonMassPHYSics	


GLACIER (Giant Liquid Argon Charge Imaging ExpeRiment)	


LENA (Low Energy Neutrino Astronomy)	


LAr: Liquid Argon	


LSc: Liquid scintillator

MEMPHYS: Water Cherenkov; 
1,700 m deep; 500 kt

GLACIER: LAr; 1,424 m deep; 2x50 kt	


LENA: LSc; 1,500 m deep; 50 kt

Detector options:

Sixtrack tracking 
Proton scattering in various collimator materials, 

including:  
□   Multiple Coulomb scattering,  
□   Ionization of the collimator material,  
□   Elastic proton-proton (pp) scattering, and 
inelastic diffractive pp scattering (single 
diffractive scattering),  
□   Inelastic proton-nucleon scattering,  
□   Elastic and inelastic proton-nucleus scattering,  
□   Rutherford scattering.

Phase advance before 
moving collimators: 150 H 
and 200 V	


After moving collimators: 
145 H and 185 V
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Accelerator complex layout at CERN

HP-PS parameters

@ Q1               %le         13.23595626!
@ Q2               %le         7.208353731!
@ DQ1              %le    -0.0004728116762!
@ DQ2              %le     -0.001804231898!

Tune and working point of HP-PS
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W: less absorptions in primaries (for all beam sizes)

HP VP HP VPHP: Horizontal Primary	


VP: Vertical Primary
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Impact Parameter @sD

l

l vs Impact Parameter

W, V, 3.0_3.5
W, H, 3.0_3.5
W, V, 2.5_2.8
W, H, 2.5_2.8
W, V, 2.5_3.0
W, H, 2.5_3.0Np_Ns Halo <λ>

2.5_3.0 H 5.48
2.5_3.0 V 3.86
2.5_2.8 H 6.24
2.5_2.8 V 4.09
3.0_3.5 H 6.5
3.0_3.5 V 5.34

λ: figure of merit	


Np: primary aperture	


Ns=Ns1=Ns2=N90: secondary aperture

Absorptions in primary collimators

Halo size changing

Halo type H/V

Primary material W

Primary thickness constant

Secondary material W

Secondary thickness 1 m

Jaw opening Np_Ns [σ] changing

1: HP	


2: HS1	


3: VP	


4: VS1	


5: HS2	


6: VS2	


7: H90	


8: V90
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