Neutrino-nucleus cross section measurements at $\mbox{MINER} \nu \mbox{A}$

Philip Rodrigues

April 18, 2014

1

Outline

Why neutrino oscillation measurements need precise understanding of neutrino-nucleus interactions, and how MINER ν A is contributing

Oscillations and cross sections

Neutrino oscillation experiments need precise cross sections

Oscillation probability:

$$P(\nu_{\mu} \rightarrow \nu_{\mu}) = 1 - \sin^2 2\theta \sin^2 \left(\frac{\Delta m^2 L}{E_{\nu}}\right)$$

(Nature, Experimental)

Known knowns and known unknowns

$$\left(\begin{array}{c} \nu_{\rm e} \\ \nu_{\mu} \\ \nu_{\tau} \end{array}\right) =$$

$$\left(\begin{array}{c}\nu_1\\\nu_2\\\nu_3\end{array}\right)$$

Known knowns and known unknowns

$$\begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix}$$

- $\blacktriangleright \ s_{ij} = \sin \theta_{ij}, \ c_{ij} = \cos \theta_{ij}$
- ► Measured, Unmeasured

Known knowns and known unknowns

$$\begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix}$$

- $\blacktriangleright \ s_{ij} = \sin \theta_{ij}, \ c_{ij} = \cos \theta_{ij}$
- Measured, Unmeasured

Measuring δ , hierarchy

• $P(\nu_{\mu} \rightarrow \nu_{e})$, $P(\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e})$ depend on δ , hierarchy

Source: HyperK LOI, arXiv:1109.3262. NH. $\sin^2 2\theta_{13} = 0.1$

- Need precise signal and background predictions
- Infer E_{ν} from final state particles

Knowing the known knowns better

- $P(\nu_{\mu} \rightarrow \nu_{\mu})$ depends on θ_{23} , Δm_{32}^2
- Eg, T2K ν_{μ} spectrum at SuperK:

Model neutrino scattering on free nucleons

Add effects due to nucleon bound in nucleus

Model reinteractions of hadrons exiting nucleus

Model reinteractions of hadrons exiting nucleus

 \blacktriangleright Repeat for all contributing processes for ${\it E}_{\nu} \sim 1\,{\rm GeV}$

Do we understand νA cross sections?

Universal model, many orders of magnitude

Do we understand νA cross sections?

Wide variation in model predictions

Data from PRD 83, 052007 (2011)

The MINER ν A experiment

MINER ν A: What and why?

- Dedicated neutrino-nucleus scattering experiment in the NuMI beamline
- Measuring exclusive and inclusive ν , $\bar{\nu}$ cross sections on a range of nuclei

MINER ν A detector

$\mathsf{MINER}\nu\mathsf{A}\ \mathsf{detector}$

The NuMI neutrino beam

Figure: R. Zwaska

- ν and $\bar{\nu}$ modes
- Tunable energy spectrum
- MINERvA LE run complete:
 - ▶ 3.98×10^{20} POT ν mode ($O(10^6)$ ν_{μ} CC evts on plastic)
 - 1.7×10^{20} POT $\bar{\nu}$ mode
- Currently running in ME configuration

Flux Modelling

Uncertainties on ofFe

- Tune hadron production from NA49 data
- Uncertainties still $\sim 15\%$
- Multi-prong approach planned for $\lesssim 10\%$
 - For now, study distributions weakly dependent on flux

Charged-current quasielastic scattering in MINER ν A

Charged-current quasielastic scattering

Simplest CC νN process; Two-body kinematics allow E_{ν} reco from ℓ^{\pm}

Charged-current quasielastic measurements

• Expressed in terms of $Q^2 = -(4$ -momentum transferred to nucleon)²:

▶ $d\sigma/dQ^2$ shape understood in neutrino-nucleon scattering

Charged-current quasielastic measurements

• Expressed in terms of $Q^2 = -(4$ -momentum transferred to nucleon)²:

• $d\sigma/dQ^2$ shape understood in neutrino-nucleon scattering

Nuclear model: independent nucleons in Fermi gas missing something?

Charged-current quasielastic measurements

• Expressed in terms of $Q^2 = -(4$ -momentum transferred to nucleon)²:

Nuclear model: independent nucleons in Fermi gas missing something?

Implication for oscillation experiments

Implication for oscillation experiments

MINER ν A CCQE analysis

- Aims:
 - 1. Make shape-only comparisons of $\frac{\mathrm{d}\sigma}{\mathrm{d}Q^2}$ to nominal model and models with multinucleon effects
 - 2. Look at energy near the interaction vertex for evidence of multinucleon emission
- In both ν and $\bar{\nu}$ data

CCQE selection

CCQE selection

- Fiducial volume
- MINOS matched track
- ν : \leq 2 isolated showers
- $\bar{\nu}$: ≤ 1 isolated showers

CCQE selection

- Require low non-vertex recoil energy
- ▶ ν: r < 300 mm</p>
- ▶ $\bar{\nu}$: $r < 100 \, \mathrm{mm}$

Recoil energy cut

Final event selections

- Constrained background using fit to E_{recoil} distribution
- Then subtract BG, unfold, efficiency correct to get σ
- But first, systematics...

Systematics

Flux

- Tune to NA49 data
- Remaining 10–15% uncertainties
- Cancel in shape analysis

Systematics

Flux

- Tune to NA49 data
- Remaining 10–15% uncertainties
- Cancel in shape analysis
- Muon energy scale
 - Muon p scale known to 2–3%

Systematics

- ► Flux
 - Tune to NA49 data
 - Remaining 10–15% uncertainties
 - Cancel in shape analysis
- Muon energy scale
 - Muon p scale known to 2–3%
- Recoil energy reconstruction
 - Hadronic energy scale from testbeam
 - Hadron reinteractions from external data

Systematics

Flux

- Tune to NA49 data
- Remaining 10–15% uncertainties
- Cancel in shape analysis
- Muon energy scale
 - Muon p scale known to 2–3%
- Recoil energy reconstruction
 - Hadronic energy scale from testbeam
 - Hadron reinteractions from external data
- Interaction modelling
 - 10s of % uncertainties on primary interaction, FSI
 - Enter via efficiency correction, background shape

Model parameter	Uncertainty (%)
CC resonance prod.	20
Δ axial mass M_A^{res}	20
Non-resonant π prod.	50
FSI:	
π , N mean free path	20
π absorption	30

Differential cross section

Differential cross section

Differential cross section

Model comparisons

- Area normalize, then take ratio to GENIE
- Models:

GENIE _____Quasi-independent nucleons in a mean field

 $M_A = 1.35 \frac{Modified nucleon form factor from MiniBooNE data}{Phys. Rev. D81, 092005 (2010)}$

TEM -----Empirical multinucleon effect based on *eA* data Eur. Phys. J. C 71:1726 (2011)

Vertex energy

- Multinucleon emission expected in interactions with correlated nucleons
 - Look for excess energy in the vertex region excluded from recoil cut

- Harder spectrum in u_{μ} mode data than in MC, but not in $\bar{\nu}_{\mu}$ mode

Vertex energy

- ► Assume an extra proton
- ▶ Use spatial distribution of energy to infer KE distribution of extra proton

Vertex energy

- Assume an extra proton
- Use spatial distribution of energy to infer KE distribution of extra proton

- Extra proton preferred in (25 \pm 9)% of u_{μ} CCQE events
- No increase preferred in $\bar{\nu}_{\mu}$ mode

CCQE conclusions

- \blacktriangleright Shape-only comparison of $\frac{\mathrm{d}\sigma}{\mathrm{d}Q^2}$ in CCQE $\nu_\mu/\bar{\nu}_\mu$ scattering
- Disagreement with model used in generators (and thus osc expts)
 - Better agreement with TEM model
- Disagreement in vertex energy in ν mode.
 - Consistent with np initial state correlated pairs
- Next steps:
 - Increased statistics
 - Michel veto

$$= \frac{d^2 \sigma}{d p_{\mu} d \cos \theta_{\mu}}$$

Charged-current π^{\pm} production

Neutrino-induced charged pion production

• Major background in oscillation experiments (T2K ν_{μ} again):

▶ But MiniBooNE data on CH₂ suggest shortcomings in models

MINER ν A charged pion production

- \blacktriangleright Events with single charged pion exiting nucleus, $\mathit{W} < 1.4\,\mathrm{GeV}$
- Compare pion kinematics with available models

MINER ν A charged pion production

- \blacktriangleright Events with single charged pion exiting nucleus, $\mathit{W} < 1.4\,\mathrm{GeV}$
- Compare pion kinematics with available models

• Select *stopping* pions using dE/dx and *e* from $\pi \rightarrow \mu \rightarrow e$

MINER ν A charged pion production: results

Shape-only comparisons to generator and model predictions

- Shape measurement stats-limited
- Main systematics: hadronic energy response, neutrino interaction models

Recap

- MINERvA is constraining cross sections needed for oscillation experiments:
 - CCQE evidence for nuclear effects not currently simulated

 $\mathrm{CC}\pi^{\pm}$ consistency with current model

And more:

- ► CC inclusive ratios on different nuclei arXiv:1403.2103
- ▶ vµ-e scattering http://theory.fnal.gov/jetp/talks/WC_talk_J.Park.ppt
- ν , $\bar{\nu}$ coherent pion production
- CCQE proton kinematics
- CC π^0 production
- ν_e CCQE
- Kaon production

Backup slides

Because it's there

- "Because it's there!"
- Not well-known at $E_
 u \sim 1\,{
 m GeV}$
 - Few measurements with few events
 - Large syst uncertainties, esp flux
- Weak-only probe of nucleon, nuclear dynamics
 - Understand strongly-coupled systems

 ν cross sections around 1 GeV

- Charged- and neutral-current processes (CC, NC)
- Interaction with nucleon most significant
- $Q^2 = (4$ -momentum transferred to nucleon)²

ν cross sections around 1 GeV

- Charged- and neutral-current processes (CC, NC)
- Interaction with nucleon most significant
- ► Q² = (4-momentum transferred to nucleon)²
- Nucleon bound inside nucleus
 - "Initial state interactions": Binding energy, Pauli blocking, Initial momentum
 - Final state interactions (FSI) change hadron types and momenta

Puzzles

Neutrino mixing unknowns

- Neutrino oscillation knowns:
 - Three mixing angles θ_{12} , θ_{23} , θ_{13}
 - Mass splittings Δm_{12}^2 , $|\Delta m_{23}^2|$

Neutrino mixing unknowns

- Neutrino oscillation knowns:
 - Three mixing angles θ_{12} , θ_{23} , θ_{13}
 - Mass splittings Δm_{12}^2 , $|\Delta m_{23}^2|$
- Unknowns:
 - CP-violating phase δ
 - ► Sign of ∆m²₂₃

Neutrino mixing unknowns

PMNS matrix relates mass and flavour eigenstates:

$$\begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13} \exp(-i\delta) \\ 0 & 1 & 0 \\ -s_{13} \exp(i\delta) & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix}$$

$$\bullet \ s_{ij} = \sin \theta_{ij}, \ c_{ij} = \cos \theta_{ij}$$

- Measured, Unmeasured
- Also unknown: ordering of mass eigenstates:

Cross sections: What do we know so far?

G. Zeller and J. Formaggio, Rev. Mod. Phys. 84, 1307-1341 (2012)

- Not precisely known for $E_{\nu} \sim 1 \, {
 m GeV}$
- Multiple contributing processes

Cross sections: What do we know so far?

G. Zeller and J. Formaggio, Rev. Mod. Phys. 84, 1307-1341 (2012)

- Not precisely known for $E_{
 u} \sim 1 \, \text{GeV}$
- Multiple contributing processes

Cross sections: What do we know so far?

G. Zeller and J. Formaggio, Rev. Mod. Phys. 84, 1307-1341 (2012)

- Not precisely known for $E_{
 u} \sim 1 \, \text{GeV}$
- Multiple contributing processes
- In νA , observe $\sigma_{\nu N} \otimes \sigma_A \otimes \sigma_{FSI}$

Where do cross sections come in?

$$\textit{N}_{\rm FD} = \Phi_{\nu_{\alpha}} \times \textit{P}_{\nu_{\alpha} \rightarrow \nu_{\beta}}(\textit{E}_{\nu}) \times \sigma_{\nu_{\beta}}(\textit{E}_{\nu}) \times \textit{R}(\textit{E}_{\nu},\textit{E}_{\rm visible}) + \textit{N}_{\rm bg}$$

- $E_{\nu} \leftrightarrow E_{\text{visible}}$ from cross section MC
 - Čerenkov: Lepton kinematics + CCQE hypothesis (T2K, MiniBooNE)
 - Sampling calorimeters: $E_{lepton} + E_{had}$ (MINOS, No ν a)
- And all the same issues for backgrounds
- Near detectors partially cancel some of these effects, but still:

Precision ν oscillation experiments need precision ν -nucleus cross sections

MINER ν A reconstruction

 $_$ Today's analyses require μ track matched to MINOS

Calibration

 \blacktriangleright Plentiful supply of μ from ν interactions in rock

Calibration

- Plentiful supply of μ from ν interactions in rock
- ▶ Set energy scale. Cross check with Michel electrons $(\mu^- \rightarrow e^- \bar{\nu}_e \nu_\mu)$
- Also used to measure pixel-to-pixel PMT crosstalk

Charged-current quasielastic scattering on nuclei

Phys. Rev. D81:092005 (2010), my legend

- ▶ Free nucleon prediction based on H, D₂ data
- Model nucleus as independent nucleons in a Fermi gas
- Something must be missing...

CCQE analysis: Constraining non-QE backgrounds

CCQE analysis: Recoil energy cut

Neutrino mode

Model comparisons, linear abscissa

- Area normalize, then take ratio to GENIE
- Models:

GENIE _____Quasi-independent nucleons in a mean field

 $M_A = 1.35 \frac{Modified nucleon form factor from MiniBooNE data}{P_{\text{Phys. Rev. D81, 092005 (2010)}}$

TEM -----Empirical multinucleon effect based on *eA* data Eur. Phys. J. C 71:1726 (2011)
Vertex energy fit distributions

Vertex energy fit distributions, zoomed y

Annulus energy vs proton KE

Vertex energy, $\bar{\nu}$ mode

- Assume an extra proton
- Use spatial distribution of energy to infer KE distribution of extra proton

• No increase preferred in $\bar{\nu}_{\mu}$ mode

3. Recoil Energy Scale

Muons Recoil Calibrated detector *very stable* at high and low energy scales

Electron dE/dx

David Schmitz, UChicago

Fermilab Joint Experimental-Theoretical Seminar - May 10, 2013

Muon Tracking Efficiency

Muon Tracking Efficiency

MINER ν A charged pion production: reco π distributions

MINER ν A charged pion production: reco μ distributions

MINER ν A charged pion production: reco Q^2 distribution

MINER ν A charged pion production: BG subtraction

- Constrain $W > 1.4 \,\text{GeV}$ background from sideband fit
- Fit MC templates for relative normalizations

MINER ν A charged pion production: BG scales

Errors stat+syst. Dominant uncertainty is detector energy response

MINER ν A charged pion production: Systematics

Shape + Normalization

MINER ν A charged pion production: Systematics

Shape-only errors

CC inclusive nuclear target ratios

CC inclusive ratios

G. Zeller and J. Formaggio, Rev. Mod. Phys. 84, 1307-1341 (2012)

$$Q^2=2E_
u(E_\mu-p_\mu\cos heta_\mu)$$
 $u=E_
u-E_\mu$ $x=rac{Q^2}{2M_\mu}$

CC inclusive ratios

- "EMC effect" well-studied but not well-understood
- What can neutrino data say?
 - Sensitive to a different combination of structure functions F₁, F₂, xF₃

SLAC E139: PRD 49 4348 (1994)

CC inclusive ratios in $\text{MINER}\nu\text{A}$

Figure: B. Tice

- ▶ We have nuclear targets. But not D₂...
- Strategy:
 - 1. Select CC u_{μ} events in nuclear targets and scintillator (CH)
 - 2. Construct ratios $\langle \textit{nucleus} \rangle/\text{CH}$ in \textit{E}_{ν} and x

Selection

1. MINOS-matched track

- 2. Vertex in nuclear target or scintillator plane immediately downstream
- Only significant background: events on plastic
- ▶ Reconstruct E_{μ} , θ_{μ} , E_{had} to calculate E_{ν} , Q^2 , x

Plastic background subtraction

 \blacktriangleright Use data CC ν_{μ} events in scintillator to predict background

- + Geometric acceptance correction from muon gun
- + Efficiency correction as fn of E_{had} from simulation

Systematics

- Evaluated in similar way to CCQE analysis
- Most significant new one is plastic background

Results in E_{ν}

Neutrino Energy (GeV)

Results in x

70

Reconstructed x

• • • • • • • • • •

Conclusions and next steps

- Suggestions of unmodelled nuclear effects in x but not E_{ν}
- Analysis with future data
 - 10× more stats
 - Higher $E_{\nu} \Rightarrow$ More DIS
 - Reach to lower x

Predict spectrum of background using:

- Unique correction for each nuclear target
- Errors are MC stat. and an additional correlated error
 - Additional uncertainty scale determined by adding uncorrelated uncertainty on top of stat. until $\chi^2/dof=1$

Reconstruction Efficiency

Additional uncertainty applied as correlated event-to-event and target-to-target

October 11, 2013

Fermilab Seminar - MINERvA - Brian G. Tice

37

October 11, 2013 Fermilab Seminar - MINERvA - Brian G. Tice

Reconstruction Efficiency $\left(\frac{d\sigma}{dx}\right)_i = \frac{\sum_j U_{ij}(d_j - b_j)}{\epsilon_i (\Phi T) \Delta x_i}$

Do our data prefer a model? Using MINERvA bins and acceptance

Comparison of predicted for cross section ratio

• Charged lepton data suggest we should see < 1% effect

Recoil Energy Resolution

October 11, 2013

Fermilab Seminar - MINERvA - Brian G. Tice