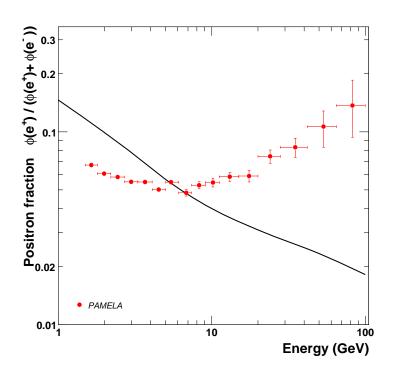
Breaking the Dark Force

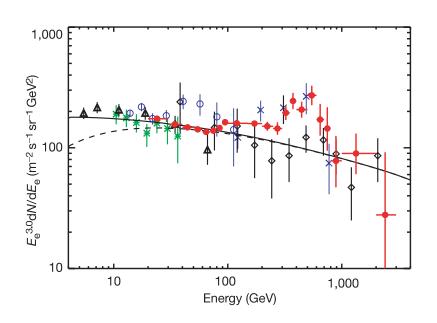
based on arXiv: 0902.3271

work done with Raman Sundrum

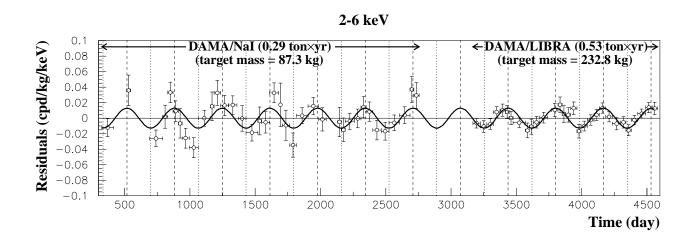

Andrey Katz

University of Maryland

Outline


- 1. Motivation
 - Experimental evidence
 - Unified explanation and GeV-scale force
- 2. Model of DM:
 - framework
 - DM structure
 - Dark sector masses and structure
- 3. Phenomenology: signals and constraints
- 4. Conclusions

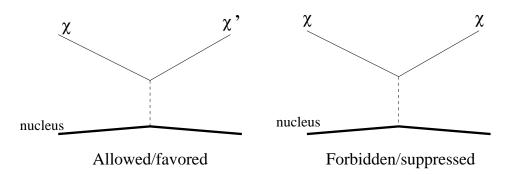
Motivation I: PAMELA


Satellite experiment; e^+e^- in cosmic rays Anomalous positron flux

Motivation II: ATIC

Balloon experiment; overall e^+e^- flux PAMELA & ATIC from DM \Rightarrow annihilation cross section too big

Motivation III: DAMA/LIBRA



Direct detection Signal is incompatible w/ other direct detection experiments inelastic scattering? preferred $\Delta m \sim 100~{\rm keV}$

iDM paradigm

Tucker-Smith and Weiner

DAMA vs. other experiments

$$\beta_{min} = \sqrt{\frac{1}{2m_N E_R}} \left(\frac{m_N E_R}{\mu} + \Delta m \right)$$

- increase $m_N \Rightarrow \beta_{min}$ falls
- $A_I = 127$ (DAMA) vs. $A_{Ge} = 73$ (CDMS)
- amplifies signal when orbiting the Sun

Motivation IV: INTEGRAL

- ullet measures γ -rays
- 511 keV line from the center of the Galaxy
- if due to DM annihilation: requires enhanced annihilation cross-section
- excited DM (XDM)

$$\chi\chi \to \chi'\chi' \to \chi\chi e^+e^-e^+e^-$$

non relativistic electrons \Rightarrow positronium annihilation

Unified explanation

Arkani-Hamed, Finkbeiner, Slatyer, Weiner

- weak scale DM -> charged under GeV scale force
- large annihilation cross section from Sommerfeld enhancement
- ATIC + PAMELA: $M_{DM} \sim 700 800 \text{ GeV}$
- iDM/XDM splittings: induced radiatively ? higher-dim. operators

Unified explanation - 2

Dark force - Abelian or non-Abelian? Interaction w/ the SM: kinetic mixing

$$\mathcal{L} \supset \epsilon F_d^{\mu\nu} F_{\mu\nu}$$
:

- $\epsilon \lesssim 10^{-3} (g-2)_{\mu}$
- $\epsilon \gtrsim 10^{-4}$ to explain DAMA

Must have an Abelian component iDM+XDM together - easier w/ non-Abelian, not necessary

⇒ we will assume Abelian force

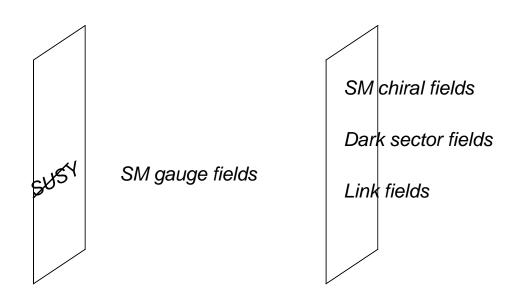
Unified explanation - constraints

- PAMELA no antiproton excess
- HESS constraints from γ -rays
- no significant π^0 signal

"Leptophilic" DM, SM channels suppressed Motivates: DM neutral under the SM

$$\chi\chi \to \gamma_D\gamma_D$$

If γ_D decays:


- no π^0
- no τ , $p \dots$ due to kinematics

Model building - challenges

- DM mass: $\mu/B\mu$ type mechanism \sim EW scale
- How does GeV scale naturally emerge?
- Higgsing the dark sector: no massless particles, long-living particles - BBN constraints

 $\mu/B\mu$ - generalized Giudice-Masiero mechanism

High scale SUSY-breaking

- SM gMSB
- dark sector sequestered AMSB+

DM mass

DM: not charged under the SM; sequestered Why 100 GeV scale mass?

generalized Giudice-Masiero mechanism:

 X, \bar{X} - vector-like DM

$$K = |\phi|^2 (|X|^2 + |\bar{X}|^2 + c(X\bar{X} + \text{c.c.})), \quad \phi \equiv 1 + m_{3/2}\theta^2$$

Rescale $\phi X \to X$:

$$K = |X|^2 + |\bar{X}|^2 + c\frac{\phi^{\dagger}}{\phi}(X\bar{X} + \text{c.c.})$$

Effective
$$\mu/B\mu$$
: $\mu = cm_{3/2}, \ \ B\mu = cm_{3/2}^2$

DM structure

Stability: impose \mathbb{Z}_2 - X, \bar{X} are odd

complex scalar
$$m^2 = (c^2+c)m_{3/2}^2$$

Dirac fermion $m^2 = c^2m_{3/2}^2$

complex scalar $m^2 = (c^2+c)m_{3/2}^2$

Stable state

- avoid tachyons: c > 1
- U(1) broken DM can be splitted
- both iDM & XDM: at least two flavors of DM

(will be) GeV scale sector

We need it to

- supply DM annihilation channels
- enhance $\langle \sigma v \rangle$

Dark gauge group: U(1)

Field contest:

$$T(+1), \ \bar{T}(-1), \ S(0)$$

Superpotential:

$$W = \lambda T \bar{T} S + \frac{\kappa}{3!} S^3$$

No mass scale at this point

Dark sector masses

What are the origins of mass?

- 1. Kinetic mixing \Rightarrow effective FI term in the dark sector $m \sim \sqrt{\epsilon} v \sim \gtrsim 1 \ {\rm GeV}$
- **2.** AMSB $m \sim \frac{m_{3/2}}{16\pi^2} \sim 1 \text{ GeV}$
- 3. non-decoupling effects

Needed: tachyonic masses to break the dark force

No massless particles (including fermions)

Dark sector masses - FI term

FI term:

$$\mathcal{L} \supset \xi_{FI} \int d^4 \theta V \implies \mathcal{L} \supset \xi_{FI} D$$

We develop effective FI term

$$\mathcal{L} \supset \frac{\epsilon}{2} \int d^2\theta W_D^{\alpha} W_{\alpha Y} + \text{c.c.} \implies \mathcal{L} \supset \epsilon D_D \langle D_Y \rangle$$

- Does not break SUSY
- ullet masses 2 to $ar{T}$ positive; to T tachyonic!

•
$$\epsilon \sim 10^{-4} \Rightarrow m \sim \text{GeV}$$

 $\epsilon \sim 10^{-3} \Rightarrow m \sim 5 \text{ GeV}$

Dark sector masses - AMSB

Order: $m \sim \frac{m_{3/2}}{16\pi^2} \sim 1 \text{ GeV}$

One-loop A-terms: $a \propto \beta$

$$m^2 \propto \beta \frac{\partial \gamma}{\partial g}$$

Sign: Yukawa, UV free gauge interaction ⇒ positive mass squared

IR free force ⇒ tachyonic scalar masses

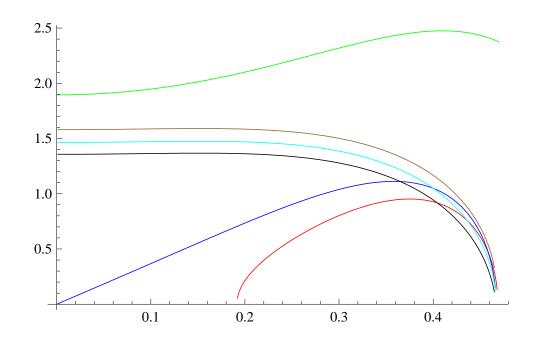
Effective FI + AMSB: if $\lambda \sim g$ (or smaller), dark U(1) is broken

Dark sector - fermion masses

 $\label{eq:FI} {\rm FI + AMSB} \Longrightarrow {\rm soft \ masses \ of} \ T, \ \bar{T} \ {\rm are \ not} \\ {\rm symmetric}$

Consider: only T condenses $W = \lambda T \bar{T} S$

- \bar{T} and S form Dirac state with mass $\lambda\langle T\rangle$ Need S to give mass to $\psi_{\bar{T}}$
- λ gets Majorana mass from AMSB (and non-decoupling effects)
- ψ_T mass from U(1) breaking, mixes w/ λ


All fermions are massive!

Dark sector - boson masses

- dark photon is massive $m_{\gamma} = g\langle T \rangle$
- ullet phase of T is eaten by dark photon
- absolute value of T gets mass $g\langle T\rangle$
- S and \bar{T} mix due to A-terms: two complex scalar states

Full mass spectrum

Example:

Values:

$$\epsilon = 10^{-4}, \tan \beta = 10, \ g_D = 0.4, \ m_{3/2} = 110 \text{ GeV}$$

Partial summary

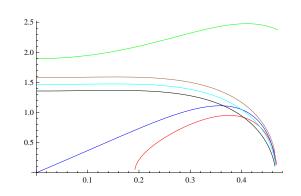
- DM has $\gtrsim 100 \; \mathrm{GeV}$
- AMSB + FI term break U(1) and SUSY in the dark sector
- the mass spectrum is $\sim 1~{\rm GeV}$, no massless particles

Questions:

- 1. What parts of the spectrum are viable?
- 2. How do we get PAMELA signal?
- 3. How do we get iDM/XDM splittings?

Viable spectrum

R-parity is still imposed \Rightarrow LSP is stable


Hidden sector LSP ⇒ coexistent light DM (LDM)

The lightest dark fermion is stable!

Two possibilities for the lightest dark state:

- 1. Majorana fermion, $\lambda \& \psi_{\bar{T}}$ mixture
- 2. Complex scalar, S & \bar{T} mixture

LDM annihilation

Majorana $\lambda + \psi_{\bar{T}}$ vs. Dirac $\psi_S + \psi_{\bar{T}}$ LDM annihilation cross sections:

- 1. ϵ^2 & p-wave suppressed, not enough
- 2. LDM Dirac fermion, annihilates into scalars

$$\langle \sigma v \rangle \sim \frac{\alpha_{\lambda}^2 |\lambda \langle T \rangle|^2}{m_T^4}$$
 large enough

PAMELA/ATIC signal

Preferable region – complex scalar is the lightest particle

Should decay into leptons – PAMELA signal

I. Assume: ϵ is the *only* contact term with the SM Leading order effect: two-loop decays, ϵ^4 suppression in Γ

Leads to $\tau \gtrsim 1000 \text{ years}$

Why is it bad?

- BBN D overproduction
- no natural π^0 suppression

New contact terms

II. Consider more contact terms between dark/visible sector

$$W = \frac{SLH_d\bar{e}}{\Lambda_1} + \frac{SQH_d\bar{d}}{\Lambda_2}$$

Assumption: proportional to the SM Yukawa matrices

Arise from integration out $5 + \bar{5}$. Decays

$$S \rightarrow \mu^{+}\mu^{-}$$

 $S \rightarrow e^{+}e^{-}$ suppressed
 $S \rightarrow q^{+}q^{-}$ dangerous

New contact terms -2

Range for Λ :

- MFV assumption $\Lambda > 100~{\rm TeV}$
- w/o MFV , Yukawa-like structure ($K-\bar{K}$ constraints) $\Lambda \gtrsim 100.000~{\rm TeV}$
- BBN constrains $\Lambda \lesssim 10^{15} \ \mathrm{GeV}$

Suppressing $\pi^0\pi^0$ channel:

 $u\bar{u}$, $d\bar{d}$ - Yukawa suppressed, $s\bar{s}$ - dangerous

$$\frac{\Gamma_{S \to \pi^0 \pi^0}}{\Gamma_{S \to \mu^+ \mu^-}} \sim \frac{1}{16} \left(\frac{\Lambda_1}{\Lambda_2}\right)^2 \left(\frac{m_s}{m_\mu}\right)^2$$

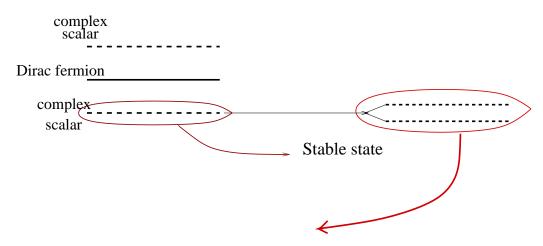
Needed: mild fundamental 2-3 splitting

Colliders and "lepton jets"

Original proposal:

$$\gamma_D \rightarrow l^+ l^-$$

decay through ϵ : collider lepton jets


But we have other mechanism for decays.

Lepton jets depend on the particle lifetime

Possibilities:

- ullet BBN bound $au\sim 100~{
 m sec}$ no distinct signature
- $\Lambda \sim 100~{\rm TeV} \ \Rightarrow \ \tau \gtrsim 10^{-12}~{\rm sec}$ lepton jets available
- intermediate \(\Lambda \) scales: displaced vertexes, inside-detector decays...

iDM/XDM splittings

Splitted due to U(1) breaking

Needed: direct coupling to dark Higgses if $\Delta m \sim \mathcal{O}({\rm MeV})$ - Yukawa is to strong, but

$$W \sim \frac{T^2 \bar{X}^2}{M_{DM}} - - \text{enough}$$

iDM/XDM splittings - 2

- two DM flavors: iDM & XDM
- ensure stability of both flavors $\mathbb{Z}_2 \times \mathbb{Z}_2$
- ullet two flavors of singlets A_i
- A_i get masses through GM mechanism
- A_i are odd under $\mathbb{Z}_2 \times \mathbb{Z}_2$

$$W = \eta T \bar{X}_i A_i + \mu_A A^2$$

A integrated out, T gets VEV:

$$\mathcal{L} \supset \frac{\mu}{M_{DM}} \langle T \rangle^2 \bar{X}^2 + \text{c.c.} \Rightarrow \Delta m \sim \frac{T^2}{M_{DM}} \sim \mathcal{O}(\text{MeV})$$

Conclusions

- introduced framework, which can accommodate the "unified picture" of DM
- 2. build explicit model of DM within the "unified picture"
- GeV scale can naturally emerge from sequestering,DM mass from GM mechanism
- 4. lepton jets collider signature are not robust, but may emerge in certain parts of the parameter space
- 5. the decaying particle and the dark force carrier can naturally be different particles, further suppressing γ -ray emission