Twist duality for flux backgrounds of type II and heterotic String Theory from Generalized Complex Geometry

David ANDRIOT
LPTHE, UPMC Univ Paris 6, France

arXiv:0903.0633 by D. A., R. Minasian, M. Petrini

01/05/2009, Cornell University, NY, USA

Introduction

Introduction

Introduction

- Dualities are a major tool to study string theory. Different string theories related by a web of dualities \hookrightarrow understand structures of string theory...

Introduction

- Dualities are a major tool to study string theory. Different string theories related by a web of dualities \hookrightarrow understand structures of string theory... Some SUGRA backgrounds related by dualities

Introduction

Introduction

- Dualities are a major tool to study string theory. Different string theories related by a web of dualities \hookrightarrow understand structures of string theory... Some SUGRA backgrounds related by dualities \hookrightarrow understand structures of the landscape,

Introduction

Introduction

- Dualities are a major tool to study string theory. Different string theories related by a web of dualities \hookrightarrow understand structures of string theory... Some SUGRA backgrounds related by dualities \hookrightarrow understand structures of the landscape, \hookrightarrow use dualities to find new backgrounds...

Introduction

Introduction

- Dualities are a major tool to study string theory. Different string theories related by a web of dualities \hookrightarrow understand structures of string theory... Some SUGRA backgrounds related by dualities \hookrightarrow understand structures of the landscape, \hookrightarrow use dualities to find new backgrounds...
- Flux backgrounds

Introduction

- Dualities are a major tool to study string theory. Different string theories related by a web of dualities \hookrightarrow understand structures of string theory... Some SUGRA backgrounds related by dualities \hookrightarrow understand structures of the landscape, \hookrightarrow use dualities to find new backgrounds...
- Flux backgrounds, non-trivial background geometries

Introduction

Introduction

- Dualities are a major tool to study string theory. Different string theories related by a web of dualities \hookrightarrow understand structures of string theory... Some SUGRA backgrounds related by dualities \hookrightarrow understand structures of the landscape, \hookrightarrow use dualities to find new backgrounds...
- Flux backgrounds, non-trivial background geometries Performing a duality \rightarrow non-trivial change of geometry:

Introduction

Introduction

- Dualities are a major tool to study string theory. Different string theories related by a web of dualities \hookrightarrow understand structures of string theory... Some SUGRA backgrounds related by dualities \hookrightarrow understand structures of the landscape, \hookrightarrow use dualities to find new backgrounds...
- Flux backgrounds, non-trivial background geometries Performing a duality \rightarrow non-trivial change of geometry:
- T-duality (mirror symmetry) relates different topologies,

Introduction

Introduction

- Dualities are a major tool to study string theory. Different string theories related by a web of dualities \hookrightarrow understand structures of string theory... Some SUGRA backgrounds related by dualities \hookrightarrow understand structures of the landscape, \hookrightarrow use dualities to find new backgrounds...
- Flux backgrounds, non-trivial background geometries Performing a duality \rightarrow non-trivial change of geometry:
- T-duality (mirror symmetry) relates different topologies, geometric/non-geometric backgrounds

Introduction

Introduction

- Dualities are a major tool to study string theory. Different string theories related by a web of dualities \hookrightarrow understand structures of string theory... Some SUGRA backgrounds related by dualities \hookrightarrow understand structures of the landscape,
\hookrightarrow use dualities to find new backgrounds...
- Flux backgrounds, non-trivial background geometries Performing a duality \rightarrow non-trivial change of geometry:
- T-duality (mirror symmetry) relates different topologies, geometric/non-geometric backgrounds
- Kähler/non-Kähler transition in heterotic via a chain of dualities

arXiv:0706.4290 by M. Becker, L-S. Tseng, S-T. Yau arXiv:0707.0295 by S. Sethi

Introduction

Introduction

- Dualities are a major tool to study string theory. Different string theories related by a web of dualities \hookrightarrow understand structures of string theory... Some SUGRA backgrounds related by dualities \hookrightarrow understand structures of the landscape,
\hookrightarrow use dualities to find new backgrounds...
- Flux backgrounds, non-trivial background geometries Performing a duality \rightarrow non-trivial change of geometry:
- T-duality (mirror symmetry) relates different topologies, geometric/non-geometric backgrounds
- Kähler/non-Kähler transition in heterotic via a chain of dualities

arXiv:0706.4290 by M. Becker, L-S. Tseng, S-T. Yau arXiv:0707.0295 by S. Sethi

- Propose Twist duality

Introduction

Introduction

- Dualities are a major tool to study string theory. Different string theories related by a web of dualities \hookrightarrow understand structures of string theory... Some SUGRA backgrounds related by dualities \hookrightarrow understand structures of the landscape,
\hookrightarrow use dualities to find new backgrounds...
- Flux backgrounds, non-trivial background geometries Performing a duality \rightarrow non-trivial change of geometry:
- T-duality (mirror symmetry) relates different topologies, geometric/non-geometric backgrounds
- Kähler/non-Kähler transition in heterotic via a chain of dualities

arXiv:0706.4290 by M. Becker, L-S. Tseng, S-T. Yau arXiv:0707.0295 by S. Sethi

- Propose Twist duality, relating SUSY flux backgrounds of type II or heterotic string.

Introduction

Introduction GCG and type II Twist

- Dualities are a major tool to study string theory. Different string theories related by a web of dualities \hookrightarrow understand structures of string theory... Some SUGRA backgrounds related by dualities \hookrightarrow understand structures of the landscape,
\hookrightarrow use dualities to find new backgrounds...
- Flux backgrounds, non-trivial background geometries Performing a duality \rightarrow non-trivial change of geometry:
- T-duality (mirror symmetry) relates different topologies, geometric/non-geometric backgrounds
- Kähler/non-Kähler transition in heterotic via a chain of dualities

arXiv:0706.4290 by M. Becker, L-S. Tseng, S-T. Yau arXiv:0707.0295 by S. Sethi

- Propose Twist duality, relating SUSY flux backgrounds of type II or heterotic string. Geometric change: essentially provides a connection.

Introduction

- Dualities are a major tool to study string theory. Different string theories related by a web of dualities \hookrightarrow understand structures of string theory... Some SUGRA backgrounds related by dualities \hookrightarrow understand structures of the landscape, \hookrightarrow use dualities to find new backgrounds...
- Flux backgrounds, non-trivial background geometries Performing a duality \rightarrow non-trivial change of geometry:
- T-duality (mirror symmetry) relates different topologies, geometric/non-geometric backgrounds
- Kähler/non-Kähler transition in heterotic via a chain of dualities

arXiv:0706.4290 by M. Becker, L-S. Tseng, S-T. Yau arXiv:0707.0295 by S. Sethi

- Propose Twist duality, relating SUSY flux backgrounds of type II or heterotic string.
Geometric change: essentially provides a connection. Transform metric and dilaton, and B-transform.

Introduction

- Dualities are a major tool to study string theory. Different string theories related by a web of dualities \hookrightarrow understand structures of string theory... Some SUGRA backgrounds related by dualities \hookrightarrow understand structures of the landscape, \hookrightarrow use dualities to find new backgrounds...
- Flux backgrounds, non-trivial background geometries Performing a duality \rightarrow non-trivial change of geometry:
- T-duality (mirror symmetry) relates different topologies, geometric/non-geometric backgrounds
- Kähler/non-Kähler transition in heterotic via a chain of dualities

```
arXiv:0706.4290 by M. Becker, L-S. Tseng, S-T. Yau
    arXiv:0707.0295 by S. Sethi
```

- Propose Twist duality, relating SUSY flux backgrounds of type II or heterotic string.
Geometric change: essentially provides a connection.
Transform metric and dilaton, and B-transform.
It relates backgrounds not related (simply) before.

Flux backgrounds for compactifications.

Introduction

Flux backgrounds for compactifications.

- String theory \rightarrow Real world low energy physics

Flux backgrounds for compactifications.

- String theory \rightarrow Real world low energy physics \hookrightarrow Compactification: $\mathbb{R}^{3,1} \times \mathcal{M}_{\text {internal }}$

Flux backgrounds for compactifications.

- String theory \rightarrow Real world low energy physics
\hookrightarrow Compactification: $\mathbb{R}^{3,1} \times \mathcal{M}_{\text {internal }}$ Try to preserve the minimal amount of $4 D$ supersymmetry

Flux backgrounds for compactifications.

- String theory \rightarrow Real world low energy physics
\hookrightarrow Compactification: $\mathbb{R}^{3,1} \times \mathcal{M}_{\text {internal }}$ Try to preserve the minimal amount of $4 D$ supersymmetry \hookrightarrow Usually led to $\mathcal{M}_{\text {internal }}=$ Calabi-Yau (CY)

Flux backgrounds for compactifications.

- String theory \rightarrow Real world low energy physics \hookrightarrow Compactification: $\mathbb{R}^{3,1} \times \mathcal{M}_{\text {internal }}$ Try to preserve the minimal amount of $4 D$ supersymmetry \hookrightarrow Usually led to $\mathcal{M}_{\text {internal }}=$ Calabi-Yau (CY) Effective theory on it \Rightarrow the moduli problem...

Flux backgrounds for compactifications.

- String theory \rightarrow Real world low energy physics \hookrightarrow Compactification: $\mathbb{R}^{3,1} \times \mathcal{M}_{\text {internal }}$ Try to preserve the minimal amount of $4 D$ supersymmetry \hookrightarrow Usually led to $\mathcal{M}_{\text {internal }}=$ Calabi-Yau (CY) Effective theory on it \Rightarrow the moduli problem...
- Flux compactifications: background fluxes \Rightarrow a scalar potential which stabilizes (some) of the moduli

Flux backgrounds for compactifications.

- String theory \rightarrow Real world low energy physics \hookrightarrow Compactification: $\mathbb{R}^{3,1} \times \mathcal{M}_{\text {internal }}$ Try to preserve the minimal amount of $4 D$ supersymmetry \hookrightarrow Usually led to $\mathcal{M}_{\text {internal }}=$ Calabi-Yau (CY) Effective theory on it \Rightarrow the moduli problem...
- Flux compactifications: background fluxes \Rightarrow a scalar potential which stabilizes (some) of the moduli But fluxes change the SUSY conditions

Flux backgrounds for compactifications.

- String theory \rightarrow Real world low energy physics \hookrightarrow Compactification: $\mathbb{R}^{3,1} \times \mathcal{M}_{\text {internal }}$ Try to preserve the minimal amount of $4 D$ supersymmetry \hookrightarrow Usually led to $\mathcal{M}_{\text {internal }}=$ Calabi-Yau (CY) Effective theory on it \Rightarrow the moduli problem...
- Flux compactifications: background fluxes \Rightarrow a scalar potential which stabilizes (some) of the moduli But fluxes change the SUSY conditions Generically, $\mathcal{M}_{\text {internal }}$ is no longer a CY

Flux backgrounds for compactifications.

- String theory \rightarrow Real world low energy physics \hookrightarrow Compactification: $\mathbb{R}^{3,1} \times \mathcal{M}_{\text {internal }}$ Try to preserve the minimal amount of $4 D$ supersymmetry \hookrightarrow Usually led to $\mathcal{M}_{\text {internal }}=$ Calabi-Yau (CY) Effective theory on it \Rightarrow the moduli problem...
- Flux compactifications: background fluxes \Rightarrow a scalar potential which stabilizes (some) of the moduli But fluxes change the SUSY conditions Generically, $\mathcal{M}_{\text {internal }}$ is no longer a CY \hookrightarrow On what $\mathcal{M}_{\text {internal }}$ to compactify ?

Flux backgrounds for compactifications.

- String theory \rightarrow Real world low energy physics \hookrightarrow Compactification: $\mathbb{R}^{3,1} \times \mathcal{M}_{\text {internal }}$ Try to preserve the minimal amount of $4 D$ supersymmetry \hookrightarrow Usually led to $\mathcal{M}_{\text {internal }}=$ Calabi-Yau (CY) Effective theory on it \Rightarrow the moduli problem...
- Flux compactifications: background fluxes \Rightarrow a scalar potential which stabilizes (some) of the moduli But fluxes change the SUSY conditions Generically, $\mathcal{M}_{\text {internal }}$ is no longer a CY \hookrightarrow On what $\mathcal{M}_{\text {internal }}$ to compactify ?
- For type II SUGRA with fluxes, mathematical characterization of $\mathcal{M}_{\text {internal }}$ given in terms of Generalized Complex Geometry (GCG):

Flux backgrounds for compactifications.

- String theory \rightarrow Real world low energy physics \hookrightarrow Compactification: $\mathbb{R}^{3,1} \times \mathcal{M}_{\text {internal }}$ Try to preserve the minimal amount of $4 D$ supersymmetry \hookrightarrow Usually led to $\mathcal{M}_{\text {internal }}=$ Calabi-Yau (CY) Effective theory on it \Rightarrow the moduli problem...
- Flux compactifications: background fluxes \Rightarrow a scalar potential which stabilizes (some) of the moduli But fluxes change the SUSY conditions Generically, $\mathcal{M}_{\text {internal }}$ is no longer a CY \hookrightarrow On what $\mathcal{M}_{\text {internal }}$ to compactify ?
- For type II SUGRA with fluxes, mathematical characterization of $\mathcal{M}_{\text {internal }}$ given in terms of Generalized Complex Geometry (GCG):
math.DG/0209099 by N. Hitchin, math.DG/0401221 by M. Gualtieri
$\mathcal{M}_{\text {internal }}$ preserving at least $\mathcal{N}=1$ are Generalized CY (GCY)

Introduction

 GCG and type II TwistDual solutions
Heterotic Conclusions

- More generally: GCG is a natural set-up to study type II SUSY flux backgrounds.

Introduction

- More generally: GCG is a natural set-up to study type II SUSY flux backgrounds. Useful for non-geometry,

Introduction

- More generally: GCG is a natural set-up to study type II SUSY flux backgrounds. Useful for non-geometry, effective actions,

Introduction

- More generally: GCG is a natural set-up to study type II SUSY flux backgrounds. Useful for non-geometry, effective actions, gauge/gravity context...

Introduction

- More generally: GCG is a natural set-up to study type II SUSY flux backgrounds. Useful for non-geometry, effective actions, gauge/gravity context...
Propose Twist duality in this language.

Introduction

- More generally: GCG is a natural set-up to study type II SUSY flux backgrounds. Useful for non-geometry, effective actions, gauge/gravity context...
Propose Twist duality in this language.
Consider geometric flux compactifications:

Introduction

- More generally: GCG is a natural set-up to study type II SUSY flux backgrounds.
Useful for non-geometry, effective actions, gauge/gravity context...
Propose Twist duality in this language.
Consider geometric flux compactifications:
- In type II: a family of flux backgrounds with O5,
- More generally: GCG is a natural set-up to study type II SUSY flux backgrounds.
Useful for non-geometry, effective actions, gauge/gravity context...
Propose Twist duality in this language.
Consider geometric flux compactifications:
- In type II: a family of flux backgrounds with O5, on twisted tori (non-trivial fibrations of tori over tori).
- More generally: GCG is a natural set-up to study type II SUSY flux backgrounds.
Useful for non-geometry, effective actions, gauge/gravity context...
Propose Twist duality in this language.
Consider geometric flux compactifications:
- In type II: a family of flux backgrounds with O5, on twisted tori (non-trivial fibrations of tori over tori). T-dual or not to T^{6} solutions with O3.
- More generally: GCG is a natural set-up to study type II SUSY flux backgrounds.
Useful for non-geometry, effective actions, gauge/gravity context...
Propose Twist duality in this language.
Consider geometric flux compactifications:
- In type II: a family of flux backgrounds with O5, on twisted tori (non-trivial fibrations of tori over tori). T-dual or not to T^{6} solutions with O3.

hep-th/0609124 by M. Graña, R. Minasian, M. Petrini, A. Tomasiello

- More generally: GCG is a natural set-up to study type II SUSY flux backgrounds.
Useful for non-geometry, effective actions, gauge/gravity context...
Propose Twist duality in this language.
Consider geometric flux compactifications:
- In type II: a family of flux backgrounds with O5, on twisted tori (non-trivial fibrations of tori over tori). T-dual or not to T^{6} solutions with O3.
hep-th/0609124 by M. Graña, R. Minasian, M. Petrini, A. Tomasiello Twist duality maps them to T^{6} solutions with O3.
- More generally: GCG is a natural set-up to study type II SUSY flux backgrounds.
Useful for non-geometry, effective actions, gauge/gravity context...
Propose Twist duality in this language.
Consider geometric flux compactifications:
- In type II: a family of flux backgrounds with O5, on twisted tori (non-trivial fibrations of tori over tori). T-dual or not to T^{6} solutions with O3.
hep-th/0609124 by M. Graña, R. Minasian, M. Petrini, A. Tomasiello Twist duality maps them to T^{6} solutions with O3.
- In heterotic string: transition between flux backgrounds with (non)-trivial fibrations of T^{2} over $K 3$.
- More generally: GCG is a natural set-up to study type II SUSY flux backgrounds.
Useful for non-geometry, effective actions, gauge/gravity context...
Propose Twist duality in this language.
Consider geometric flux compactifications:
- In type II: a family of flux backgrounds with O 5 , on twisted tori (non-trivial fibrations of tori over tori). T-dual or not to T^{6} solutions with O3.
hep-th/0609124 by M. Graña, R. Minasian, M. Petrini, A. Tomasiello Twist duality maps them to T^{6} solutions with O3.
- In heterotic string: transition between flux backgrounds with (non)-trivial fibrations of T^{2} over $K 3$.
Twist duality could map them (geometric transition...)
- More generally: GCG is a natural set-up to study type II SUSY flux backgrounds.
Useful for non-geometry, effective actions, gauge/gravity context...
Propose Twist duality in this language.
Consider geometric flux compactifications:
- In type II: a family of flux backgrounds with O 5 , on twisted tori (non-trivial fibrations of tori over tori). T-dual or not to T^{6} solutions with O3.
hep-th/0609124 by M. Graña, R. Minasian, M. Petrini, A. Tomasiello Twist duality maps them to T^{6} solutions with O3.
- In heterotic string: transition between flux backgrounds with (non)-trivial fibrations of T^{2} over $K 3$.
Twist duality could map them (geometric transition...) But no GCG here...
- More generally: GCG is a natural set-up to study type II SUSY flux backgrounds.
Useful for non-geometry, effective actions, gauge/gravity context...
Propose Twist duality in this language.
Consider geometric flux compactifications:
- In type II: a family of flux backgrounds with O5, on twisted tori (non-trivial fibrations of tori over tori). T-dual or not to T^{6} solutions with O3.
hep-th/0609124 by M. Graña, R. Minasian, M. Petrini, A. Tomasiello Twist duality maps them to T^{6} solutions with O3.
- In heterotic string: transition between flux backgrounds with (non)-trivial fibrations of T^{2} over $K 3$.
Twist duality could map them (geometric transition...) But no GCG here...
\hookrightarrow Introduce some GCG objects, and then perform Twist duality to map two solutions.

Introduction

Plan:

- Review appearance of GCG in type II SUSY flux backgrounds.

Introduction

Plan:

- Review appearance of GCG in type II SUSY flux backgrounds. More elements of GCG in type II.

Plan:

- Review appearance of GCG in type II SUSY flux backgrounds. More elements of GCG in type II.
- Twist duality on GCG objects.

Introduction

Plan:

- Review appearance of GCG in type II SUSY flux backgrounds. More elements of GCG in type II.
- Twist duality on GCG objects. Application to map flux backgrounds, generate new solutions?

Introduction

Plan:

- Review appearance of GCG in type II SUSY flux backgrounds. More elements of GCG in type II.
- Twist duality on GCG objects. Application to map flux backgrounds, generate new solutions?
- Heterotic backgrounds treatment.

Generalized Complex Geometry and type II flux compactifications

The SUSY conditions for a SUGRA vacuum

- Type II SUGRA: $\mathcal{N}_{10 D}=2$ Spectrum: $g, \phi, H=d B, F_{p}, \psi_{\mu}^{1,2}, \lambda^{1,2}$

Generalized Complex Geometry and type II flux compactifications

The SUSY conditions for a SUGRA vacuum

- Type II SUGRA: $\mathcal{N}_{10 D}=2$ Spectrum: $g, \phi, H=d B, F_{p}, \psi_{\mu}^{1,2}, \lambda^{1,2}$
Compactification: $\mathbb{R}^{3,1} \times \mathcal{M}_{\text {internal }}$

Generalized Complex Geometry and type II flux compactifications

The SUSY conditions for a SUGRA vacuum

- Type II SUGRA: $\mathcal{N}_{10 D}=2$ Spectrum: $g, \phi, H=d B, F_{p}, \psi_{\mu}^{1,2}, \lambda^{1,2}$
Compactification: $\mathbb{R}^{3,1} \times \mathcal{M}_{\text {internal }}$
\hookrightarrow Metric Ansatz : ds $s_{(10)}^{2}=e^{2 A(y)} \eta_{\mu \nu} d x^{\mu} d x^{\nu}+g_{\mu \nu}(y) d y^{\mu} d y^{\nu}$

Generalized Complex Geometry and type II flux compactifications

The SUSY conditions for a SUGRA vacuum

- Type II SUGRA: $\mathcal{N}_{10 D}=2$ Spectrum: $g, \phi, H=d B, F_{p}, \psi_{\mu}^{1,2}, \lambda^{1,2}$
Compactification: $\mathbb{R}^{3,1} \times \mathcal{M}_{\text {internal }}$
\hookrightarrow Metric Ansatz : ds $s_{(10)}^{2}=e^{2 A(y)} \eta_{\mu \nu} d x^{\mu} d x^{\nu}+g_{\mu \nu}(y) d y^{\mu} d y^{\nu}$
- Find some SUSY Minkowski flux vacuum of it:

Generalized Complex Geometry and type II flux compactifications

The SUSY conditions for a SUGRA vacuum

- Type II SUGRA: $\mathcal{N}_{10 D}=2$ Spectrum: $g, \phi, H=d B, F_{p}, \psi_{\mu}^{1,2}, \lambda^{1,2}$
Compactification: $\mathbb{R}^{3,1} \times \mathcal{M}_{\text {internal }}$
\hookrightarrow Metric Ansatz : ds $s_{(10)}^{2}=e^{2 A(y)} \eta_{\mu \nu} d x^{\mu} d x^{\nu}+g_{\mu \nu}(y) d y^{\mu} d y^{\nu}$
- Find some SUSY Minkowski flux vacuum of it:
- vacuum: equations of motion (e.o.m.)

Generalized Complex Geometry and type II flux compactifications

The SUSY conditions for a SUGRA vacuum

- Type II SUGRA: $\mathcal{N}_{10 D}=2$ Spectrum: $g, \phi, H=d B, F_{p}, \psi_{\mu}^{1,2}, \lambda^{1,2}$
Compactification: $\mathbb{R}^{3,1} \times \mathcal{M}_{\text {internal }}$
\hookrightarrow Metric Ansatz : ds $s_{(10)}^{2}=e^{2 A(y)} \eta_{\mu \nu} d x^{\mu} d x^{\nu}+g_{\mu \nu}(y) d y^{\mu} d y^{\nu}$
- Find some SUSY Minkowski flux vacuum of it:
- vacuum: equations of motion (e.o.m.)
- fluxes: Bianchi Identities (BI)

Generalized Complex Geometry and type II flux compactifications

The SUSY conditions for a SUGRA vacuum

- Type II SUGRA: $\mathcal{N}_{10 D}=2$ Spectrum: $g, \phi, H=d B, F_{p}, \psi_{\mu}^{1,2}, \lambda^{1,2}$
Compactification: $\mathbb{R}^{3,1} \times \mathcal{M}_{\text {internal }}$
\hookrightarrow Metric Ansatz : ds $s_{(10)}^{2}=e^{2 A(y)} \eta_{\mu \nu} d x^{\mu} d x^{\nu}+g_{\mu \nu}(y) d y^{\mu} d y^{\nu}$
- Find some SUSY Minkowski flux vacuum of it:
- vacuum: equations of motion (e.o.m.)
- fluxes: Bianchi Identities (BI)
- SUSY: supersymmetry conditions

Generalized Complex Geometry and type II flux compactifications

The SUSY conditions for a SUGRA vacuum

- Type II SUGRA: $\mathcal{N}_{10 D}=2$ Spectrum: $g, \phi, H=d B, F_{p}, \psi_{\mu}^{1,2}, \lambda^{1,2}$
Compactification: $\mathbb{R}^{3,1} \times \mathcal{M}_{\text {internal }}$
\hookrightarrow Metric Ansatz : ds $s_{(10)}^{2}=e^{2 A(y)} \eta_{\mu \nu} d x^{\mu} d x^{\nu}+g_{\mu \nu}(y) d y^{\mu} d y^{\nu}$
- Find some SUSY Minkowski flux vacuum of it:
- vacuum: equations of motion (e.o.m.)
- fluxes: Bianchi Identities (BI)
- SUSY: supersymmetry conditions
- Other constraints...

Generalized Complex Geometry and type II flux compactifications

The SUSY conditions for a SUGRA vacuum

- Type II SUGRA: $\mathcal{N}_{10 D}=2$ Spectrum: $g, \phi, H=d B, F_{p}, \psi_{\mu}^{1,2}, \lambda^{1,2}$
Compactification: $\mathbb{R}^{3,1} \times \mathcal{M}_{\text {internal }}$ \hookrightarrow Metric Ansatz : ds $s_{(10)}^{2}=e^{2 A(y)} \eta_{\mu \nu} d x^{\mu} d x^{\nu}+g_{\mu \nu}(y) d y^{\mu} d y^{\nu}$
- Find some SUSY Minkowski flux vacuum of it:
- vacuum: equations of motion (e.o.m.)
- fluxes: Bianchi Identities (BI)
- SUSY: supersymmetry conditions
- Other constraints...

One can show:

Generalized Complex Geometry and type II flux compactifications

The SUSY conditions for a SUGRA vacuum

- Type II SUGRA: $\mathcal{N}_{10 D}=2$

Spectrum: $g, \phi, H=d B, F_{p}, \psi_{\mu}^{1,2}, \lambda^{1,2}$
Compactification: $\mathbb{R}^{3,1} \times \mathcal{M}_{\text {internal }}$
\hookrightarrow Metric Ansatz : $d s_{(10)}^{2}=e^{2 A(y)} \eta_{\mu \nu} d x^{\mu} d x^{\nu}+g_{\mu \nu}(y) d y^{\mu} d y^{\nu}$

- Find some SUSY Minkowski flux vacuum of it:
- vacuum: equations of motion (e.o.m.)
- fluxes: Bianchi Identities (BI)
- SUSY: supersymmetry conditions
- Other constraints...

One can show:

$$
\text { SUSY conditions }+\mathrm{BI} \Rightarrow \text { e.o.m. }
$$

Generalized Complex Geometry and type II flux compactifications

The SUSY conditions for a SUGRA vacuum

- Type II SUGRA: $\mathcal{N}_{10 D}=2$

Spectrum: $g, \phi, H=d B, F_{p}, \psi_{\mu}^{1,2}, \lambda^{1,2}$
Compactification: $\mathbb{R}^{3,1} \times \mathcal{M}_{\text {internal }}$
\hookrightarrow Metric Ansatz : $d s_{(10)}^{2}=e^{2 A(y)} \eta_{\mu \nu} d x^{\mu} d x^{\nu}+g_{\mu \nu}(y) d y^{\mu} d y^{\nu}$

- Find some SUSY Minkowski flux vacuum of it:
- vacuum: equations of motion (e.o.m.)
- fluxes: Bianchi Identities (BI)
- SUSY: supersymmetry conditions
- Other constraints...

One can show:

SUSY conditions $+\mathrm{BI} \Rightarrow$ e.o.m.

Main focus: solve the SUSY conditions

Introduction

GCG and type II SUSY conditions $T \oplus T^{*}$ bundle

Twist

Dual solutions
Heterotic
Conclusions

- SUSY conditions :

$$
\begin{aligned}
& 0=\delta \psi_{\mu}=D_{\mu} \epsilon+\frac{1}{4} H_{\mu} \mathcal{P} \epsilon+\frac{1}{16} e^{\phi} \sum_{n} H_{2 n} \gamma_{\mu} \mathcal{P}_{n} \epsilon \\
& 0=\delta \lambda=\left(\not \partial \phi+\frac{1}{2} H \mathcal{P}\right) \epsilon+\frac{1}{8} e^{\phi} \sum_{n}(-1)^{2 n}(5-2 n) \not \mathscr{F}_{2 n} \mathcal{P}_{n} \epsilon
\end{aligned}
$$

SUSY parameters of type II SUGRA: $\epsilon=\left(\epsilon^{1}, \epsilon^{2}\right)$.

- SUSY conditions :

$$
\begin{aligned}
& 0=\delta \psi_{\mu}=D_{\mu} \epsilon+\frac{1}{4} H_{\mu} \mathcal{P} \epsilon+\frac{1}{16} e^{\phi} \sum_{n} \not H_{2 n} \gamma_{\mu} \mathcal{P}_{n} \epsilon \\
& 0=\delta \lambda=\left(\not \partial \phi+\frac{1}{2} \not H \mathcal{P}\right) \epsilon+\frac{1}{8} e^{\phi} \sum_{n}(-1)^{2 n}(5-2 n) \not \mathscr{H}_{2 n} \mathcal{P}_{n} \epsilon
\end{aligned}
$$

SUSY parameters of type II SUGRA: $\epsilon=\left(\epsilon^{1}, \epsilon^{2}\right)$.
Fluxes in the SUSY conditions

- SUSY conditions : CY condition

Introduction

$$
\begin{aligned}
& 0=\delta \psi_{\mu}=D_{\mu} \epsilon \\
& 0=\delta \lambda=(\not \partial \phi \quad \epsilon
\end{aligned}
$$

SUSY parameters of type II SUGRA: $\epsilon=\left(\epsilon^{1}, \epsilon^{2}\right)$. Fluxes in the SUSY conditions

Introduction
GCG and type II SUSY conditions $T \oplus T^{*}$ bundle Twist

Dual solutions Heterotic Conclusions

- SUSY conditions :

$$
\begin{aligned}
& 0=\delta \psi_{\mu}=D_{\mu} \epsilon+\frac{1}{4} H_{\mu} \mathcal{P} \epsilon+\frac{1}{16} e^{\phi} \sum_{n} \not \mathscr{H}_{2 n} \gamma_{\mu} \mathcal{P}_{n} \epsilon \\
& 0=\delta \lambda=\left(\not \partial \phi+\frac{1}{2} H / \mathcal{P}\right) \epsilon+\frac{1}{8} e^{\phi} \sum_{n}(-1)^{2 n}(5-2 n) \not \mathscr{H}_{2 n} \mathcal{P}_{n} \epsilon
\end{aligned}
$$

SUSY parameters of type II SUGRA: $\epsilon=\left(\epsilon^{1}, \epsilon^{2}\right)$.
Fluxes in the SUSY conditions \Rightarrow GCG rewriting.

Introduction

 GCG and type II SUSY conditions $T \oplus T^{*}$ bundle
Twist

Dual solutions
Heterotic
Conclusions

- SUSY conditions :

$$
\begin{aligned}
& 0=\delta \psi_{\mu}=D_{\mu} \epsilon+\frac{1}{4} H_{\mu} \mathcal{P} \epsilon+\frac{1}{16} e^{\phi} \sum_{n} H_{2 n} \gamma_{\mu} \mathcal{P}_{n} \epsilon \\
& 0=\delta \lambda=\left(\not \partial \phi+\frac{1}{2} H \mathcal{P}\right) \epsilon+\frac{1}{8} e^{\phi} \sum_{n}(-1)^{2 n}(5-2 n) \not F_{2 n} \mathcal{P}_{n} \epsilon
\end{aligned}
$$

SUSY parameters of type II SUGRA: $\epsilon=\left(\epsilon^{1}, \epsilon^{2}\right)$.
Fluxes in the SUSY conditions \Rightarrow GCG rewriting.

- SUSY parameters decomposed

Introduction GCG and type II SUSY conditions $T \oplus T^{*}$ bundle Twist

Dual solutions Heterotic Conclusions

- SUSY conditions :

$$
\begin{aligned}
& 0=\delta \psi_{\mu}=D_{\mu} \epsilon+\frac{1}{4} H_{\mu} \mathcal{P} \epsilon+\frac{1}{16} e^{\phi} \sum_{n} H_{2 n} \gamma_{\mu} \mathcal{P}_{n} \epsilon \\
& 0=\delta \lambda=\left(\not \partial \phi+\frac{1}{2} H \mathcal{P}\right) \epsilon+\frac{1}{8} e^{\phi} \sum_{n}(-1)^{2 n}(5-2 n) \not F_{2 n} \mathcal{P}_{n} \epsilon
\end{aligned}
$$

SUSY parameters of type II SUGRA: $\epsilon=\left(\epsilon^{1}, \epsilon^{2}\right)$.
Fluxes in the SUSY conditions \Rightarrow GCG rewriting.

- SUSY parameters decomposed, for $\mathcal{N}_{4 D}=1$:

$$
\begin{aligned}
\epsilon^{1} & =\zeta \otimes \eta^{1}+c . c . \\
\epsilon^{2} & =\zeta \otimes \eta^{2}+c . c .
\end{aligned}
$$

an internal pair $\left(\eta^{1}, \eta^{2}\right)$.

Introduction GCG and type II SUSY conditions $T \oplus T^{*}$ bundle Twist

Dual solutions Heterotic Conclusions

- SUSY conditions :

$$
\begin{aligned}
& 0=\delta \psi_{\mu}=D_{\mu} \epsilon+\frac{1}{4} H_{\mu} \mathcal{P} \epsilon+\frac{1}{16} e^{\phi} \sum_{n} \mathcal{F}_{2 n} \gamma_{\mu} \mathcal{P}_{n} \epsilon \\
& 0=\delta \lambda=\left(\not \partial \phi+\frac{1}{2} H \mathcal{P}\right) \epsilon+\frac{1}{8} e^{\phi} \sum_{n}(-1)^{2 n}(5-2 n) \not \mathscr{F}_{2 n} \mathcal{P}_{n} \epsilon
\end{aligned}
$$

SUSY parameters of type II SUGRA: $\epsilon=\left(\epsilon^{1}, \epsilon^{2}\right)$.
Fluxes in the SUSY conditions \Rightarrow GCG rewriting.

- SUSY parameters decomposed, for $\mathcal{N}_{4 D}=1$:

$$
\begin{aligned}
& \epsilon^{1}=\zeta \otimes \eta^{1}+c . c . \\
& \epsilon^{2}=\zeta \otimes \eta^{2}+\text { c.c. }
\end{aligned}
$$

an internal pair $\left(\eta^{1}, \eta^{2}\right)$. For a consistent reduction,

Two globally defined non-vanishing spinors on $\mathcal{M}_{\text {internal }}: \eta^{1}, \eta^{2}$

Introduction

SUSY conditions

 $T \oplus T^{*}$ bundleTwist
Dual solutions
Heterotic
Conclusions

- SUSY conditions :

$$
\begin{aligned}
& 0=\delta \psi_{\mu}=D_{\mu} \epsilon+\frac{1}{4} H_{\mu} \mathcal{P} \epsilon+\frac{1}{16} e^{\phi} \sum_{n} \mathcal{F}_{2 n} \gamma_{\mu} \mathcal{P}_{n} \epsilon \\
& 0=\delta \lambda=\left(\not \partial \phi+\frac{1}{2} H \mathcal{P}\right) \epsilon+\frac{1}{8} e^{\phi} \sum_{n}(-1)^{2 n}(5-2 n) \not \mathscr{F}_{2 n} \mathcal{P}_{n} \epsilon
\end{aligned}
$$

SUSY parameters of type II SUGRA: $\epsilon=\left(\epsilon^{1}, \epsilon^{2}\right)$.
Fluxes in the SUSY conditions \Rightarrow GCG rewriting.

- SUSY parameters decomposed, for $\mathcal{N}_{4 D}=1$:

$$
\begin{aligned}
& \epsilon^{1}=\zeta \otimes \eta^{1}+c . c . \\
& \epsilon^{2}=\zeta \otimes \eta^{2}+c . c .
\end{aligned}
$$

an internal pair $\left(\eta^{1}, \eta^{2}\right)$. For a consistent reduction,

Two globally defined non-vanishing spinors on $\mathcal{M}_{\text {internal }}: \eta^{1}, \eta^{2}$ Consider in the following $\eta^{1}=\eta^{2}(S U(3)$ structure).

- SUSY conditions on $\mathcal{M}_{\text {internal }}$:

David ANDRIOT

Introduction

GCG and type II SUSY conditions $T \oplus T^{*}$ bundle

Twist

Dual solutions
Heterotic

David ANDRIOT

Introduction

GCG and type II SUSY conditions $T \oplus T^{*}$ bundle

Twist

Dual solutions

Heterotic

- SUSY conditions on $\mathcal{M}_{\text {internal }}$: No flux
- SUSY conditions on $\mathcal{M}_{\text {internal }}$:

David ANDRIOT

Introduction

SUSY conditions

$T \oplus T^{*}$ bundle

Twist

Dual solutions

Heterotic

Conclusions

No flux

$$
\begin{aligned}
D_{m} \eta^{1} & =0 \\
D_{m} \eta^{2} & =0
\end{aligned}
$$

With flux (GCG)

- SUSY conditions on $\mathcal{M}_{\text {internal }}$:

No flux

Introduction

SUSY conditions

$T \oplus T^{*}$ bundle

Twist

Dual solutions

Heterotic

Conclusions

- SUSY conditions on $\mathcal{M}_{\text {internal }}$:

No flux
With flux (GCG)

Introduction

- SUSY conditions on $\mathcal{M}_{\text {internal }}$:

No flux

$$
\begin{aligned}
D_{m} \eta^{1} & =0 \\
D_{m} \eta^{2} & =0
\end{aligned}
$$

$\eta^{1,2}$ spinors on T CY

With flux (GCG)

$$
\begin{aligned}
& \mathrm{d}\left(e^{3 A} \Psi_{1}\right)=0 \\
& \mathrm{~d}\left(e^{2 A} \operatorname{Re}\left(\Psi_{2}\right)\right)=0
\end{aligned}
$$

$$
\mathrm{d}\left(e^{4 A} \operatorname{Im}\left(\Psi_{2}\right)\right)=e^{4 A} e^{-B} * \lambda\left(\sum_{p} F_{p}\right)
$$

$$
\Psi_{1,2} \text { spinors on } T \oplus T^{*}
$$

GCY

- First define differential forms (with $\eta_{-}=\left(\eta_{+}\right)^{*}$) for $S U(3)$:

$$
J_{\mu \nu}=-i \eta_{+}^{\dagger} \gamma_{\mu \nu} \eta_{+}, \quad \Omega_{\mu \nu \rho}=-i \eta_{-}^{\dagger} \gamma_{\mu \nu \rho} \eta_{+}
$$

- SUSY conditions on $\mathcal{M}_{\text {internal }}$:

No flux
With flux (GCG)

$$
\begin{aligned}
D_{m} \eta^{1} & =0 \\
D_{m} \eta^{2} & =0
\end{aligned}
$$

$\eta^{1,2}$ spinors on T CY

$$
\mathrm{d}\left(e^{3 A} \Psi_{1}\right)=0
$$

$$
\mathrm{d}\left(e^{2 A} \operatorname{Re}\left(\Psi_{2}\right)\right)=0
$$

$$
\mathrm{d}\left(e^{4 A} \operatorname{Im}\left(\Psi_{2}\right)\right)=e^{4 A} e^{-B} * \lambda\left(\sum_{p} F_{p}\right)
$$

$$
\Psi_{1,2} \text { spinors on } T \oplus T^{*}
$$

GCY

- First define differential forms (with $\eta_{-}=\left(\eta_{+}\right)^{*}$) for $S U(3)$:

$$
J_{\mu \nu}=-i \eta_{+}^{\dagger} \gamma_{\mu \nu} \eta_{+}, \quad \Omega_{\mu \nu \rho}=-i \eta_{-}^{\dagger} \gamma_{\mu \nu \rho} \eta_{+}
$$

SUSY conditions can be expressed in terms of forms !

- SUSY conditions on $\mathcal{M}_{\text {internal }}$:

No flux
With flux (GCG)

$$
\begin{aligned}
D_{m} \eta^{1} & =0 \\
D_{m} \eta^{2} & =0
\end{aligned}
$$

$\eta^{1,2}$ spinors on T CY

$$
\mathrm{d}\left(e^{3 A} \Psi_{1}\right)=0
$$

$$
\mathrm{d}\left(e^{2 A} \operatorname{Re}\left(\Psi_{2}\right)\right)=0
$$

$$
\mathrm{d}\left(e^{4 A} \operatorname{Im}\left(\Psi_{2}\right)\right)=e^{4 A} e^{-B} * \lambda\left(\sum_{p} F_{p}\right)
$$

$$
\Psi_{1,2} \text { spinors on } T \oplus T^{*}
$$

GCY

- First define differential forms (with $\eta_{-}=\left(\eta_{+}\right)^{*}$) for $S U(3)$:

$$
J_{\mu \nu}=-i \eta_{+}^{\dagger} \gamma_{\mu \nu} \eta_{+}, \quad \Omega_{\mu \nu \rho}=-i \eta_{-}^{\dagger} \gamma_{\mu \nu \rho} \eta_{+}
$$

SUSY conditions can be expressed in terms of forms !

- Further define the bi-spinors:

$$
\Phi_{+}=\eta_{+}^{1} \otimes \eta_{+}^{2 \dagger}, \quad \Phi_{-}=\eta_{+}^{1} \otimes \eta_{-}^{2 \dagger}
$$

- SUSY conditions on $\mathcal{M}_{\text {internal }}$:

No flux
With flux (GCG)

$$
\begin{aligned}
D_{m} \eta^{1} & =0 \\
D_{m} \eta^{2} & =0
\end{aligned}
$$

$\eta^{1,2}$ spinors on T CY

$$
\mathrm{d}\left(e^{3 A} \Psi_{1}\right)=0
$$

$$
\mathrm{d}\left(e^{2 A} \operatorname{Re}\left(\Psi_{2}\right)\right)=0
$$

$$
\mathrm{d}\left(e^{4 A} \operatorname{Im}\left(\Psi_{2}\right)\right)=e^{4 A} e^{-B} * \lambda\left(\sum_{p} F_{p}\right)
$$

$$
\Psi_{1,2} \text { spinors on } T \oplus T^{*}
$$

GCY

- First define differential forms (with $\eta_{-}=\left(\eta_{+}\right)^{*}$) for $S U(3)$:

$$
J_{\mu \nu}=-i \eta_{+}^{\dagger} \gamma_{\mu \nu} \eta_{+}, \quad \Omega_{\mu \nu \rho}=-i \eta_{-}^{\dagger} \gamma_{\mu \nu \rho} \eta_{+}
$$

SUSY conditions can be expressed in terms of forms !

- Further define the bi-spinors:

$$
\Phi_{+}=\eta_{+}^{1} \otimes \eta_{+}^{2 \dagger}, \quad \Phi_{-}=\eta_{+}^{1} \otimes \eta_{-}^{2 \dagger}
$$

$\Phi_{ \pm}=$polyforms, for $S U(3)$:

- SUSY conditions on $\mathcal{M}_{\text {internal }}$:

No flux

With flux (GCG)

$$
\begin{aligned}
D_{m} \eta^{1} & =0 \\
D_{m} \eta^{2} & =0
\end{aligned}
$$

$\eta^{1,2}$ spinors on T CY
$\mathrm{d}\left(e^{3 A} \Psi_{1}\right)=0$
$\mathrm{d}\left(e^{2 A} \operatorname{Re}\left(\Psi_{2}\right)\right)=0$
$\mathrm{d}\left(e^{4 A} \operatorname{Im}\left(\Psi_{2}\right)\right)=e^{4 A} e^{-B} * \lambda\left(\sum_{p} F_{p}\right)$
$\Psi_{1,2}$ spinors on $T \oplus T^{*}$ GCY

- First define differential forms (with $\left.\eta_{-}=\left(\eta_{+}\right)^{*}\right)$ for $S U(3)$:

$$
J_{\mu \nu}=-i \eta_{+}^{\dagger} \gamma_{\mu \nu} \eta_{+}, \quad \Omega_{\mu \nu \rho}=-i \eta_{-}^{\dagger} \gamma_{\mu \nu \rho} \eta_{+}
$$

SUSY conditions can be expressed in terms of forms !

- Further define the bi-spinors:

$$
\Phi_{+}=\eta_{+}^{1} \otimes \eta_{+}^{2 \dagger}, \quad \Phi_{-}=\eta_{+}^{1} \otimes \eta_{-}^{2 \dagger}
$$

$\Phi_{ \pm}=$polyforms, for $S U(3)$:

$$
\begin{array}{ll}
\Phi_{+} / N_{+}=e^{i \theta} & e^{-i J} \\
\Phi_{-} / N_{-}=-i & \Omega_{3}
\end{array}
$$

- SUSY conditions on $\mathcal{M}_{\text {internal }}$:

No flux

With flux (GCG)

$$
\begin{aligned}
D_{m} \eta^{1} & =0 \\
D_{m} \eta^{2} & =0
\end{aligned}
$$

$\eta^{1,2}$ spinors on T CY
$\mathrm{d}\left(e^{3 A} \Psi_{1}\right)=0$
$\mathrm{d}\left(e^{2 A} \operatorname{Re}\left(\Psi_{2}\right)\right)=0$

$$
\mathrm{d}\left(e^{4 A} \operatorname{Im}\left(\Psi_{2}\right)\right)=e^{4 A} e^{-B} * \lambda\left(\sum_{p} F_{p}\right)
$$

$$
\Psi_{1,2} \text { spinors on } T \oplus T^{*}
$$ GCY

- First define differential forms (with $\eta_{-}=\left(\eta_{+}\right)^{*}$) for $S U(3)$:

$$
J_{\mu \nu}=-i \eta_{+}^{\dagger} \gamma_{\mu \nu} \eta_{+}, \quad \Omega_{\mu \nu \rho}=-i \eta_{-}^{\dagger} \gamma_{\mu \nu \rho} \eta_{+}
$$

SUSY conditions can be expressed in terms of forms !

- Further define the bi-spinors:

$$
\Phi_{+}=\eta_{+}^{1} \otimes \eta_{+}^{2 \dagger}, \quad \Phi_{-}=\eta_{+}^{1} \otimes \eta_{-}^{2 \dagger}
$$

$\Phi_{ \pm}=$polyforms, for $S U(3)$:

$$
\begin{aligned}
& \Psi_{+}=e^{-\phi} e^{-B} \Phi_{+} / N_{+}=e^{i \theta} e^{-\phi} e^{-B} e^{-i J} \\
& \Psi_{-}=e^{-\phi} e^{-B} \Phi_{-} / N_{-}=-i e^{-\phi} e^{-B} \Omega_{3}
\end{aligned}
$$

- SUSY conditions on $\mathcal{M}_{\text {internal }}$:

Introduction
GCG and type II SUSY conditions $T \oplus T^{*}$ bundle Twist

Dual solutions

No flux

$$
\begin{aligned}
& D_{m} \eta^{1}=0 \\
& D_{m} \eta^{2}=0
\end{aligned}
$$

$\eta^{1,2}$ spinors on T CY

With flux (GCG)

$\mathrm{d}\left(e^{3 A} \Psi_{1}\right)=0$
$\mathrm{d}\left(e^{2 A} \operatorname{Re}\left(\Psi_{2}\right)\right)=0$
$\mathrm{d}\left(e^{4 A} \operatorname{Im}\left(\Psi_{2}\right)\right)=e^{4 A} e^{-B} * \lambda\left(\sum_{p} F_{p}\right)$
$\Psi_{1,2}$ spinors on $T \oplus T^{*}$ GCY

- First define differential forms (with $\eta_{-}=\left(\eta_{+}\right)^{*}$) for $S U(3)$:

$$
J_{\mu \nu}=-i \eta_{+}^{\dagger} \gamma_{\mu \nu} \eta_{+}, \quad \Omega_{\mu \nu \rho}=-i \eta_{-}^{\dagger} \gamma_{\mu \nu \rho} \eta_{+}
$$

SUSY conditions can be expressed in terms of forms !

- Further define the bi-spinors:

$$
\Phi_{+}=\eta_{+}^{1} \otimes \eta_{+}^{2 \dagger}, \quad \Phi_{-}=\eta_{+}^{1} \otimes \eta_{-}^{2 \dagger}
$$

$\Phi_{ \pm}=$polyforms, for $S U(3)$:

$$
\begin{aligned}
& \Psi_{+}=e^{-\phi} e^{-B} \Phi_{+} / N_{+}=e^{i \theta} e^{-\phi} e^{-B} e^{-i J} \\
& \Psi_{-}=e^{-\phi} e^{-B} \Phi_{-} / N_{-}=-i e^{-\phi} e^{-B} \Omega_{3}
\end{aligned}
$$

SUSY conditions can be expressed in terms of $\Psi_{ \pm}$!

- SUSY conditions on $\mathcal{M}_{\text {internal }}$:

Introduction
GCG and type II SUSY conditions $T \oplus T^{*}$ bundle Twist

Dual solutions

No flux

$$
\begin{aligned}
& D_{m} \eta^{1}=0 \\
& D_{m} \eta^{2}=0
\end{aligned}
$$

$\eta^{1,2}$ spinors on T CY

With flux (GCG)

$\mathrm{d}\left(e^{3 A} \Psi_{1}\right)=0$
$\mathrm{d}\left(e^{2 A} \operatorname{Re}\left(\Psi_{2}\right)\right)=0$
$\mathrm{d}\left(e^{4 A} \operatorname{Im}\left(\Psi_{2}\right)\right)=e^{4 A} e^{-B} * \lambda\left(\sum_{p} F_{p}\right)$
$\Psi_{1,2}$ spinors on $T \oplus T^{*}$ GCY

- First define differential forms (with $\eta_{-}=\left(\eta_{+}\right)^{*}$) for $S U(3)$:

$$
J_{\mu \nu}=-i \eta_{+}^{\dagger} \gamma_{\mu \nu} \eta_{+}, \quad \Omega_{\mu \nu \rho}=-i \eta_{-}^{\dagger} \gamma_{\mu \nu \rho} \eta_{+}
$$

SUSY conditions can be expressed in terms of forms !

- Further define the bi-spinors:

$$
\Phi_{+}=\eta_{+}^{1} \otimes \eta_{+}^{2 \dagger}, \quad \Phi_{-}=\eta_{+}^{1} \otimes \eta_{-}^{2 \dagger}
$$

$\Phi_{ \pm}=$polyforms, for $S U(3)$:

$$
\begin{aligned}
& \Psi_{+}=e^{-\phi} e^{-B} \Phi_{+} / N_{+}=e^{i \theta} e^{-\phi} e^{-B} e^{-i J} \\
& \Psi_{-}=e^{-\phi} e^{-B} \Phi_{-} / N_{-}=-i e^{-\phi} e^{-B} \Omega_{3}
\end{aligned}
$$

SUSY conditions can be expressed in terms of $\Psi_{ \pm}$! Spinors on $T \oplus T^{*}$,

- SUSY conditions on $\mathcal{M}_{\text {internal }}$:

Introduction
GCG and type II SUSY conditions $T \oplus T^{*}$ bundle Twist

Dual solutions

No flux

$$
\begin{aligned}
& D_{m} \eta^{1}=0 \\
& D_{m} \eta^{2}=0
\end{aligned}
$$

$\eta^{1,2}$ spinors on T CY

With flux (GCG)

$\mathrm{d}\left(e^{3 A} \Psi_{1}\right)=0$
$\mathrm{d}\left(e^{2 A} \operatorname{Re}\left(\Psi_{2}\right)\right)=0$
$\mathrm{d}\left(e^{4 A} \operatorname{Im}\left(\Psi_{2}\right)\right)=e^{4 A} e^{-B} * \lambda\left(\sum_{p} F_{p}\right)$
$\Psi_{1,2}$ spinors on $T \oplus T^{*}$ GCY

- First define differential forms (with $\eta_{-}=\left(\eta_{+}\right)^{*}$) for $S U(3)$:

$$
J_{\mu \nu}=-i \eta_{+}^{\dagger} \gamma_{\mu \nu} \eta_{+}, \quad \Omega_{\mu \nu \rho}=-i \eta_{-}^{\dagger} \gamma_{\mu \nu \rho} \eta_{+}
$$

SUSY conditions can be expressed in terms of forms !

- Further define the bi-spinors:

$$
\Phi_{+}=\eta_{+}^{1} \otimes \eta_{+}^{2 \dagger}, \quad \Phi_{-}=\eta_{+}^{1} \otimes \eta_{-}^{2 \dagger}
$$

$\Phi_{ \pm}=$polyforms, for $S U(3)$:

$$
\begin{aligned}
& \Psi_{+}=e^{-\phi} e^{-B} \Phi_{+} / N_{+}=e^{i \theta} e^{-\phi} e^{-B} e^{-i J} \\
& \Psi_{-}=e^{-\phi} e^{-B} \Phi_{-} / N_{-}=-i e^{-\phi} e^{-B} \Omega_{3}
\end{aligned}
$$

SUSY conditions can be expressed in terms of $\Psi_{ \pm}$! Spinors on $T \oplus T^{*}$, use of $\Psi_{ \pm} \Rightarrow$ GCG interpretations !

The generalized tangent bundle

GCG considers the fibration:
$T^{*} \hookrightarrow E$
$\downarrow \quad E$: the generalized tangent bundle.
$\stackrel{\downarrow}{T}$

The generalized tangent bundle

GCG considers the fibration:
$T^{*} \hookrightarrow E$
$\downarrow \quad E$: the generalized tangent bundle. T
Locally: $T \oplus T^{*}$.

The generalized tangent bundle

GCG considers the fibration:
$T^{*} \hookrightarrow E$
$\downarrow \quad E$: the generalized tangent bundle. T
Locally: $T \oplus T^{*}$. Sections: generalized vectors:

$$
X=v+\xi=\binom{v}{\xi}, v \in T, \xi \in T^{*} .
$$

The generalized tangent bundle

GCG considers the fibration:
$T^{*} \hookrightarrow E$
$\downarrow \quad E$: the generalized tangent bundle. T

Locally: $T \oplus T^{*}$. Sections: generalized vectors:

$$
X=v+\xi=\binom{v}{\xi}, v \in T, \xi \in T^{*} .
$$

Transition functions between two patches U_{α} and U_{β} are

$$
\binom{v}{\xi}_{(\alpha)}=\left(\begin{array}{cc}
a & 0 \\
\omega a & a^{-T}
\end{array}\right)_{(\alpha \beta)}\binom{v}{\xi}_{(\beta)}=\binom{a v}{a^{-T} \xi-i_{a v} \omega} .
$$

The generalized tangent bundle

GCG considers the fibration:
$T^{*} \hookrightarrow E$
$\downarrow \quad E$: the generalized tangent bundle. T
Locally: $T \oplus T^{*}$. Sections: generalized vectors:

$$
X=v+\xi=\binom{v}{\xi}, v \in T, \xi \in T^{*}
$$

Transition functions between two patches U_{α} and U_{β} are

$$
\binom{v}{\xi}_{(\alpha)}=\left(\begin{array}{cc}
a & 0 \\
\omega a & a^{-T}
\end{array}\right)_{(\alpha \beta)}\binom{v}{\xi}_{(\beta)}=\binom{a v}{a^{-T} \xi-i_{a v} \omega} .
$$

$a \in G L(d, \mathbb{R}): a, a^{-T}$ usual patching of vectors and 1-forms.

The generalized tangent bundle

GCG considers the fibration:
$T^{*} \hookrightarrow E$
$\downarrow \quad E$: the generalized tangent bundle. T
Locally: $T \oplus T^{*}$. Sections: generalized vectors:

$$
X=v+\xi=\binom{v}{\xi}, v \in T, \xi \in T^{*}
$$

Transition functions between two patches U_{α} and U_{β} are

$$
\binom{v}{\xi}_{(\alpha)}=\left(\begin{array}{cc}
a & 0 \\
\omega a & a^{-T}
\end{array}\right)_{(\alpha \beta)}\binom{v}{\xi}_{(\beta)}=\binom{a v}{a^{-T} \xi-i_{a v} \omega} .
$$

$a \in G L(d, \mathbb{R}): a, a^{-T}$ usual patching of vectors and 1-forms.
Additional shift of the 1 -form, given by the 2 -form $\omega_{(\alpha \beta)}=\mathrm{d} \Lambda_{(\alpha \beta)}$:

The generalized tangent bundle

GCG considers the fibration:
$T^{*} \hookrightarrow E$
$\downarrow \quad E$: the generalized tangent bundle. T
Locally: $T \oplus T^{*}$. Sections: generalized vectors:

$$
X=v+\xi=\binom{v}{\xi}, v \in T, \xi \in T^{*}
$$

Transition functions between two patches U_{α} and U_{β} are

$$
\binom{v}{\xi}_{(\alpha)}=\left(\begin{array}{cc}
a & 0 \\
\omega a & a^{-T}
\end{array}\right)_{(\alpha \beta)}\binom{v}{\xi}_{(\beta)}=\binom{a v}{a^{-T} \xi-i_{a v} \omega} .
$$

$a \in G L(d, \mathbb{R}): a, a^{-T}$ usual patching of vectors and 1-forms.
Additional shift of the 1 -form, given by the 2 -form $\omega_{(\alpha \beta)}=\mathrm{d} \Lambda_{(\alpha \beta)}$: due to the non-trivial fibration of T^{*} over T.

The generalized tangent bundle

GCG considers the fibration:
$T^{*} \hookrightarrow E$
$\downarrow \quad E$: the generalized tangent bundle. T
Locally: $T \oplus T^{*}$. Sections: generalized vectors:

$$
X=v+\xi=\binom{v}{\xi}, v \in T, \xi \in T^{*}
$$

Transition functions between two patches U_{α} and U_{β} are

$$
\binom{v}{\xi}_{(\alpha)}=\left(\begin{array}{cc}
a & 0 \\
\omega a & a^{-T}
\end{array}\right)_{(\alpha \beta)}\binom{v}{\xi}_{(\beta)}=\binom{a v}{a^{-T} \xi-i_{a v} \omega} .
$$

$a \in G L(d, \mathbb{R}): a, a^{-T}$ usual patching of vectors and 1-forms.
Additional shift of the 1 -form, given by the 2 -form $\omega_{(\alpha \beta)}=\mathrm{d} \Lambda_{(\alpha \beta)}$: due to the non-trivial fibration of T^{*} over T.

This non-trivial fibration: given by the 2 -form B.

The generalized tangent bundle

GCG considers the fibration:
$T^{*} \hookrightarrow E$
$\downarrow \quad E$: the generalized tangent bundle. T
Locally: $T \oplus T^{*}$. Sections: generalized vectors:

$$
X=v+\xi=\binom{v}{\xi}, v \in T, \xi \in T^{*}
$$

Transition functions between two patches U_{α} and U_{β} are

$$
\binom{v}{\xi}_{(\alpha)}=\left(\begin{array}{cc}
a & 0 \\
\omega a & a^{-T}
\end{array}\right)_{(\alpha \beta)}\binom{v}{\xi}_{(\beta)}=\binom{a v}{a^{-T} \xi-i_{a v} \omega} .
$$

$a \in G L(d, \mathbb{R}): a, a^{-T}$ usual patching of vectors and 1-forms.
Additional shift of the 1 -form, given by the 2 -form $\omega_{(\alpha \beta)}=\mathrm{d} \Lambda_{(\alpha \beta)}$: due to the non-trivial fibration of T^{*} over T.

This non-trivial fibration: given by the 2 -form B. Geometrical interpretation of B : "connective structure" of a gerbe.

The generalized tangent bundle

GCG considers the fibration:
$T^{*} \hookrightarrow E$
$\downarrow \quad E$: the generalized tangent bundle. T
Locally: $T \oplus T^{*}$. Sections: generalized vectors:

$$
X=v+\xi=\binom{v}{\xi}, v \in T, \xi \in T^{*}
$$

Transition functions between two patches U_{α} and U_{β} are

$$
\binom{v}{\xi}_{(\alpha)}=\left(\begin{array}{cc}
a & 0 \\
\omega a & a^{-T}
\end{array}\right)_{(\alpha \beta)}\binom{v}{\xi}_{(\beta)}=\binom{a v}{a^{-T} \xi-i_{a v} \omega} .
$$

$a \in G L(d, \mathbb{R}): a, a^{-T}$ usual patching of vectors and 1-forms.
Additional shift of the 1 -form, given by the 2 -form $\omega_{(\alpha \beta)}=\mathrm{d} \Lambda_{(\alpha \beta)}$: due to the non-trivial fibration of T^{*} over T.

This non-trivial fibration: given by the 2 -form B.
Geometrical interpretation of B : "connective structure" of a gerbe.
$\hookrightarrow \omega=\mathrm{d} \Lambda$ is "a gauge transformation" from U_{α} to U_{β}.

Introduction

Twist

Dual solutions

Heterotic

Conclusions

- E is equipped with a natural metric η :

$$
\eta(X, X)=i_{v} \xi=v^{\mu} \xi_{\mu} \quad \Leftrightarrow \quad X^{T} \eta X=\frac{1}{2}\left(\begin{array}{ll}
v & \xi
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\binom{v}{\xi}
$$

- E is equipped with a natural metric η :

$$
\eta(X, X)=i_{v} \xi=v^{\mu} \xi_{\mu} \quad \Leftrightarrow \quad X^{T} \eta X=\frac{1}{2}\left(\begin{array}{ll}
v & \xi
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\binom{v}{\xi}
$$

$O(d, d)$ action on $T \oplus T^{*}$ leaves η invariant.

Introduction

- E is equipped with a natural metric η :

$$
\eta(X, X)=i_{v} \xi=v^{\mu} \xi_{\mu} \quad \Leftrightarrow \quad X^{T} \eta X=\frac{1}{2}\left(\begin{array}{ll}
v & \xi
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\binom{v}{\xi}
$$

$O(d, d)$ action on $T \oplus T^{*}$ leaves η invariant.
Twist duality is an $O(d, d)$ transformation.

Introduction

- E is equipped with a natural metric η :

$$
\eta(X, X)=i_{v} \xi=v^{\mu} \xi_{\mu} \quad \Leftrightarrow \quad X^{T} \eta X=\frac{1}{2}\left(\begin{array}{ll}
v & \xi
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\binom{v}{\xi}
$$

$O(d, d)$ action on $T \oplus T^{*}$ leaves η invariant.
Twist duality is an $O(d, d)$ transformation. Structure group of E reduced by patching conditions

- E is equipped with a natural metric η :

$$
\eta(X, X)=i_{v} \xi=v^{\mu} \xi_{\mu} \quad \Leftrightarrow \quad X^{T} \eta X=\frac{1}{2}\left(\begin{array}{ll}
v & \xi
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\binom{v}{\xi}
$$

$O(d, d)$ action on $T \oplus T^{*}$ leaves η invariant.
Twist duality is an $O(d, d)$ transformation.
Structure group of E reduced by patching conditions to $G_{\text {geom }}=G_{B} \rtimes G L(d) \subset O(d, d)$
$P=e^{B}\left(\begin{array}{cc}a & 0 \\ 0 & a^{-T}\end{array}\right)=\left(\begin{array}{cc}1 & 0 \\ B & 1\end{array}\right)\left(\begin{array}{cc}a & 0 \\ 0 & a^{-T}\end{array}\right)=\left(\begin{array}{cc}a & 0 \\ B a & a^{-T}\end{array}\right)$.

- E is equipped with a natural metric η :

$$
\eta(X, X)=i_{v} \xi=v^{\mu} \xi_{\mu} \quad \Leftrightarrow \quad X^{T} \eta X=\frac{1}{2}\left(\begin{array}{ll}
v & \xi
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\binom{v}{\xi}
$$

$O(d, d)$ action on $T \oplus T^{*}$ leaves η invariant.
Twist duality is an $O(d, d)$ transformation.
Structure group of E reduced by patching conditions to $G_{\text {geom }}=G_{B} \rtimes G L(d) \subset O(d, d)$

$$
P=e^{B}\left(\begin{array}{cc}
a & 0 \\
0 & a^{-T}
\end{array}\right)=\left(\begin{array}{cc}
1 & 0 \\
B & 1
\end{array}\right)\left(\begin{array}{cc}
a & 0 \\
0 & a^{-T}
\end{array}\right)=\left(\begin{array}{cc}
a & 0 \\
B a & a^{-T}
\end{array}\right) .
$$

Twist duality $\subset G_{\text {geom }}$.

- E is equipped with a natural metric η :

$$
\eta(X, X)=i_{v} \xi=v^{\mu} \xi_{\mu} \quad \Leftrightarrow \quad X^{T} \eta X=\frac{1}{2}\left(\begin{array}{ll}
v & \xi
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\binom{v}{\xi}
$$

$O(d, d)$ action on $T \oplus T^{*}$ leaves η invariant.
Twist duality is an $O(d, d)$ transformation.
Structure group of E reduced by patching conditions to $G_{\text {geom }}=G_{B} \rtimes G L(d) \subset O(d, d)$
$P=e^{B}\left(\begin{array}{cc}a & 0 \\ 0 & a^{-T}\end{array}\right)=\left(\begin{array}{cc}1 & 0 \\ B & 1\end{array}\right)\left(\begin{array}{cc}a & 0 \\ 0 & a^{-T}\end{array}\right)=\left(\begin{array}{cc}a & 0 \\ B a & a^{-T}\end{array}\right)$.
Twist duality $\subset G_{\text {geom }}$.

- $\mathcal{M}_{\text {internal }}$: a bundle with base \mathcal{B} along $\mathrm{d} x^{\mu}$, fiber \mathcal{F} along $\mathrm{d} y^{m}$, and connection A_{μ}^{m} :
- E is equipped with a natural metric η :

$$
\eta(X, X)=i_{v} \xi=v^{\mu} \xi_{\mu} \quad \Leftrightarrow \quad X^{T} \eta X=\frac{1}{2}\left(\begin{array}{ll}
v & \xi
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\binom{v}{\xi}
$$

$O(d, d)$ action on $T \oplus T^{*}$ leaves η invariant.
Twist duality is an $O(d, d)$ transformation.
Structure group of E reduced by patching conditions to $G_{\text {geom }}=G_{B} \rtimes G L(d) \subset O(d, d)$

$$
P=e^{B}\left(\begin{array}{cc}
a & 0 \\
0 & a^{-T}
\end{array}\right)=\left(\begin{array}{cc}
1 & 0 \\
B & 1
\end{array}\right)\left(\begin{array}{cc}
a & 0 \\
0 & a^{-T}
\end{array}\right)=\left(\begin{array}{cc}
a & 0 \\
B a & a^{-T}
\end{array}\right)
$$

Twist duality $\subset G_{\text {geom }}$.

- $\mathcal{M}_{\text {internal }}$: a bundle with base \mathcal{B} along $\mathrm{d} x^{\mu}$, fiber \mathcal{F} along $\mathrm{d} y^{m}$, and connection A_{μ}^{m} :

$$
\mathrm{d} s^{2}=g_{\mu \nu} \mathrm{d} x^{\mu} \mathrm{d} x^{\nu}+g_{m n}\left(\mathrm{~d} y^{m}+A_{\rho}^{m} \mathrm{~d} x^{\rho}\right)\left(\mathrm{d} y^{n}+A_{\sigma}^{n} \mathrm{~d} x^{\sigma}\right)
$$

- E is equipped with a natural metric η :

$$
\eta(X, X)=i_{v} \xi=v^{\mu} \xi_{\mu} \quad \Leftrightarrow \quad X^{T} \eta X=\frac{1}{2}\left(\begin{array}{ll}
v & \xi
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\binom{v}{\xi}
$$

$O(d, d)$ action on $T \oplus T^{*}$ leaves η invariant.
Twist duality is an $O(d, d)$ transformation.
Structure group of E reduced by patching conditions to $G_{\text {geom }}=G_{B} \rtimes G L(d) \subset O(d, d)$
$P=e^{B}\left(\begin{array}{cc}a & 0 \\ 0 & a^{-T}\end{array}\right)=\left(\begin{array}{cc}1 & 0 \\ B & 1\end{array}\right)\left(\begin{array}{cc}a & 0 \\ 0 & a^{-T}\end{array}\right)=\left(\begin{array}{cc}a & 0 \\ B a & a^{-T}\end{array}\right)$.

Twist duality $\subset G_{\text {geom }}$.

- $\mathcal{M}_{\text {internal }}$: a bundle with base \mathcal{B} along $\mathrm{d} x^{\mu}$, fiber \mathcal{F} along $\mathrm{d} y^{m}$, and connection A_{μ}^{m} :

$$
\mathrm{d} s^{2}=g_{\mu \nu} \mathrm{d} x^{\mu} \mathrm{d} x^{\nu}+g_{m n}\left(\mathrm{~d} y^{m}+A_{\rho}^{m} \mathrm{~d} x^{\rho}\right)\left(\mathrm{d} y^{n}+A_{\sigma}^{n} \mathrm{~d} x^{\sigma}\right)
$$

In the $\left(\mathrm{d} x^{\mu}, \mathrm{d} y^{m}\right)$ basis: vielbeins and metric:

$$
\begin{aligned}
e=\left(\begin{array}{cc}
e_{\mathcal{B}} & 0 \\
e_{\mathcal{F}} A & e_{\mathcal{F}}
\end{array}\right) & g=e^{T} e=\left(\begin{array}{cc}
g_{\mathcal{B}}+A^{T} g_{\mathcal{F}} A & A^{T} g_{\mathcal{F}} \\
g_{\mathcal{F}} A & g_{\mathcal{F}}
\end{array}\right) \\
g_{\mathcal{B}}=e_{\mathcal{B}}^{T} e_{\mathcal{B}}, & g_{\mathcal{F}}=e_{\mathcal{F}}^{T} e_{\mathcal{F}}
\end{aligned}
$$

- On E, B plays the role of a connection

David ANDRIOT

Introduction

GCG and type II SUSY conditions $T \oplus T^{*}$ bundle Twist

Dual solutions

Heterotic

Conclusions

- On E, B plays the role of a connection

Introduction

\hookrightarrow in GCG, we introduce generalized vielbeins/metric:

$$
\mathcal{E}=\left(\begin{array}{cc}
e & 0 \\
-e^{-T} B & e^{-T}
\end{array}\right), \quad \mathcal{H}=\mathcal{E}^{T} \mathcal{E}=\left(\begin{array}{cc}
g-B g^{-1} B & B g^{-1} \\
-g^{-1} B & g^{-1}
\end{array}\right)
$$

- On E, B plays the role of a connection

Introduction
\hookrightarrow in GCG, we introduce generalized vielbeins/metric:

$$
\begin{aligned}
\mathcal{E}= & \left(\begin{array}{cc}
e & 0 \\
-e^{-T} B & e^{-T}
\end{array}\right), & \mathcal{H}=\mathcal{E}^{T} \mathcal{E}=\left(\begin{array}{cc}
g-B g^{-1} B & B g^{-1} \\
-g^{-1} B & g^{-1}
\end{array}\right) \\
& \eta=\mathcal{E}^{T}\left(\begin{array}{ll}
0 & \mathbb{I} \\
\mathbb{I} & 0
\end{array}\right) \mathcal{E}, & \mathcal{H}=\mathcal{E}^{T}\left(\begin{array}{ll}
\mathbb{I} & 0 \\
0 & \mathbb{I}
\end{array}\right) \mathcal{E} .
\end{aligned}
$$

Introduction

- On E, B plays the role of a connection
\hookrightarrow in GCG, we introduce generalized vielbeins/metric:

$$
\begin{aligned}
\mathcal{E}= & \left(\begin{array}{cc}
e & 0 \\
-e^{-T} B & e^{-T}
\end{array}\right), & \mathcal{H}=\mathcal{E}^{T} \mathcal{E}=\left(\begin{array}{cc}
g-B g^{-1} B & B g^{-1} \\
-g^{-1} B & g^{-1}
\end{array}\right) \\
& \eta=\mathcal{E}^{T}\left(\begin{array}{ll}
0 & \mathbb{I} \\
\mathbb{I} & 0
\end{array}\right) \mathcal{E}, & \mathcal{H}=\mathcal{E}^{T}\left(\begin{array}{ll}
\mathbb{I} & 0 \\
0 & \mathbb{I}
\end{array}\right) \mathcal{E} .
\end{aligned}
$$

Transformation under $O(d, d)$:

Introduction

- On E, B plays the role of a connection
\hookrightarrow in GCG, we introduce generalized vielbeins/metric:

$$
\begin{array}{rlrl}
\mathcal{E}= & \left(\begin{array}{cc}
e & 0 \\
-e^{-T} B & e^{-T}
\end{array}\right), & \mathcal{H}=\mathcal{E}^{T} \mathcal{E}=\left(\begin{array}{cc}
g-B g^{-1} B & B g^{-1} \\
-g^{-1} B & g^{-1}
\end{array}\right) \\
& \eta=\mathcal{E}^{T}\left(\begin{array}{ll}
0 & \mathbb{I} \\
\mathbb{I} & 0
\end{array}\right) \mathcal{E}, & & \mathcal{H}=\mathcal{E}^{T}\left(\begin{array}{ll}
\mathbb{I} & 0 \\
0 & \mathbb{I}
\end{array}\right) \mathcal{E} .
\end{array}
$$

Transformation under $O(d, d)$:
$\mathcal{E} \mapsto \mathcal{E}^{\prime}=\mathcal{E} O, \mathcal{H} \mapsto \mathcal{H}^{\prime}=O^{T} \mathcal{H} O, e^{\phi} \mapsto e^{\phi^{\prime}}=e^{\phi}\left(\frac{\operatorname{det}\left(g^{\prime}\right)}{\operatorname{det}(g)}\right)^{\frac{1}{4}}$.

- On E, B plays the role of a connection
\hookrightarrow in GCG, we introduce generalized vielbeins/metric:

$$
\begin{aligned}
\mathcal{E}= & \left(\begin{array}{cc}
e & 0 \\
-e^{-T} B & e^{-T}
\end{array}\right), & \mathcal{H}=\mathcal{E}^{T} \mathcal{E}=\left(\begin{array}{cc}
g-B g^{-1} B & B g^{-1} \\
-g^{-1} B & g^{-1}
\end{array}\right) \\
& \eta=\mathcal{E}^{T}\left(\begin{array}{ll}
0 & \mathbb{I} \\
\mathbb{I} & 0
\end{array}\right) \mathcal{E}, & \mathcal{H}=\mathcal{E}^{T}\left(\begin{array}{ll}
\mathbb{I} & 0 \\
0 & \mathbb{I}
\end{array}\right) \mathcal{E} .
\end{aligned}
$$

Transformation under $O(d, d)$:
$\mathcal{E} \mapsto \mathcal{E}^{\prime}=\mathcal{E} O, \mathcal{H} \mapsto \mathcal{H}^{\prime}=O^{T} \mathcal{H} O, e^{\phi} \mapsto e^{\phi^{\prime}}=e^{\phi}\left(\frac{\operatorname{det}\left(g^{\prime}\right)}{\operatorname{det}(g)}\right)^{\frac{1}{4}}$.
\mathcal{H} looks like an object in T-duality on torus.

- On E, B plays the role of a connection
\hookrightarrow in GCG, we introduce generalized vielbeins/metric:

$$
\begin{aligned}
\mathcal{E}= & \left(\begin{array}{cc}
e & 0 \\
-e^{-T} B & e^{-T}
\end{array}\right), & \mathcal{H}=\mathcal{E}^{T} \mathcal{E}=\left(\begin{array}{cc}
g-B g^{-1} B & B g^{-1} \\
-g^{-1} B & g^{-1}
\end{array}\right) \\
& \eta=\mathcal{E}^{T}\left(\begin{array}{ll}
0 & \mathbb{I} \\
\mathbb{I} & 0
\end{array}\right) \mathcal{E}, & \mathcal{H}=\mathcal{E}^{T}\left(\begin{array}{ll}
\mathbb{I} & 0 \\
0 & \mathbb{I}
\end{array}\right) \mathcal{E} .
\end{aligned}
$$

Transformation under $O(d, d)$:
$\mathcal{E} \mapsto \mathcal{E}^{\prime}=\mathcal{E} O, \mathcal{H} \mapsto \mathcal{H}^{\prime}=O^{T} \mathcal{H} O, e^{\phi} \mapsto e^{\phi^{\prime}}=e^{\phi}\left(\frac{\operatorname{det}\left(g^{\prime}\right)}{\operatorname{det}(g)}\right)^{\frac{1}{4}}$.
\mathcal{H} looks like an object in T-duality on torus.
Same transformation under T-duality group $O\left(d_{\mathcal{F}}, d_{\mathcal{F}}\right)$.

- On E, B plays the role of a connection
\hookrightarrow in GCG, we introduce generalized vielbeins/metric:

$$
\begin{aligned}
\mathcal{E}= & \left(\begin{array}{cc}
e & 0 \\
-e^{-T} B & e^{-T}
\end{array}\right), & \mathcal{H}=\mathcal{E}^{T} \mathcal{E}=\left(\begin{array}{cc}
g-B g^{-1} B & B g^{-1} \\
-g^{-1} B & g^{-1}
\end{array}\right) \\
& \eta=\mathcal{E}^{T}\left(\begin{array}{ll}
0 & \mathbb{I} \\
\mathbb{I} & 0
\end{array}\right) \mathcal{E}, & \mathcal{H}=\mathcal{E}^{T}\left(\begin{array}{ll}
\mathbb{I} & 0 \\
0 & \mathbb{I}
\end{array}\right) \mathcal{E} .
\end{aligned}
$$

Transformation under $O(d, d)$:
$\mathcal{E} \mapsto \mathcal{E}^{\prime}=\mathcal{E} O, \mathcal{H} \mapsto \mathcal{H}^{\prime}=O^{T} \mathcal{H} O, e^{\phi} \mapsto e^{\phi^{\prime}}=e^{\phi}\left(\frac{\operatorname{det}\left(g^{\prime}\right)}{\operatorname{det}(g)}\right)^{\frac{1}{4}}$.
\mathcal{H} looks like an object in T-duality on torus.
Same transformation under T-duality group $O\left(d_{\mathcal{F}}, d_{\mathcal{F}}\right)$. Here $d=d_{\mathcal{M}}>d_{\mathcal{F}} \Rightarrow$ T-duality natural in GCG; we will consider a "generalization of T-duality".

- On E, B plays the role of a connection
\hookrightarrow in GCG, we introduce generalized vielbeins/metric:

$$
\begin{aligned}
\mathcal{E}= & \left(\begin{array}{cc}
e & 0 \\
-e^{-T} B & e^{-T}
\end{array}\right), & \mathcal{H}=\mathcal{E}^{T} \mathcal{E}=\left(\begin{array}{cc}
g-B g^{-1} B & B g^{-1} \\
-g^{-1} B & g^{-1}
\end{array}\right) \\
& \eta=\mathcal{E}^{T}\left(\begin{array}{ll}
0 & \mathbb{I} \\
\mathbb{I} & 0
\end{array}\right) \mathcal{E}, & \mathcal{H}=\mathcal{E}^{T}\left(\begin{array}{ll}
\mathbb{I} & 0 \\
0 & \mathbb{I}
\end{array}\right) \mathcal{E} .
\end{aligned}
$$

Transformation under $O(d, d)$:
$\mathcal{E} \mapsto \mathcal{E}^{\prime}=\mathcal{E} O, \mathcal{H} \mapsto \mathcal{H}^{\prime}=O^{T} \mathcal{H} O, e^{\phi} \mapsto e^{\phi^{\prime}}=e^{\phi}\left(\frac{\operatorname{det}\left(g^{\prime}\right)}{\operatorname{det}(g)}\right)^{\frac{1}{4}}$.
\mathcal{H} looks like an object in T-duality on torus.
Same transformation under T-duality group $O\left(d_{\mathcal{F}}, d_{\mathcal{F}}\right)$. Here $d=d_{\mathcal{M}}>d_{\mathcal{F}} \Rightarrow$ T-duality natural in GCG; we will consider a "generalization of T-duality".

- Pure spinors:

$$
\Psi_{ \pm}=\frac{1}{N_{ \pm}} e^{-\phi} e^{-B} \eta_{+}^{1} \otimes \eta_{ \pm}^{2 \dagger}
$$

- On E, B plays the role of a connection
\hookrightarrow in GCG, we introduce generalized vielbeins/metric:

$$
\begin{aligned}
\mathcal{E}= & \left(\begin{array}{cc}
e & 0 \\
-e^{-T} B & e^{-T}
\end{array}\right), & \mathcal{H}=\mathcal{E}^{T} \mathcal{E}=\left(\begin{array}{cc}
g-B g^{-1} B & B g^{-1} \\
-g^{-1} B & g^{-1}
\end{array}\right) \\
& \eta=\mathcal{E}^{T}\left(\begin{array}{ll}
0 & \mathbb{I} \\
\mathbb{I} & 0
\end{array}\right) \mathcal{E}, & \mathcal{H}=\mathcal{E}^{T}\left(\begin{array}{ll}
\mathbb{I} & 0 \\
0 & \mathbb{I}
\end{array}\right) \mathcal{E} .
\end{aligned}
$$

Transformation under $O(d, d)$:
$\mathcal{E} \mapsto \mathcal{E}^{\prime}=\mathcal{E} O, \mathcal{H} \mapsto \mathcal{H}^{\prime}=O^{T} \mathcal{H} O, e^{\phi} \mapsto e^{\phi^{\prime}}=e^{\phi}\left(\frac{\operatorname{det}\left(g^{\prime}\right)}{\operatorname{det}(g)}\right)^{\frac{1}{4}}$.
\mathcal{H} looks like an object in T-duality on torus.
Same transformation under T-duality group $O\left(d_{\mathcal{F}}, d_{\mathcal{F}}\right)$. Here $d=d_{\mathcal{M}}>d_{\mathcal{F}} \Rightarrow$ T-duality natural in GCG; we will consider a "generalization of T-duality".

- Pure spinors:

$$
\Psi_{ \pm}=\frac{1}{N_{ \pm}} e^{-\phi} e^{-B} \eta_{+}^{1} \otimes \eta_{ \pm}^{2 \dagger}
$$

Majorana-Weyl $\operatorname{Spin}(d, d)$ spinors on E (locally $T \oplus T^{*}$)

- On E, B plays the role of a connection
\hookrightarrow in GCG, we introduce generalized vielbeins/metric:

$$
\begin{aligned}
\mathcal{E}= & \left(\begin{array}{cc}
e & 0 \\
-e^{-T} B & e^{-T}
\end{array}\right), & \mathcal{H}=\mathcal{E}^{T} \mathcal{E}=\left(\begin{array}{cc}
g-B g^{-1} B & B g^{-1} \\
-g^{-1} B & g^{-1}
\end{array}\right) \\
& \eta=\mathcal{E}^{T}\left(\begin{array}{ll}
0 & \mathbb{I} \\
\mathbb{I} & 0
\end{array}\right) \mathcal{E}, & \mathcal{H}=\mathcal{E}^{T}\left(\begin{array}{ll}
\mathbb{I} & 0 \\
0 & \mathbb{I}
\end{array}\right) \mathcal{E} .
\end{aligned}
$$

Transformation under $O(d, d)$:
$\mathcal{E} \mapsto \mathcal{E}^{\prime}=\mathcal{E} O, \mathcal{H} \mapsto \mathcal{H}^{\prime}=O^{T} \mathcal{H} O, e^{\phi} \mapsto e^{\phi^{\prime}}=e^{\phi}\left(\frac{\operatorname{det}\left(g^{\prime}\right)}{\operatorname{det}(g)}\right)^{\frac{1}{4}}$.
\mathcal{H} looks like an object in T-duality on torus.
Same transformation under T-duality group $O\left(d_{\mathcal{F}}, d_{\mathcal{F}}\right)$.
Here $d=d_{\mathcal{M}}>d_{\mathcal{F}} \Rightarrow$ T-duality natural in GCG; we will consider a "generalization of T-duality".

- Pure spinors:

$$
\Psi_{ \pm}=\frac{1}{N_{ \pm}} e^{-\phi} e^{-B} \eta_{+}^{1} \otimes \eta_{ \pm}^{2 \dagger}
$$

Majorana-Weyl Spin (d, d) spinors on E (locally $T \oplus T^{*}$)
\hookrightarrow should transform under the spinorial rep. of $O(d, d)$:

$$
\Psi \mapsto \Psi^{\prime}=O \Psi
$$

- On E, B plays the role of a connection
\hookrightarrow in GCG, we introduce generalized vielbeins/metric:

$$
\begin{aligned}
& \mathcal{E}=\left(\begin{array}{cc}
e & 0 \\
-e^{-T} B & e^{-T}
\end{array}\right), \quad \mathcal{H}=\mathcal{E}^{T} \mathcal{E}=\left(\begin{array}{cc}
g-B g^{-1} B & B g^{-1} \\
-g^{-1} B & g^{-1}
\end{array}\right) \\
& \eta=\mathcal{E}^{T}\left(\begin{array}{ll}
0 & \mathbb{I} \\
\mathbb{I} & 0
\end{array}\right) \mathcal{E}, \quad \mathcal{H}=\mathcal{E}^{T}\left(\begin{array}{ll}
\mathbb{I} & 0 \\
0 & \mathbb{I}
\end{array}\right) \mathcal{E} .
\end{aligned}
$$

Transformation under $O(d, d)$:
$\mathcal{E} \mapsto \mathcal{E}^{\prime}=\mathcal{E} O, \mathcal{H} \mapsto \mathcal{H}^{\prime}=O^{T} \mathcal{H} O, e^{\phi} \mapsto e^{\phi^{\prime}}=e^{\phi}\left(\frac{\operatorname{det}\left(g^{\prime}\right)}{\operatorname{det}(g)}\right)^{\frac{1}{4}}$.
\mathcal{H} looks like an object in T-duality on torus.
Same transformation under T-duality group $O\left(d_{\mathcal{F}}, d_{\mathcal{F}}\right)$.
Here $d=d_{\mathcal{M}}>d_{\mathcal{F}} \Rightarrow$ T-duality natural in GCG; we will consider a "generalization of T-duality".

- Pure spinors:

$$
\Psi_{ \pm}=\frac{1}{N_{ \pm}} e^{-\phi} e^{-B} \eta_{+}^{1} \otimes \eta_{ \pm}^{2 \dagger}
$$

Majorana-Weyl Spin (d, d) spinors on E (locally $T \oplus T^{*}$)
\hookrightarrow should transform under the spinorial rep. of $O(d, d)$:

$$
\Psi \mapsto \Psi^{\prime}=O \Psi
$$

Geometrical info. contained in $J, \Omega_{3},(B, \phi)(S U(3))$.

Introduction

The Twist transformation

On generalized vielbeins \mathcal{E}

The Twist transformation

On generalized vielbeins \mathcal{E}

- We consider $O \in G_{\text {geom }} \subset O(d, d)$:

$$
\begin{aligned}
& A^{T} C+C^{T} A=0, \\
& O=\left(\begin{array}{cc}
A & 0 \\
C & A^{-T}
\end{array}\right)
\end{aligned}
$$

The Twist transformation

On generalized vielbeins \mathcal{E}

- We consider $O \in G_{\text {geom }} \subset O(d, d)$:

$$
\begin{aligned}
& A^{T} C+C^{T} A=0, \\
& O=\left(\begin{array}{cc}
A & 0 \\
C & A^{-T}
\end{array}\right)=\left(\begin{array}{cc|cc}
A_{\mathcal{B}} & 0 & 0 & 0 \\
A_{\mathcal{C}} & A_{\mathcal{F}} & 0 & 0 \\
\hline C_{\mathcal{B}} & C_{\mathcal{C}} & A_{\mathcal{B}}^{-T} & -A_{\mathcal{B}}^{-T} A_{\mathcal{C}}^{T} A_{\mathcal{F}}^{-T} \\
C_{\mathcal{C}^{\prime}} & C_{\mathcal{F}} & 0 & A_{\mathcal{F}}^{-T}
\end{array}\right)
\end{aligned}
$$

with separation of \mathcal{B} and \mathcal{F}.

The Twist transformation

On generalized vielbeins \mathcal{E}

- We consider $O \in G_{\text {geom }} \subset O(d, d)$:

$$
\begin{aligned}
& A^{T} C+C^{T} A=0, \\
& O=\left(\begin{array}{cc}
A & 0 \\
C & A^{-T}
\end{array}\right)=\left(\begin{array}{cc|cc}
A_{\mathcal{B}} & 0 & 0 & 0 \\
A_{\mathcal{C}} & A_{\mathcal{F}} & 0 & 0 \\
\hline C_{\mathcal{B}} & C_{\mathcal{C}} & A_{\mathcal{B}}^{-T} & -A_{\mathcal{B}}^{-T} A_{\mathcal{C}}^{T} A_{\mathcal{F}}^{-T} \\
C_{\mathcal{C}^{\prime}} & C_{\mathcal{F}} & 0 & A_{\mathcal{F}}^{-T}
\end{array}\right)
\end{aligned}
$$

with separation of \mathcal{B} and \mathcal{F}.
The $O(d, d)$ constraint parameterizes C as

$$
C=\left(\begin{array}{cc}
A_{\mathcal{B}}^{-T}\left(\tilde{C}_{\mathcal{B}}-A_{\mathcal{C}}^{T} A_{\mathcal{F}}^{-T} \tilde{C}_{\mathcal{C}}\right) & -A_{\mathcal{B}}^{-T}\left(\tilde{C}_{\mathcal{C}}^{T}+A_{\mathcal{C}}^{T} A_{\mathcal{F}}^{-T} \tilde{C}_{\mathcal{F}}\right) \\
A_{\mathcal{F}}^{-T} \tilde{\mathcal{C}}_{\mathcal{C}} & \tilde{C}_{\mathcal{F}}
\end{array}\right),
$$

The Twist transformation

On generalized vielbeins \mathcal{E}

- We consider $O \in G_{\text {geom }} \subset O(d, d)$:

$$
\begin{aligned}
& A^{T} C+C^{T} A=0, \\
& O=\left(\begin{array}{cc}
A & 0 \\
C & A^{-T}
\end{array}\right)=\left(\begin{array}{cc|cc}
A_{\mathcal{B}} & 0 & 0 & 0 \\
A_{\mathcal{C}} & A_{\mathcal{F}} & 0 & 0 \\
\hline C_{\mathcal{B}} & C_{\mathcal{C}} & A_{\mathcal{B}}^{-T} & -A_{\mathcal{B}}^{-T} A_{\mathcal{C}}^{T} A_{\mathcal{F}}^{-T} \\
C_{\mathcal{C}^{\prime}} & C_{\mathcal{F}} & 0 & A_{\mathcal{F}}^{-T}
\end{array}\right)
\end{aligned}
$$

with separation of \mathcal{B} and \mathcal{F}.
The $O(d, d)$ constraint parameterizes C as

$$
C=\left(\begin{array}{cc}
A_{\mathcal{B}}^{-T}\left(\tilde{C}_{\mathcal{B}}-A_{\mathcal{C}}^{T} A_{\mathcal{F}}^{-T} \tilde{C}_{\mathcal{C}}\right) & -A_{\mathcal{B}}^{-T}\left(\tilde{C}_{C}^{T}+A_{\mathcal{C}}^{T} A_{\mathcal{F}}^{-T} \tilde{C}_{\mathcal{F}}\right) \\
A_{\mathcal{F}}^{-T} \tilde{\mathcal{C}}_{\mathcal{C}}^{-T} \tilde{C}_{\mathcal{F}}
\end{array}\right),
$$

with \tilde{C}_{B} and $\tilde{C}_{\mathcal{F}}$ anti-symmetric, \tilde{C}_{C} unconstrained.

The Twist transformation

On generalized vielbeins \mathcal{E}

- We consider $O \in G_{\text {geom }} \subset O(d, d)$:

$$
\begin{aligned}
& A^{T} C+C^{T} A=0, \\
& O=\left(\begin{array}{cc}
A & 0 \\
C & A^{-T}
\end{array}\right)=\left(\begin{array}{cc|cc}
A_{\mathcal{B}} & 0 & 0 & 0 \\
A_{\mathcal{C}} & A_{\mathcal{F}} & 0 & 0 \\
\hline C_{\mathcal{B}} & C_{\mathcal{C}} & A_{\mathcal{B}}^{-T} & -A_{\mathcal{B}}^{-T} A_{\mathcal{C}}^{T} A_{\mathcal{F}}^{-T} \\
C_{\mathcal{C}^{\prime}} & C_{\mathcal{F}} & 0 & A_{\mathcal{F}}^{-T}
\end{array}\right)
\end{aligned}
$$

with separation of \mathcal{B} and \mathcal{F}.
The $O(d, d)$ constraint parameterizes C as

$$
C=\left(\begin{array}{cc}
A_{\mathcal{B}}^{-T}\left(\tilde{C}_{\mathcal{B}}-A_{\mathcal{C}}^{T} A_{\mathcal{F}}^{-T} \tilde{C}_{\mathcal{C}}\right) & -A_{\mathcal{B}}^{-T}\left(\tilde{C}_{\mathcal{C}}^{T}+A_{\mathcal{C}}^{T} A_{\mathcal{F}}^{-T} \tilde{C}_{\mathcal{F}}\right) \\
A_{\mathcal{F}}^{-T} \tilde{\mathcal{C}}_{\mathcal{C}} & A_{\mathcal{F}}^{-T} \tilde{C}_{\mathcal{F}}
\end{array}\right),
$$

with $\tilde{C}_{\mathcal{B}}$ and $\tilde{C}_{\mathcal{F}}$ anti-symmetric, $\tilde{C}_{\mathcal{C}}$ unconstrained.
We perform the transformation:

$$
\phi, \mathcal{E}=\left(\begin{array}{cc}
e & 0 \\
-e^{-T} B & e^{-T}
\end{array}\right) \mapsto \phi^{\prime}, \mathcal{E}^{\prime}=\mathcal{E} O .
$$

The Twist transformation

On generalized vielbeins \mathcal{E}

- We consider $O \in G_{\text {geom }} \subset O(d, d)$:

$$
A^{T} C+C^{T} A=0,
$$

$$
O=\left(\begin{array}{cc}
A & 0 \\
C & A^{-T}
\end{array}\right)=\left(\begin{array}{cc|cc}
A_{\mathcal{B}} & 0 & 0 & 0 \\
A_{\mathcal{C}} & A_{\mathcal{F}} & 0 & 0 \\
\hline C_{\mathcal{B}} & C_{\mathcal{C}} & A_{\mathcal{B}}^{-T} & -A_{\mathcal{B}}^{-T} A_{C^{T}}^{T} A_{\mathcal{F}}^{-T} \\
C_{\mathcal{C}^{\prime}} & C_{\mathcal{F}} & 0 & A_{\mathcal{F}}
\end{array}\right)
$$

with separation of \mathcal{B} and \mathcal{F}.
The $O(d, d)$ constraint parameterizes C as

$$
C=\left(\begin{array}{cc}
A_{\mathcal{B}}^{-T}\left(\tilde{C}_{\mathcal{B}}-A_{\mathcal{C}}^{T} A_{\mathcal{F}}^{-T} \tilde{C}_{\mathcal{C}}\right) & -A_{\mathcal{B}}^{-T}\left(\tilde{C}_{\mathcal{C}}^{T}+A_{\mathcal{C}}^{T} A_{\mathcal{F}}^{-T} \tilde{C}_{\mathcal{F}}\right) \\
A_{\mathcal{F}}^{-T} \tilde{C}_{\mathcal{C}} & A_{\mathcal{F}}^{-} \tilde{C}_{\mathcal{F}}
\end{array}\right),
$$

with $\tilde{C}_{\mathcal{B}}$ and $\tilde{C}_{\mathcal{F}}$ anti-symmetric, \tilde{C}_{C} unconstrained.
We perform the transformation:

$$
\begin{gathered}
\phi, \mathcal{E}=\left(\begin{array}{cc}
e & 0 \\
-e^{-T} B & e^{-T}
\end{array}\right) \mapsto \varnothing^{\prime}, \mathcal{E}^{\prime}=\mathcal{E} O . \\
\leftrightarrow e^{\prime}=e A, B^{\prime}=A^{T} B A-A^{T} C, e^{\phi^{\prime}}=e^{\phi}|\operatorname{det}(A)|^{\frac{1}{2}} .
\end{gathered}
$$

Concrete example:

 NDRIOT
Introduction

GCG and type II

Twist

On generalized vielbeins
On pure spinors
Dual solutions

Heterotic

Conclusions

Concrete example: $A=0$:

David ANDRIOT

$$
e=\left(\begin{array}{cc}
e_{\mathcal{B}} & 0 \\
0 & e_{\mathcal{F}}
\end{array}\right), \mathrm{d} s^{2}=g_{\mu \nu} \mathrm{d} x^{\mu} \mathrm{d} x^{\nu}+g_{m n}\left(\mathrm{~d} y^{m}+0\right)\left(\mathrm{d} y^{n}+0\right)
$$

On generalized vielbeins
On pure spinors
Dual solutions

Heterotic

Conclusions

Concrete example: $A=0$:

David ANDRIOT

Introduction

GCG and type II
Twist
On generalized vielbeins
On pure spinors
Dual solutions

Heterotic

Conclusions

$$
\begin{aligned}
& e=\left(\begin{array}{cc}
e_{\mathcal{B}} & 0 \\
0 & e_{\mathcal{F}}
\end{array}\right), \mathrm{d} s^{2}=g_{\mu \nu} \mathrm{d} x^{\mu} \mathrm{d} x^{\nu}+g_{m n}\left(\mathrm{~d} y^{m}+0\right)\left(\mathrm{d} y^{n}+0\right), \\
& B=0, e^{\phi} .
\end{aligned}
$$

Concrete example: $A=0$:

Introduction

 GCG and type II Twist
On generalized

 vielbeinsOn pure spinors
Dual solutions
Heterotic
Conclusions

$$
\begin{aligned}
& e=\left(\begin{array}{cc}
e_{\mathcal{B}} & 0 \\
0 & e_{\mathcal{F}}
\end{array}\right), \mathrm{d} s^{2}=g_{\mu \nu} \mathrm{d} x^{\mu} \mathrm{d} x^{\nu}+g_{m n}\left(\mathrm{~d} y^{m}+0\right)\left(\mathrm{d} y^{n}+0\right), \\
& B=0, e^{\phi} .
\end{aligned}
$$

The twist transformation gives:

$$
\begin{aligned}
& e^{\prime}=\left(\begin{array}{cc}
e_{\mathcal{B}} A_{\mathcal{B}} & 0 \\
\left(e_{\mathcal{F}} A_{\mathcal{F}}\right)\left(A_{\mathcal{F}}^{-1} A_{\mathcal{C}}\right) & e_{\mathcal{F}} A_{\mathcal{F}}
\end{array}\right) \\
& \mathrm{d} s^{2}=g_{\mu \nu}^{\prime} \mathrm{d} x^{\mu} \mathrm{d} x^{\nu}+g_{m n}^{\prime}\left(\mathrm{d} y^{m}+A_{\rho}^{\prime m} \mathrm{~d} x^{\rho}\right)\left(\mathrm{d} y^{n}+A_{\sigma}^{\prime n} \mathrm{~d} x^{\sigma}\right), \\
& A^{\prime}=A_{\mathcal{F}}^{-1} A_{\mathcal{C}}, g_{\mu \nu}^{\prime}=\left(A_{\mathcal{B}}^{T} g_{\mathcal{B}} A_{\mathcal{B}}\right)_{\mu \nu}, g_{m n}^{\prime}=\left(A_{\mathcal{F}}^{T} g_{\mathcal{F}} A_{\mathcal{F}}\right)_{m n} .
\end{aligned}
$$

Concrete example: $A=0$:

$$
\begin{aligned}
& e=\left(\begin{array}{cc}
e_{\mathcal{B}} & 0 \\
0 & e_{\mathcal{F}}
\end{array}\right), \mathrm{d} s^{2}=g_{\mu \nu} \mathrm{d} x^{\mu} \mathrm{d} x^{\nu}+g_{m n}\left(\mathrm{~d} y^{m}+0\right)\left(\mathrm{d} y^{n}+0\right), \\
& B=0, e^{\phi} .
\end{aligned}
$$

The twist transformation gives:

$$
\begin{aligned}
& e^{\prime}=\left(\begin{array}{cc}
e_{\mathcal{B}} A_{\mathcal{B}} & 0 \\
\left(e_{\mathcal{F}} A_{\mathcal{F}}\right)\left(A_{\mathcal{F}}^{-1} A_{\mathcal{C}}\right) & e_{\mathcal{F}} A_{\mathcal{F}}
\end{array}\right) \\
& \mathrm{d} s^{2}=g_{\mu \nu}^{\prime} \mathrm{d} x^{\mu} \mathrm{d} x^{\nu}+g_{m n}^{\prime}\left(\mathrm{d} y^{m}+A_{\rho}^{\prime m} \mathrm{~d} x^{\rho}\right)\left(\mathrm{d} y^{n}+A_{\sigma}^{\prime n} \mathrm{~d} x^{\sigma}\right), \\
& A^{\prime}=A_{\mathcal{F}}^{-1} A_{\mathcal{C}}, g_{\mu \nu}^{\prime}=\left(A_{\mathcal{B}}^{T} g_{\mathcal{B}} A_{\mathcal{B}}\right)_{\mu \nu}, g_{m n}^{\prime}=\left(A_{\mathcal{F}}^{T} g_{\mathcal{F}} A_{\mathcal{F}}\right)_{m n} .
\end{aligned}
$$

$\hookrightarrow A_{\mathcal{C}}$ generates a connection A^{\prime}

Concrete example: $A=0$:

$$
\begin{aligned}
& e=\left(\begin{array}{cc}
e_{\mathcal{B}} & 0 \\
0 & e_{\mathcal{F}}
\end{array}\right), \mathrm{d} s^{2}=g_{\mu \nu} \mathrm{d} x^{\mu} \mathrm{d} x^{\nu}+g_{m n}\left(\mathrm{~d} y^{m}+0\right)\left(\mathrm{d} y^{n}+0\right), \\
& B=0, e^{\phi} .
\end{aligned}
$$

The twist transformation gives:

$$
\begin{aligned}
& e^{\prime}=\left(\begin{array}{cc}
e_{\mathcal{B}} A_{\mathcal{B}} & 0 \\
\left(e_{\mathcal{F}} A_{\mathcal{F}}\right)\left(A_{\mathcal{F}}^{-1} A_{\mathcal{C}}\right) & e_{\mathcal{F}} A_{\mathcal{F}}
\end{array}\right) \\
& \mathrm{d} s^{2}=g_{\mu \nu}^{\prime} \mathrm{d} x^{\mu} \mathrm{d} x^{\nu}+g_{m n}^{\prime}\left(\mathrm{d} y^{m}+A_{\rho}^{\prime m} \mathrm{~d} x^{\rho}\right)\left(\mathrm{d} y^{n}+A_{\sigma}^{\prime n} \mathrm{~d} x^{\sigma}\right), \\
& A^{\prime}=A_{\mathcal{F}}^{-1} A_{\mathcal{C}}, g_{\mu \nu}^{\prime}=\left(A_{\mathcal{B}}^{T} g_{\mathcal{B}} A_{\mathcal{B}}\right)_{\mu \nu}, g_{m n}^{\prime}=\left(A_{\mathcal{F}}^{T} g_{\mathcal{F}} A_{\mathcal{F}}\right)_{m n} .
\end{aligned}
$$

$\hookrightarrow A_{\mathcal{C}}$ generates a connection $A^{\prime}\left(A_{\mathcal{C}}\right.$ has to be coordinate dependent... Important difference with T-duality),

Concrete example: $A=0$:

$$
\begin{aligned}
& e=\left(\begin{array}{cc}
e_{\mathcal{B}} & 0 \\
0 & e_{\mathcal{F}}
\end{array}\right), \mathrm{d} s^{2}=g_{\mu \nu} \mathrm{d} x^{\mu} \mathrm{d} x^{\nu}+g_{m n}\left(\mathrm{~d} y^{m}+0\right)\left(\mathrm{d} y^{n}+0\right), \\
& B=0, e^{\phi} .
\end{aligned}
$$

The twist transformation gives:

$$
\begin{aligned}
& e^{\prime}=\left(\begin{array}{cc}
e_{\mathcal{B}} A_{\mathcal{B}} & 0 \\
\left(e_{\mathcal{F}} A_{\mathcal{F}}\right)\left(A_{\mathcal{F}}^{-1} A_{\mathcal{C}}\right) & e_{\mathcal{F}} A_{\mathcal{F}}
\end{array}\right) \\
& \mathrm{d} s^{2}=g_{\mu \nu}^{\prime} \mathrm{d} x^{\mu} \mathrm{d} x^{\nu}+g_{m n}^{\prime}\left(\mathrm{d} y^{m}+A_{\rho}^{\prime m} \mathrm{~d} x^{\rho}\right)\left(\mathrm{d} y^{n}+A_{\sigma}^{\prime n} \mathrm{~d} x^{\sigma}\right), \\
& A^{\prime}=A_{\mathcal{F}}^{-1} A_{\mathcal{C}}, g_{\mu \nu}^{\prime}=\left(A_{\mathcal{B}}^{T} g_{\mathcal{B}} A_{\mathcal{B}}\right)_{\mu \nu}, g_{m n}^{\prime}=\left(A_{\mathcal{F}}^{T} g_{\mathcal{F}} A_{\mathcal{F}}\right)_{m n} .
\end{aligned}
$$

$\hookrightarrow A_{\mathcal{C}}$ generates a connection $A^{\prime}\left(A_{\mathcal{C}}\right.$ has to be coordinate dependent... Important difference with T-duality), $\hookrightarrow A_{\mathcal{B}}, A_{\mathcal{F}}$ transform the metric .

Concrete example: $A=0$:

$$
\begin{aligned}
& e=\left(\begin{array}{cc}
e_{\mathcal{B}} & 0 \\
0 & e_{\mathcal{F}}
\end{array}\right), \mathrm{d} s^{2}=g_{\mu \nu} \mathrm{d} x^{\mu} \mathrm{d} x^{\nu}+g_{m n}\left(\mathrm{~d} y^{m}+0\right)\left(\mathrm{d} y^{n}+0\right), \\
& B=0, e^{\phi} .
\end{aligned}
$$

The twist transformation gives:

$$
\begin{aligned}
& e^{\prime}=\left(\begin{array}{cc}
e_{\mathcal{B}} A_{\mathcal{B}} & 0 \\
\left(e_{\mathcal{F}} A_{\mathcal{F}}\right)\left(A_{\mathcal{F}}^{-1} A_{\mathcal{C}}\right) & e_{\mathcal{F}} A_{\mathcal{F}}
\end{array}\right) \\
& \mathrm{d} s^{2}=g_{\mu \nu}^{\prime} \mathrm{d} x^{\mu} \mathrm{d} x^{\nu}+g_{m n}^{\prime}\left(\mathrm{d} y^{m}+A_{\rho}^{\prime m} \mathrm{~d} x^{\rho}\right)\left(\mathrm{d} y^{n}+A_{\sigma}^{\prime n} \mathrm{~d} x^{\sigma}\right), \\
& A^{\prime}=A_{\mathcal{F}}^{-1} A_{\mathcal{C}}, g_{\mu \nu}^{\prime}=\left(A_{\mathcal{B}}^{T} g_{\mathcal{B}} A_{\mathcal{B}}\right)_{\mu \nu}, g_{m n}^{\prime}=\left(A_{\mathcal{F}}^{T} g_{\mathcal{F}} A_{\mathcal{F}}\right)_{m n} .
\end{aligned}
$$

$\hookrightarrow A_{\mathcal{C}}$ generates a connection $A^{\prime}\left(A_{\mathcal{C}}\right.$ has to be coordinate dependent... Important difference with T-duality), $\hookrightarrow A_{\mathcal{B}}, A_{\mathcal{F}}$ transform the metric .
\hookrightarrow The dilaton transforms accordingly:

$$
e^{\phi^{\prime}}=e^{\phi}\left|\operatorname{det}\left(A_{\mathcal{B}}\right) \operatorname{det}\left(A_{\mathcal{F}}\right)\right|^{\frac{1}{2}} .
$$

Concrete example: $A=0$:

Twist

On generalized

 vielbeinsOn pure spinors
Dual solutions
Heterotic
Conclusions

$$
\begin{aligned}
& e=\left(\begin{array}{cc}
e_{\mathcal{B}} & 0 \\
0 & e_{\mathcal{F}}
\end{array}\right), \mathrm{d} s^{2}=g_{\mu \nu} \mathrm{d} x^{\mu} \mathrm{d} x^{\nu}+g_{m n}\left(\mathrm{~d} y^{m}+0\right)\left(\mathrm{d} y^{n}+0\right), \\
& B=0, e^{\phi} .
\end{aligned}
$$

The twist transformation gives:

$$
\begin{aligned}
& e^{\prime}=\left(\begin{array}{cc}
e_{\mathcal{B}} A_{\mathcal{B}} & 0 \\
\left(e_{\mathcal{F}} A_{\mathcal{F}}\right)\left(A_{\mathcal{F}}^{-1} A_{\mathcal{C}}\right) & e_{\mathcal{F}} A_{\mathcal{F}}
\end{array}\right) \\
& \mathrm{d} s^{2}=g_{\mu \nu}^{\prime} \mathrm{d} x^{\mu} \mathrm{d} x^{\nu}+g_{m n}^{\prime}\left(\mathrm{d} y^{m}+A_{\rho}^{\prime m} \mathrm{~d} x^{\rho}\right)\left(\mathrm{d} y^{n}+A_{\sigma}^{\prime n} \mathrm{~d} x^{\sigma}\right), \\
& A^{\prime}=A_{\mathcal{F}}^{-1} A_{\mathcal{C}}, g_{\mu \nu}^{\prime}=\left(A_{\mathcal{B}}^{T} g_{\mathcal{B}} A_{\mathcal{B}}\right)_{\mu \nu}, g_{m n}^{\prime}=\left(A_{\mathcal{F}}^{T} g_{\mathcal{F}} A_{\mathcal{F}}\right)_{m n} .
\end{aligned}
$$

$\hookrightarrow A_{\mathcal{C}}$ generates a connection $A^{\prime}\left(A_{\mathcal{C}}\right.$ has to be coordinate dependent... Important difference with T-duality),
$\hookrightarrow A_{\mathcal{B}}, A_{\mathcal{F}}$ transform the metric .
\hookrightarrow The dilaton transforms accordingly:

$$
e^{\phi^{\prime}}=e^{\phi}\left|\operatorname{det}\left(A_{\mathcal{B}}\right) \operatorname{det}\left(A_{\mathcal{F}}\right)\right|^{\frac{1}{2}} .
$$

\hookrightarrow The free parameters in C generate a new B-field:

$$
B^{\prime}=-\left(\begin{array}{cc}
\tilde{C}_{\mathcal{B}} & -\tilde{\tilde{C}}_{\mathcal{C}}^{T} \\
\tilde{C}_{\mathcal{C}} & \tilde{C}_{\mathcal{F}}
\end{array}\right)
$$

Concrete example: $A=0$:

Twist

On generalized

 vielbeinsOn pure spinors
Dual solutions
Heterotic
Conclusions

$$
\begin{aligned}
& e=\left(\begin{array}{cc}
e_{\mathcal{B}} & 0 \\
0 & e_{\mathcal{F}}
\end{array}\right), \mathrm{d} s^{2}=g_{\mu \nu} \mathrm{d} x^{\mu} \mathrm{d} x^{\nu}+g_{m n}\left(\mathrm{~d} y^{m}+0\right)\left(\mathrm{d} y^{n}+0\right), \\
& B=0, e^{\phi} .
\end{aligned}
$$

The twist transformation gives:

$$
\begin{aligned}
& e^{\prime}=\left(\begin{array}{cc}
e_{\mathcal{B}} A_{\mathcal{B}} & 0 \\
\left(e_{\mathcal{F}} A_{\mathcal{F}}\right)\left(A_{\mathcal{F}}^{-1} A_{\mathcal{C}}\right) & e_{\mathcal{F}} A_{\mathcal{F}}
\end{array}\right) \\
& \mathrm{d} s^{2}=g_{\mu \nu}^{\prime} \mathrm{d} x^{\mu} \mathrm{d} x^{\nu}+g_{m n}^{\prime}\left(\mathrm{d} y^{m}+A_{\rho}^{\prime m} \mathrm{~d} x^{\rho}\right)\left(\mathrm{d} y^{n}+A_{\sigma}^{\prime n} \mathrm{~d} x^{\sigma}\right) \\
& A^{\prime}=A_{\mathcal{F}}^{-1} A_{\mathcal{C}}, g_{\mu \nu}^{\prime}=\left(A_{\mathcal{B}}^{T} g_{\mathcal{B}} A_{\mathcal{B}}\right)_{\mu \nu}, g_{m n}^{\prime}=\left(A_{\mathcal{F}}^{T} g_{\mathcal{F}} A_{\mathcal{F}}\right)_{m n}
\end{aligned}
$$

$\hookrightarrow A_{\mathcal{C}}$ generates a connection $A^{\prime}\left(A_{\mathcal{C}}\right.$ has to be coordinate dependent... Important difference with T-duality),
$\hookrightarrow A_{\mathcal{B}}, A_{\mathcal{F}}$ transform the metric .
\hookrightarrow The dilaton transforms accordingly:

$$
e^{\phi^{\prime}}=e^{\phi}\left|\operatorname{det}\left(A_{\mathcal{B}}\right) \operatorname{det}\left(A_{\mathcal{F}}\right)\right|^{\frac{1}{2}}
$$

\hookrightarrow The free parameters in C generate a new B-field:

$$
B^{\prime}=-\left(\begin{array}{cc}
\tilde{C}_{\mathcal{B}} & -\tilde{\tilde{C}}_{\mathcal{C}}^{T} \\
\tilde{C}_{\mathcal{C}} & \tilde{C}_{\mathcal{F}}
\end{array}\right)
$$

On pure spinors $\Psi_{ \pm}$

David ANDRIOT

Introduction

GCG and type II

Twist

On generalized vielbeins

On pure spinors
Dual solutions

Heterotic

Conclusions

On pure spinors $\Psi_{ \pm}$

$$
\left\{\Gamma^{m}, \Gamma^{n}\right\}=\left\{\Gamma_{m}, \Gamma_{n}\right\}=0, \quad\left\{\Gamma^{m}, \Gamma_{n}\right\}=\delta_{n}^{m} \quad m, n=1 \ldots d
$$

On pure spinors $\Psi_{ \pm}$

Metric $\eta \Rightarrow \operatorname{Clifford}$ algebra $\operatorname{Cliff}(d, d)$ on E :

$$
\left\{\Gamma^{m}, \Gamma^{n}\right\}=\left\{\Gamma_{m}, \Gamma_{n}\right\}=0, \quad\left\{\Gamma^{m}, \Gamma_{n}\right\}=\delta_{n}^{m} \quad m, n=1 \ldots d .
$$

Action on $\Psi_{ \pm}$: wedges, contractions: $\Gamma^{n}=\mathrm{d} x^{n} \wedge, \Gamma_{m}=\iota_{\partial_{m}}$.

On pure spinors $\Psi_{ \pm}$

Metric $\eta \Rightarrow \operatorname{Clifford}$ algebra $\operatorname{Cliff}(d, d)$ on E :

$$
\left\{\Gamma^{m}, \Gamma^{n}\right\}=\left\{\Gamma_{m}, \Gamma_{n}\right\}=0, \quad\left\{\Gamma^{m}, \Gamma_{n}\right\}=\delta_{n}^{m} \quad m, n=1 \ldots d .
$$

Action on $\Psi_{ \pm}$: wedges, contractions: $\Gamma^{n}=\mathrm{d} x^{n} \wedge, \Gamma_{m}=\iota_{\partial_{m}}$. $\hookrightarrow O(d, d)$ in the spinorial representation:

$$
O=e^{-\frac{1}{4} \Theta_{M N} \sigma^{M N}} \quad, \quad M, N=1 \ldots d+d .
$$

On pure spinors $\Psi_{ \pm}$

Metric $\eta \Rightarrow \operatorname{Clifford}$ algebra $\operatorname{Cliff}(d, d)$ on E :

$$
\left\{\Gamma^{m}, \Gamma^{n}\right\}=\left\{\Gamma_{m}, \Gamma_{n}\right\}=0, \quad\left\{\Gamma^{m}, \Gamma_{n}\right\}=\delta_{n}^{m} \quad m, n=1 \ldots d .
$$

Action on $\Psi_{ \pm}$: wedges, contractions: $\Gamma^{n}=\mathrm{d} x^{n} \wedge, \Gamma_{m}=\iota_{\partial_{m}}$. $\hookrightarrow O(d, d)$ in the spinorial representation:

$$
\begin{aligned}
& O=e^{-\frac{1}{4} \Theta_{M N} \sigma^{M N}} \quad, \quad M, N=1 \ldots d+d . \\
& \sigma^{M N}=\left[\Gamma^{M}, \Gamma^{N}\right],
\end{aligned}
$$

On pure spinors $\Psi_{ \pm}$

On pure spinors

Metric $\eta \Rightarrow \operatorname{Clifford}$ algebra $\operatorname{Cliff}(d, d)$ on E :

$$
\left\{\Gamma^{m}, \Gamma^{n}\right\}=\left\{\Gamma_{m}, \Gamma_{n}\right\}=0, \quad\left\{\Gamma^{m}, \Gamma_{n}\right\}=\delta_{n}^{m} \quad m, n=1 \ldots d .
$$

Action on $\Psi_{ \pm}$: wedges, contractions: $\Gamma^{n}=\mathrm{d} x^{n} \wedge, \Gamma_{m}=\iota_{\partial_{m}}$.
$\hookrightarrow O(d, d)$ in the spinorial representation:

$$
\begin{array}{ll}
O=e^{-\frac{1}{4} \Theta_{M N} \sigma^{M N}} & , \quad M, N=1 \ldots d+d . \\
\sigma^{M N}=\left[\Gamma^{M}, \Gamma^{N}\right], & \Theta_{M N}=\left(\begin{array}{cc}
a^{m}{ }_{n} & \beta^{m n} \\
B_{m n} & -a_{m}{ }^{n}
\end{array}\right) .
\end{array}
$$

On pure spinors $\Psi_{ \pm}$

Metric $\eta \Rightarrow \operatorname{Clifford}$ algebra $\operatorname{Cliff}(d, d)$ on E :

$$
\left\{\Gamma^{m}, \Gamma^{n}\right\}=\left\{\Gamma_{m}, \Gamma_{n}\right\}=0, \quad\left\{\Gamma^{m}, \Gamma_{n}\right\}=\delta_{n}^{m} \quad m, n=1 \ldots d .
$$

Action on $\Psi_{ \pm}$: wedges, contractions: $\Gamma^{n}=\mathrm{d} x^{n} \wedge, \Gamma_{m}=\iota_{\partial_{m}}$.
$\hookrightarrow O(d, d)$ in the spinorial representation:

$$
\begin{array}{cl}
O=e^{-\frac{1}{4} \Theta_{M N} \sigma^{M N}} & , \quad M, N=1 \ldots d+d . \\
\sigma^{M N}=\left[\Gamma^{M}, \Gamma^{N}\right], & \Theta_{M N}=\left(\begin{array}{cc}
a^{m}{ }_{n} & \beta^{m n} \\
B_{m n} & -a_{m}{ }^{n}
\end{array}\right) .
\end{array}
$$

$G L(d)$ transformation (previous A):
$O_{a}=e^{-\frac{1}{4}\left(a^{m}{ }_{n}\left[\Gamma_{m}, \Gamma^{n}\right]-a_{m}{ }^{n}\left[\Gamma^{m}, \Gamma_{n}\right]\right)}=\cdots=\frac{1}{\sqrt{\operatorname{det} A}} e^{a^{m}{ }_{n} \mathrm{~d} x^{n} \wedge \iota \partial_{m}}$.

On pure spinors $\Psi_{ \pm}$

Metric $\eta \Rightarrow \operatorname{Clifford}$ algebra $\operatorname{Cliff}(d, d)$ on E :

$$
\left\{\Gamma^{m}, \Gamma^{n}\right\}=\left\{\Gamma_{m}, \Gamma_{n}\right\}=0, \quad\left\{\Gamma^{m}, \Gamma_{n}\right\}=\delta_{n}^{m} \quad m, n=1 \ldots d .
$$

Action on $\Psi_{ \pm}$: wedges, contractions: $\Gamma^{n}=\mathrm{d} x^{n} \wedge, \Gamma_{m}=\iota_{\partial_{m}}$.
$\hookrightarrow O(d, d)$ in the spinorial representation:

$$
\begin{array}{cl}
O=e^{-\frac{1}{4} \Theta_{M N} \sigma^{M N}} & , \quad M, N=1 \ldots d+d . \\
\sigma^{M N}=\left[\Gamma^{M}, \Gamma^{N}\right], & \Theta_{M N}=\left(\begin{array}{cc}
a^{m}{ }_{n} & \beta^{m n} \\
B_{m n} & -a_{m}{ }^{n}
\end{array}\right) .
\end{array}
$$

$G L(d)$ transformation (previous A):
$O_{a}=e^{-\frac{1}{4}\left(a^{m}{ }_{n}\left[\Gamma_{m}, \Gamma^{n}\right]-a_{m}{ }^{n}\left[\Gamma^{m}, \Gamma_{n}\right]\right)}=\cdots=\frac{1}{\sqrt{\operatorname{det} A}} e^{a^{m}{ }_{n} \mathrm{~d} x^{n} \wedge \iota_{\partial_{m}}}$.
B-transform (previous C):

$$
O_{B}=e^{-\frac{1}{2} B_{m n} \Gamma^{m n}}=e^{-\frac{1}{2} B_{m n} \mathrm{~d} x^{m} \wedge \mathrm{~d} x^{n}}
$$

Previous twist transformation:

David ANDRIOT
 Introduction

$$
\mathcal{E} \mapsto \mathcal{E}^{\prime}=\mathcal{E} O, O=\left(\begin{array}{cc}
A & 0 \\
C & A^{-T}
\end{array}\right)
$$

On generalized vielbeins

On pure spinors
Dual solutions

Heterotic

Conclusions

Previous twist transformation:

David ANDRIOT
$\mathcal{E} \mapsto \mathcal{E}^{\prime}=\mathcal{E} O, O=\left(\begin{array}{cc}A & 0 \\ C & A^{-T}\end{array}\right)=\left(\begin{array}{ll}1 & 0 \\ B & 1\end{array}\right)\left(\begin{array}{cc}A & 0 \\ 0 & A^{-T}\end{array}\right)\left(\begin{array}{cc}1 & 0 \\ -B^{\prime} & 1\end{array}\right)$

Previous twist transformation:

Introduction

GCG and type II

Twist

On generalized vielbeins
On pure spinors
Dual solutions

Heterotic

$\mathcal{E} \mapsto \mathcal{E}^{\prime}=\mathcal{E} O, O=\left(\begin{array}{cc}A & 0 \\ C & A^{-T}\end{array}\right)=\left(\begin{array}{ll}1 & 0 \\ B & 1\end{array}\right)\left(\begin{array}{cc}A & 0 \\ 0 & A^{-T}\end{array}\right)\left(\begin{array}{cc}1 & 0 \\ -B^{\prime} & 1\end{array}\right)$ becomes:

$$
\Psi \mapsto O_{f} \Psi^{\prime}, O_{f}=\frac{1}{\sqrt{\operatorname{det} A}} e^{-B^{\prime}} e^{a^{m}{ }_{n} \mathrm{~d} x^{n} \wedge \iota_{\partial_{m}}} e^{B} .
$$

Previous twist transformation:

Introduction GCG and type II Twist
On generalized vielbeins
On pure spinors
Dual solutions

Heterotic

Conclusions
$\mathcal{E} \mapsto \mathcal{E}^{\prime}=\mathcal{E} O, O=\left(\begin{array}{cc}A & 0 \\ C & A^{-T}\end{array}\right)=\left(\begin{array}{ll}1 & 0 \\ B & 1\end{array}\right)\left(\begin{array}{cc}A & 0 \\ 0 & A^{-T}\end{array}\right)\left(\begin{array}{cc}1 & 0 \\ -B^{\prime} & 1\end{array}\right)$ becomes:

$$
\Psi \mapsto O_{f} \Psi^{\prime}, O_{f}=\frac{1}{\sqrt{\operatorname{det} A}} e^{-B^{\prime}} e^{a^{m}{ }_{n} \mathrm{~d} x^{n} \wedge \iota_{\partial_{m}}} e^{B} .
$$

We consider a further phase transformation:

$$
O_{c}^{ \pm}=e^{i \theta_{c}^{ \pm}} O_{f}
$$

Previous twist transformation:

Introduction GCG and type II Twist
On generalized vielbeins
On pure spinors
Dual solutions
Heterotic
Conclusions
$\mathcal{E} \mapsto \mathcal{E}^{\prime}=\mathcal{E} O, O=\left(\begin{array}{cc}A & 0 \\ C & A^{-T}\end{array}\right)=\left(\begin{array}{ll}1 & 0 \\ B & 1\end{array}\right)\left(\begin{array}{cc}A & 0 \\ 0 & A^{-T}\end{array}\right)\left(\begin{array}{cc}1 & 0 \\ -B^{\prime} & 1\end{array}\right)$
becomes:

$$
\Psi \mapsto O_{f} \Psi^{\prime}, \quad O_{f}=\frac{1}{\sqrt{\operatorname{det} A}} e^{-B^{\prime}} e^{a^{m}{ }_{n} \mathrm{~d} x^{n} \wedge \iota_{\partial}} e^{B} .
$$

We consider a further phase transformation:

$$
O_{c}^{ \pm}=e^{i \theta_{c}^{ \pm}} O_{f} .
$$

Check the twist on $\Psi_{ \pm}$: do we have:

$$
\begin{aligned}
& \Psi_{+}=e^{i \theta} e^{-\phi} e^{-B} e^{-i J} \quad \longrightarrow \quad \Psi_{+}^{\prime}=e^{i\left(\theta+\theta_{c}^{+}\right)} e^{-\phi^{\prime}} e^{-B^{\prime}} e^{-i J^{\prime}}, \\
& \Psi_{-}=-i e^{-\phi} e^{-B} \Omega_{3} \quad \longrightarrow \quad \Psi_{-}^{\prime}=-i e^{i \theta_{c}^{-}} e^{-\phi^{\prime}} e^{-B^{\prime}} \Omega_{3}^{\prime} .
\end{aligned}
$$

Previous twist transformation:

Introduction GCG and type II Twist

On pure spinors
Dual solutions
Heterotic
Conclusions
$\mathcal{E} \mapsto \mathcal{E}^{\prime}=\mathcal{E} O, O=\left(\begin{array}{cc}A & 0 \\ C & A^{-T}\end{array}\right)=\left(\begin{array}{ll}1 & 0 \\ B & 1\end{array}\right)\left(\begin{array}{cc}A & 0 \\ 0 & A^{-T}\end{array}\right)\left(\begin{array}{cc}1 & 0 \\ -B^{\prime} & 1\end{array}\right)$
becomes:

$$
\Psi \mapsto O_{f} \Psi^{\prime}, \quad O_{f}=\frac{1}{\sqrt{\operatorname{det} A}} e^{-B^{\prime}} e^{a^{m}{ }_{n} \mathrm{~d} x^{n} \wedge \iota_{\partial}} e^{B} .
$$

We consider a further phase transformation:

$$
O_{c}^{ \pm}=e^{i \theta_{c}^{ \pm}} O_{f}
$$

Check the twist on $\Psi_{ \pm}$: do we have:

$$
\begin{aligned}
& \Psi_{+}=e^{i \theta} e^{-\phi} e^{-B} e^{-i J} \quad \longrightarrow \quad \Psi_{+}^{\prime}=e^{i\left(\theta+\theta_{c}^{+}\right)} e^{-\phi^{\prime}} e^{-B^{\prime}} e^{-i J^{\prime}}, \\
& \Psi_{-}=-i e^{-\phi} e^{-B} \Omega_{3} \quad \longrightarrow \quad \Psi_{-}^{\prime}=-i e^{i \theta_{c}^{-}} e^{-\phi^{\prime}} e^{-B^{\prime}} \Omega_{3}^{\prime} .
\end{aligned}
$$

B-transform: \checkmark,

Previous twist transformation:

Introduction GCG and type II Twist

On pure spinors
Dual solutions
Heterotic
Conclusions
$\mathcal{E} \mapsto \mathcal{E}^{\prime}=\mathcal{E} O, O=\left(\begin{array}{cc}A & 0 \\ C & A^{-T}\end{array}\right)=\left(\begin{array}{ll}1 & 0 \\ B & 1\end{array}\right)\left(\begin{array}{cc}A & 0 \\ 0 & A^{-T}\end{array}\right)\left(\begin{array}{cc}1 & 0 \\ -B^{\prime} & 1\end{array}\right)$
becomes:

$$
\Psi \mapsto O_{f} \Psi^{\prime}, \quad O_{f}=\frac{1}{\sqrt{\operatorname{det} A}} e^{-B^{\prime}} e^{a^{m}{ }_{n} \mathrm{~d} x^{n} \wedge \iota_{\partial}} e^{B} .
$$

We consider a further phase transformation:

$$
O_{c}^{ \pm}=e^{i \theta_{c}^{ \pm}} O_{f}
$$

Check the twist on $\Psi_{ \pm}$: do we have:

$$
\begin{aligned}
& \Psi_{+}=e^{i \theta} e^{-\phi} e^{-B} e^{-i J} \quad \longrightarrow \quad \Psi_{+}^{\prime}=e^{i\left(\theta+\theta_{c}^{+}\right)} e^{-\phi^{\prime}} e^{-B^{\prime}} e^{-i J^{\prime}}, \\
& \Psi_{-}=-i e^{-\phi} e^{-B} \Omega_{3} \quad \longrightarrow \quad \Psi_{-}^{\prime}=-i e^{i \theta_{c}^{-}} e^{-\phi^{\prime}} e^{-B^{\prime}} \Omega_{3}^{\prime} .
\end{aligned}
$$

B-transform: \checkmark, dilaton transform: \checkmark,

Previous twist transformation:

Introduction
$\mathcal{E} \mapsto \mathcal{E}^{\prime}=\mathcal{E} O, O=\left(\begin{array}{cc}A & 0 \\ C & A^{-T}\end{array}\right)=\left(\begin{array}{ll}1 & 0 \\ B & 1\end{array}\right)\left(\begin{array}{cc}A & 0 \\ 0 & A^{-T}\end{array}\right)\left(\begin{array}{cc}1 & 0 \\ -B^{\prime} & 1\end{array}\right)$
becomes:

$$
\Psi \mapsto O_{f} \Psi^{\prime}, O_{f}=\frac{1}{\sqrt{\operatorname{det} A}} e^{-B^{\prime}} e^{a^{m}{ }_{n} \mathrm{~d} x^{n} \wedge \iota_{\partial} m} e^{B} .
$$

We consider a further phase transformation:

$$
O_{c}^{ \pm}=e^{i \theta_{c}^{ \pm}} O_{f}
$$

Check the twist on $\Psi_{ \pm}$: do we have:

$$
\begin{aligned}
& \Psi_{+}=e^{i \theta} e^{-\phi} e^{-B} e^{-i J} \quad \longrightarrow \quad \Psi_{+}^{\prime}=e^{i\left(\theta+\theta_{c}^{+}\right)} e^{-\phi^{\prime}} e^{-B^{\prime}} e^{-i J^{\prime}}, \\
& \Psi_{-}=-i e^{-\phi} e^{-B} \Omega_{3} \quad \longrightarrow \quad \Psi_{-}^{\prime}=-i e^{i \theta_{c}^{-}} e^{-\phi^{\prime}} e^{-B^{\prime}} \Omega_{3}^{\prime} .
\end{aligned}
$$

B-transform: \checkmark, dilaton transform: \checkmark, phases: \checkmark.

Previous twist transformation:

$\mathcal{E} \mapsto \mathcal{E}^{\prime}=\mathcal{E} O, O=\left(\begin{array}{cc}A & 0 \\ C & A^{-T}\end{array}\right)=\left(\begin{array}{ll}1 & 0 \\ B & 1\end{array}\right)\left(\begin{array}{cc}A & 0 \\ 0 & A^{-T}\end{array}\right)\left(\begin{array}{cc}1 & 0 \\ -B^{\prime} & 1\end{array}\right)$
becomes:

$$
\Psi \mapsto O_{f} \Psi^{\prime}, \quad O_{f}=\frac{1}{\sqrt{\operatorname{det} A}} e^{-B^{\prime}} e^{a^{m}{ }_{n} \mathrm{~d} x^{n} \wedge \iota_{\partial}} e^{B} .
$$

We consider a further phase transformation:

$$
O_{c}^{ \pm}=e^{i \theta_{c}^{ \pm}} O_{f}
$$

Check the twist on $\Psi_{ \pm}$: do we have:

$$
\begin{aligned}
& \Psi_{+}=e^{i \theta} e^{-\phi} e^{-B} e^{-i J} \quad \longrightarrow \quad \Psi_{+}^{\prime}=e^{i\left(\theta+\theta_{c}^{+}\right)} e^{-\phi^{\prime}} e^{-B^{\prime}} e^{-i J^{\prime}}, \\
& \Psi_{-}=-i e^{-\phi} e^{-B} \Omega_{3} \quad \longrightarrow \quad \Psi_{-}^{\prime}=-i e^{i \theta_{c}^{-}} e^{-\phi^{\prime}} e^{-B^{\prime}} \Omega_{3}^{\prime} .
\end{aligned}
$$

B-transform: \checkmark, dilaton transform: \checkmark, phases: \checkmark.
\hookrightarrow left with the "A-transform" O_{a} : action on J, Ω_{3}.

Previous twist transformation:
$\mathcal{E} \mapsto \mathcal{E}^{\prime}=\mathcal{E} O, O=\left(\begin{array}{cc}A & 0 \\ C & A^{-T}\end{array}\right)=\left(\begin{array}{ll}1 & 0 \\ B & 1\end{array}\right)\left(\begin{array}{cc}A & 0 \\ 0 & A^{-T}\end{array}\right)\left(\begin{array}{cc}1 & 0 \\ -B^{\prime} & 1\end{array}\right)$
becomes:

$$
\Psi \mapsto O_{f} \Psi^{\prime}, O_{f}=\frac{1}{\sqrt{\operatorname{det} A}} e^{-B^{\prime}} e^{a^{m}{ }_{n} \mathrm{~d} x^{n} \wedge \iota \partial_{m}} e^{B}
$$

We consider a further phase transformation:

$$
O_{c}^{ \pm}=e^{i \theta_{c}^{ \pm}} O_{f}
$$

Check the twist on $\Psi_{ \pm}$: do we have:

$$
\begin{aligned}
& \Psi_{+}=e^{i \theta} e^{-\phi} e^{-B} e^{-i J} \quad \longrightarrow \quad \Psi_{+}^{\prime}=e^{i\left(\theta+\theta_{c}^{+}\right)} e^{-\phi^{\prime}} e^{-B^{\prime}} e^{-i J^{\prime}}, \\
& \Psi_{-}=-i e^{-\phi} e^{-B} \Omega_{3} \quad \longrightarrow \quad \Psi_{-}^{\prime}=-i e^{i \theta_{c}^{-}} e^{-\phi^{\prime}} e^{-B^{\prime}} \Omega_{3}^{\prime} .
\end{aligned}
$$

B-transform: \checkmark, dilaton transform: \checkmark, phases: \checkmark.
\hookrightarrow left with the "A-transform" O_{a} : action on J, Ω_{3}.
It should transform the metric and provide a connection.

Previous twist transformation:

$$
\begin{aligned}
& \mathcal{E} \mapsto \mathcal{E}^{\prime}=\mathcal{E} O, O=\left(\begin{array}{cc}
A & 0 \\
C & A^{-T}
\end{array}\right)=\left(\begin{array}{cc}
1 & 0 \\
B & 1
\end{array}\right)\left(\begin{array}{cc}
A & 0 \\
0 & A^{-T}
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
-B^{\prime} & 1
\end{array}\right) \\
& \text { becomes: }
\end{aligned}
$$

$$
\Psi \mapsto O_{f} \Psi^{\prime}, O_{f}=\frac{1}{\sqrt{\operatorname{det} A}} e^{-B^{\prime}} e^{a^{m}{ }_{n} \mathrm{~d} x^{n} \wedge \iota \partial_{m}} e^{B}
$$

We consider a further phase transformation:

$$
O_{c}^{ \pm}=e^{i \theta_{c}^{ \pm}} O_{f}
$$

Check the twist on $\Psi_{ \pm}$: do we have:

$$
\begin{aligned}
& \Psi_{+}=e^{i \theta} e^{-\phi} e^{-B} e^{-i J} \quad \longrightarrow \quad \Psi_{+}^{\prime}=e^{i\left(\theta+\theta_{c}^{+}\right)} e^{-\phi^{\prime}} e^{-B^{\prime}} e^{-i J^{\prime}}, \\
& \Psi_{-}=-i e^{-\phi} e^{-B} \Omega_{3} \quad \longrightarrow \quad \Psi_{-}^{\prime}=-i e^{i \theta_{c}^{-}} e^{-\phi^{\prime}} e^{-B^{\prime}} \Omega_{3}^{\prime} .
\end{aligned}
$$

B-transform: \checkmark, dilaton transform: \checkmark, phases: \checkmark.
\hookrightarrow left with the "A-transform" O_{a} : action on J, Ω_{3}.
It should transform the metric and provide a connection.
Particular case: $\mathcal{F}=T^{2}$, only $g_{\mathcal{F}}$ transformation, and provide a holomorphic connection α :

Previous twist transformation:

Twist

On generalized

 vielbeinsOn pure spinors
Dual solutions
Heterotic
Conclusions
$\mathcal{E} \mapsto \mathcal{E}^{\prime}=\mathcal{E} O, O=\left(\begin{array}{cc}A & 0 \\ C & A^{-T}\end{array}\right)=\left(\begin{array}{ll}1 & 0 \\ B & 1\end{array}\right)\left(\begin{array}{cc}A & 0 \\ 0 & A^{-T}\end{array}\right)\left(\begin{array}{cc}1 & 0 \\ -B^{\prime} & 1\end{array}\right)$ becomes:

$$
\Psi \mapsto O_{f} \Psi^{\prime}, O_{f}=\frac{1}{\sqrt{\operatorname{det} A}} e^{-B^{\prime}} e^{a^{m}{ }_{n} d x^{n} \wedge 1 \partial_{m}} e^{B}
$$

We consider a further phase transformation:

$$
O_{c}^{ \pm}=e^{i \theta_{c}^{ \pm}} O_{f}
$$

Check the twist on $\Psi_{ \pm}$: do we have:

$$
\begin{aligned}
& \Psi_{+}=e^{i \theta} e^{-\phi} e^{-B} e^{-i J} \quad \longrightarrow \quad \Psi_{+}^{\prime}=e^{i\left(\theta+\theta_{c}^{+}\right)} e^{-\phi^{\prime}} e^{-B^{\prime}} e^{-i J^{\prime}}, \\
& \Psi_{-}=-i e^{-\phi} e^{-B} \Omega_{3} \quad \longrightarrow \quad \Psi_{-}^{\prime}=-i e^{i \theta_{c}^{-}} e^{-\phi^{\prime}} e^{-B^{\prime}} \Omega_{3}^{\prime} .
\end{aligned}
$$

B-transform: \checkmark, dilaton transform: \checkmark, phases: \checkmark.
\hookrightarrow left with the "A-transform" O_{a} : action on J, Ω_{3}.
It should transform the metric and provide a connection.
Particular case: $\mathcal{F}=T^{2}$, only $g_{\mathcal{F}}$ transformation, and provide a holomorphic connection α :

$$
\begin{aligned}
& J=J_{\mathcal{B}}+\frac{i}{2} g_{z \bar{z}} d z \wedge d \bar{z} \mapsto J^{\prime}=J_{\mathcal{B}}+\frac{i}{2} g_{z \bar{z}}^{\prime}(d z+\alpha) \wedge(d \bar{z}+\bar{\alpha}) \\
& \Omega_{3}=\sqrt{g_{z \bar{z}}} \omega_{\mathcal{B}} \wedge d z \mapsto \Omega_{3}^{\prime}=\sqrt{g_{z \bar{z}}^{\prime}} \omega_{\mathcal{B}} \wedge(d z+\alpha) .
\end{aligned}
$$

Previous twist transformation:

Twist

On generalized

 vielbeinsOn pure spinors
Dual solutions
Heterotic
Conclusions
$\mathcal{E} \mapsto \mathcal{E}^{\prime}=\mathcal{E} O, O=\left(\begin{array}{cc}A & 0 \\ C & A^{-T}\end{array}\right)=\left(\begin{array}{ll}1 & 0 \\ B & 1\end{array}\right)\left(\begin{array}{cc}A & 0 \\ 0 & A^{-T}\end{array}\right)\left(\begin{array}{cc}1 & 0 \\ -B^{\prime} & 1\end{array}\right)$ becomes:

$$
\Psi \mapsto O_{f} \Psi^{\prime}, O_{f}=\frac{1}{\sqrt{\operatorname{det} A}} e^{-B^{\prime}} e^{a^{m}{ }_{n} d x^{n} \wedge 1 \partial_{m}} e^{B}
$$

We consider a further phase transformation:

$$
O_{c}^{ \pm}=e^{i \theta_{c}^{ \pm}} O_{f}
$$

Check the twist on $\Psi_{ \pm}$: do we have:

$$
\begin{aligned}
& \Psi_{+}=e^{i \theta} e^{-\phi} e^{-B} e^{-i J} \quad \longrightarrow \quad \Psi_{+}^{\prime}=e^{i\left(\theta+\theta_{c}^{+}\right)} e^{-\phi^{\prime}} e^{-B^{\prime}} e^{-i J^{\prime}}, \\
& \Psi_{-}=-i e^{-\phi} e^{-B} \Omega_{3} \quad \longrightarrow \quad \Psi_{-}^{\prime}=-i e^{i \theta_{c}^{-}} e^{-\phi^{\prime}} e^{-B^{\prime}} \Omega_{3}^{\prime} .
\end{aligned}
$$

B-transform: \checkmark, dilaton transform: \checkmark, phases: \checkmark.
\hookrightarrow left with the "A-transform" O_{a} : action on J, Ω_{3}.
It should transform the metric and provide a connection.
Particular case: $\mathcal{F}=T^{2}$, only $g_{\mathcal{F}}$ transformation, and provide a holomorphic connection α :

$$
\begin{aligned}
& J=J_{\mathcal{B}}+\frac{i}{2} g_{z \bar{z}} d z \wedge d \bar{z} \mapsto J^{\prime}=J_{\mathcal{B}}+\frac{i}{2} g_{z \bar{z}}^{\prime}(d z+\alpha) \wedge(d \bar{z}+\bar{\alpha}) \\
& \Omega_{3}=\sqrt{g_{z \bar{z}}} \omega_{\mathcal{B}} \wedge d z \mapsto \Omega_{3}^{\prime}=\sqrt{g_{z \bar{z}}^{\prime}} \omega_{\mathcal{B}} \wedge(d z+\alpha) \cdot \checkmark
\end{aligned}
$$

Previous twist transformation:

Twist

On generalized

 vielbeinsOn pure spinors
Dual solutions
Heterotic
Conclusions
$\mathcal{E} \mapsto \mathcal{E}^{\prime}=\mathcal{E} O, O=\left(\begin{array}{cc}A & 0 \\ C & A^{-T}\end{array}\right)=\left(\begin{array}{ll}1 & 0 \\ B & 1\end{array}\right)\left(\begin{array}{cc}A & 0 \\ 0 & A^{-T}\end{array}\right)\left(\begin{array}{cc}1 & 0 \\ -B^{\prime} & 1\end{array}\right)$ becomes:

$$
\Psi \mapsto O_{f} \Psi^{\prime}, O_{f}=\frac{1}{\sqrt{\operatorname{det} A}} e^{-B^{\prime}} e^{a^{m}{ }_{n} \mathrm{~d} x^{n} \wedge \iota_{\partial}} e^{B}
$$

We consider a further phase transformation:

$$
O_{c}^{ \pm}=e^{i \theta_{c}^{ \pm}} O_{f}
$$

Check the twist on $\Psi_{ \pm}$: do we have:

$$
\begin{aligned}
& \Psi_{+}=e^{i \theta} e^{-\phi} e^{-B} e^{-i J} \quad \longrightarrow \quad \Psi_{+}^{\prime}=e^{i\left(\theta+\theta_{c}^{+}\right)} e^{-\phi^{\prime}} e^{-B^{\prime}} e^{-i J^{\prime}}, \\
& \Psi_{-}=-i e^{-\phi} e^{-B} \Omega_{3} \quad \longrightarrow \quad \Psi_{-}^{\prime}=-i e^{i \theta_{c}^{-}} e^{-\phi^{\prime}} e^{-B^{\prime}} \Omega_{3}^{\prime} .
\end{aligned}
$$

B-transform: \checkmark, dilaton transform: \checkmark, phases: \checkmark.
\hookrightarrow left with the "A-transform" O_{a} : action on J, Ω_{3}.
It should transform the metric and provide a connection.
Particular case: $\mathcal{F}=T^{2}$, only $g_{\mathcal{F}}$ transformation, and provide a holomorphic connection α :

$$
\begin{aligned}
& J=J_{\mathcal{B}}+\frac{i}{2} g_{z \bar{z}} d z \wedge d \bar{z} \mapsto J^{\prime}=J_{\mathcal{B}}+\frac{i}{2} g_{z \bar{z}}^{\prime}(d z+\alpha) \wedge(d \bar{z}+\bar{\alpha}) \\
& \Omega_{3}=\sqrt{g_{z \bar{z}}} \omega_{\mathcal{B}} \wedge d z \mapsto \Omega_{3}^{\prime}=\sqrt{g_{z \bar{z}}^{\prime}} \omega_{\mathcal{B}} \wedge(d z+\alpha) \cdot \checkmark
\end{aligned}
$$

David ANDRIOT

Introduction

GCG and type II Twist

On generalized vielbeins
On pure spinors
Dual solutions

Heterotic

Conclusions

Remarks (work in progress):

David ANDRIOT

Introduction

On pure spinors
Dual solutions

Heterotic

Conclusions

Remarks (work in progress):

- Twist does not change $T \mathcal{M}_{\text {internal }}$ structure group $(S U(3))$

Introduction

On pure spinors

Remarks (work in progress):

- Twist does not change $T \mathcal{M}_{\text {internal }}$ structure group $(S U(3))$ T-duality can change it...

Remarks (work in progress):

- Twist does not change $T \mathcal{M}_{\text {internal }}$ structure group $(S U(3))$ T-duality can change it...
- RR flux transform?

Introduction

Remarks (work in progress):

- Twist does not change $T \mathcal{M}_{\text {internal }}$ structure group $(S U(3))$ T-duality can change it...
- RR flux transform? In GCG, defined through SUSY from $\Psi_{ \pm \ldots}$

Remarks (work in progress):

- Twist does not change $T \mathcal{M}_{\text {internal }}$ structure group $(S U(3))$ T-duality can change it...
- RR flux transform? In GCG, defined through SUSY from $\Psi_{ \pm} \ldots$
Definition of the transformed RR as new solutions of SUSY.

Mapping type IIB solutions

Mapping type IIB solutions

Constraints to generate solutions

Consider a solution of the SUSY conditions.

$$
\begin{aligned}
& \mathrm{d}\left(e^{3 A} \Psi_{1}\right)=0 \\
& \mathrm{~d}\left(e^{2 A} \operatorname{Re} \Psi_{2}\right)=0 \\
& \mathrm{~d}\left(e^{4 A} \operatorname{Im} \Psi_{2}\right)=e^{4 A} e^{-B} * \lambda(F)=R .
\end{aligned}
$$

Mapping type IIB solutions

Constraints to generate solutions

Consider a solution of the SUSY conditions. Perform a twist: $\Psi_{ \pm}^{\prime}=e^{i \theta_{c}^{ \pm}} O_{f} \Psi_{ \pm}$

$$
\begin{aligned}
& \mathrm{d}\left(e^{3 A} \Psi_{1}\right)=0 \\
& \mathrm{~d}\left(e^{2 A} \operatorname{Re} \Psi_{2}\right)=0 \\
& \mathrm{~d}\left(e^{4 A} \operatorname{Im} \Psi_{2}\right)=e^{4 A} e^{-B} * \lambda(F)=R .
\end{aligned}
$$

Mapping type IIB solutions

Introduction

Constraints to generate solutions

Consider a solution of the SUSY conditions. Perform a twist: $\Psi_{ \pm}^{\prime}=e^{i \theta_{c}^{ \pm}} O_{f} \Psi_{ \pm} \Rightarrow$ Get a new solution?

$$
\begin{array}{ll}
\mathrm{d}\left(e^{3 A} \Psi_{1}\right)=0 \\
\mathrm{~d}\left(e^{2 A} \operatorname{Re} \Psi_{2}\right)=0 \\
\mathrm{~d}\left(e^{4 A} \operatorname{Im} \Psi_{2}\right)=e^{4 A} e^{-B} * \lambda(F)=R . & \mathrm{d}\left(e^{3 A} \Psi_{1}^{\prime}\right)=0 \\
\mathrm{~d}\left(e^{2 A} \operatorname{Re} \Psi_{2}^{\prime}\right)=0 \\
\mathrm{~d}\left(e^{4 A} \operatorname{Im} \Psi_{2}^{\prime}\right)=R^{\prime}
\end{array}
$$

Mapping type IIB solutions

Constraints to generate solutions

Consider a solution of the SUSY conditions. Perform a twist: $\Psi_{ \pm}^{\prime}=e^{i \theta_{c}^{ \pm}} O_{f} \Psi_{ \pm} \Rightarrow$ Get a new solution?

$$
\begin{array}{ll}
\mathrm{d}\left(e^{3 A} \Psi_{1}\right)=0 \\
\mathrm{~d}\left(e^{2 A} \operatorname{Re} \Psi_{2}\right)=0 \\
\mathrm{~d}\left(e^{4 A} \operatorname{Im} \Psi_{2}\right)=e^{4 A} e^{-B} * \lambda(F)=R . & \mathrm{d}\left(e^{3 A} \Psi_{1}^{\prime}\right)=0 \\
\mathrm{~d}\left(e^{2 A} \operatorname{Re} \Psi_{2}^{\prime}\right)=0 \\
\mathrm{~d}\left(e^{4 A} \operatorname{Im} \Psi_{2}^{\prime}\right)=R^{\prime}
\end{array}
$$

Develop in terms of $\Psi_{1,2}, R, O_{f}, \theta_{c}^{ \pm}$

Mapping type IIB solutions

Constraints to generate solutions

Consider a solution of the SUSY conditions.
Perform a twist: $\Psi_{ \pm}^{\prime}=e^{i \theta_{c}^{ \pm}} O_{f} \Psi_{ \pm} \Rightarrow$ Get a new solution?

$$
\begin{array}{ll}
\mathrm{d}\left(e^{3 A} \Psi_{1}\right)=0 & \mathrm{~d}\left(e^{3 A} \Psi_{1}^{\prime}\right)=0 \\
\mathrm{~d}\left(e^{2 A} \operatorname{Re} \Psi_{2}\right)=0 \\
\mathrm{~d}\left(e^{4 A} \operatorname{Im} \Psi_{2}\right)=e^{4 A} e^{-B} * \lambda(F)=R . & \Rightarrow \\
\mathrm{d}\left(e^{2 A} \operatorname{Re} \Psi_{2}^{\prime}\right)=0 \\
\mathrm{~d}\left(e^{4 A} \operatorname{Im} \Psi_{2}^{\prime}\right)=R^{\prime}
\end{array}
$$

Develop in terms of $\Psi_{1,2}, R, O_{f}, \theta_{c}^{ \pm} \Rightarrow$ constraints on the twist:
$\mathrm{d}\left(O_{f}\right) \Psi_{1}=0$
$c_{\theta_{c}^{+}} \mathrm{d}\left(O_{f}\right) e^{2 A} \operatorname{Re} \Psi_{2}-s_{\theta_{c}^{+}} \mathrm{d}\left(e^{-2 A} O_{f}\right) e^{4 A} \operatorname{Im} \Psi_{2}=e^{-2 A} s_{\theta_{c}^{+}} O_{f} R$
$s_{\theta_{c}^{+}} \mathrm{d}\left(e^{2 A} O_{f}\right) e^{2 A} \operatorname{Re} \Psi_{2}+c_{\theta_{c}^{+}} \mathrm{d}\left(O_{f}\right) e^{4 A} \operatorname{Im} \Psi_{2}=R^{\prime}-c_{\theta_{c}^{+}} O_{f} R$.

Mapping type IIB solutions

Constraints to generate solutions

Consider a solution of the SUSY conditions.
Perform a twist: $\Psi_{ \pm}^{\prime}=e^{i \theta_{c}^{ \pm}} O_{f} \Psi_{ \pm} \Rightarrow$ Get a new solution?

$$
\begin{array}{ll}
\mathrm{d}\left(e^{3 A} \Psi_{1}\right)=0 \\
\mathrm{~d}\left(e^{2 A} \operatorname{Re} \Psi_{2}\right)=0 & \mathrm{~d}\left(e^{3 A} \Psi_{1}^{\prime}\right)=0 \\
\mathrm{~d}\left(e^{4 A} \operatorname{Im} \Psi_{2}\right)=e^{4 A} e^{-B} * \lambda(F)=R . & \Rightarrow \\
\mathrm{d}\left(e^{2 A} \operatorname{Re} \Psi_{2}^{\prime}\right)=0 \\
\mathrm{~d}\left(e^{4 A} \operatorname{Im} \Psi_{2}^{\prime}\right)=R^{\prime}
\end{array}
$$

Develop in terms of $\Psi_{1,2}, R, O_{f}, \theta_{c}^{ \pm} \Rightarrow$ constraints on the twist: $\mathrm{d}\left(O_{f}\right) \Psi_{1}=0$
$c_{\theta_{c}^{+}} \mathrm{d}\left(O_{f}\right) e^{2 A} \operatorname{Re} \Psi_{2}-s_{\theta_{c}^{+}} \mathrm{d}\left(e^{-2 A} O_{f}\right) e^{4 A} \operatorname{Im} \Psi_{2}=e^{-2 A} s_{\theta_{c}^{+}} O_{f} R$
$s_{\theta_{c}^{+}} \mathrm{d}\left(e^{2 A} O_{f}\right) e^{2 A} \operatorname{Re} \Psi_{2}+c_{\theta_{c}^{+}} \mathrm{d}\left(O_{f}\right) e^{4 A} \operatorname{Im} \Psi_{2}=R^{\prime}-c_{\theta_{c}^{+}} O_{f} R$.
O_{f}, θ_{c}^{+}constrained with respect to the first solution $\Psi_{1,2}, R$.

Mapping type IIB solutions

Constraints to generate solutions

Consider a solution of the SUSY conditions.
Perform a twist: $\Psi_{ \pm}^{\prime}=e^{i \theta_{c}^{ \pm}} O_{f} \Psi_{ \pm} \Rightarrow$ Get a new solution?

$$
\begin{array}{ll}
\mathrm{d}\left(e^{3 A} \Psi_{1}\right)=0 & \mathrm{~d}\left(e^{3 A} \Psi_{1}^{\prime}\right)=0 \\
\mathrm{~d}\left(e^{2 A} \operatorname{Re} \Psi_{2}\right)=0 \\
\mathrm{~d}\left(e^{4 A} \operatorname{Im} \Psi_{2}\right)=e^{4 A} e^{-B} * \lambda(F)=R . & \Rightarrow \mathrm{d}\left(e^{2 A} \operatorname{Re} \Psi_{2}^{\prime}\right)=0 \\
\mathrm{~d}\left(e^{4 A} \operatorname{Im} \Psi_{2}^{\prime}\right)=R^{\prime} .
\end{array}
$$

Develop in terms of $\Psi_{1,2}, R, O_{f}, \theta_{c}^{ \pm} \Rightarrow$ constraints on the twist:
$\mathrm{d}\left(O_{f}\right) \Psi_{1}=0$
$c_{\theta_{c}^{+}} \mathrm{d}\left(O_{f}\right) e^{2 A} \operatorname{Re} \Psi_{2}-s_{\theta_{c}^{+}} \mathrm{d}\left(e^{-2 A} O_{f}\right) e^{4 A} \operatorname{Im} \Psi_{2}=e^{-2 A} s_{\theta_{c}^{+}} O_{f} R$
$s_{\theta_{c}^{+}} \mathrm{d}\left(e^{2 A} O_{f}\right) e^{2 A} \operatorname{Re} \Psi_{2}+c_{\theta_{c}^{+}} \mathrm{d}\left(O_{f}\right) e^{4 A} \operatorname{Im} \Psi_{2}=R^{\prime}-c_{\theta_{c}^{+}} O_{f} R$.
O_{f}, θ_{c}^{+}constrained with respect to the first solution $\Psi_{1,2}, R$. Note that automatically satisfied for ordinary T-duality.

Mapping type IIB solutions

Constraints to generate solutions

Consider a solution of the SUSY conditions.
Perform a twist: $\Psi_{ \pm}^{\prime}=e^{i \theta_{c}^{ \pm}} O_{f} \Psi_{ \pm} \Rightarrow$ Get a new solution?

$$
\begin{array}{ll}
\mathrm{d}\left(e^{3 A} \Psi_{1}\right)=0 & \mathrm{~d}\left(e^{3 A} \Psi_{1}^{\prime}\right)=0 \\
\mathrm{~d}\left(e^{2 A} \operatorname{Re} \Psi_{2}\right)=0 & \Rightarrow \\
\mathrm{~d}\left(e^{4 A} \operatorname{Im} \Psi_{2}\right)=e^{4 A} e^{-B} * \lambda(F)=R . & \mathrm{d}\left(e^{4 A} \operatorname{Im} \Psi_{2}^{\prime}\right)=0 \\
\left.{ }_{2}^{\prime}\right)=R^{\prime} .
\end{array}
$$

Develop in terms of $\Psi_{1,2}, R, O_{f}, \theta_{c}^{ \pm} \Rightarrow$ constraints on the twist:
$\mathrm{d}\left(O_{f}\right) \Psi_{1}=0$
$c_{\theta_{c}^{+}} \mathrm{d}\left(O_{f}\right) e^{2 A} \operatorname{Re} \Psi_{2}-s_{\theta_{c}^{+}} \mathrm{d}\left(e^{-2 A} O_{f}\right) e^{4 A} \operatorname{Im} \Psi_{2}=e^{-2 A} s_{\theta_{c}^{+}} O_{f} R$
$s_{\theta_{c}^{+}} \mathrm{d}\left(e^{2 A} O_{f}\right) e^{2 A} \operatorname{Re} \Psi_{2}+c_{\theta_{c}^{+}} \mathrm{d}\left(O_{f}\right) e^{4 A} \operatorname{Im} \Psi_{2}=R^{\prime}-c_{\theta_{c}^{+}} O_{f} R$.
O_{f}, θ_{c}^{+}constrained with respect to the first solution $\Psi_{1,2}, R$.
Note that automatically satisfied for ordinary T-duality.
Last equation: only definition of R^{\prime} :

$$
R^{\prime}=c_{\theta_{c}^{+}} O_{f} R+s_{\theta_{c}^{+}} \mathrm{d}\left(e^{2 A} O_{f}\right) e^{2 A} \operatorname{Re} \Psi_{2}+c_{\theta_{c}^{+}} \mathrm{d}\left(O_{f}\right) e^{4 A} \operatorname{Im} \Psi_{2} .
$$

Mapping type IIB solutions

Constraints to generate solutions

Consider a solution of the SUSY conditions.
Perform a twist: $\Psi_{ \pm}^{\prime}=e^{i \theta_{c}^{ \pm}} O_{f} \Psi_{ \pm} \Rightarrow$ Get a new solution?

$$
\begin{array}{ll}
\mathrm{d}\left(e^{3 A} \Psi_{1}\right)=0 & \mathrm{~d}\left(e^{3 A} \Psi_{1}^{\prime}\right)=0 \\
\mathrm{~d}\left(e^{2 A} \operatorname{Re} \Psi_{2}\right)=0 & \Rightarrow \\
\mathrm{~d}\left(e^{4 A} \operatorname{Im} \Psi_{2}\right)=e^{4 A} e^{-B} * \lambda(F)=R . & \mathrm{d}\left(e^{4 A} \operatorname{Im} \Psi_{2}^{\prime}\right)=0 \\
\left.{ }_{2}^{\prime}\right)=R^{\prime} .
\end{array}
$$

Develop in terms of $\Psi_{1,2}, R, O_{f}, \theta_{c}^{ \pm} \Rightarrow$ constraints on the twist:
$\mathrm{d}\left(O_{f}\right) \Psi_{1}=0$
$c_{\theta_{c}^{+}} \mathrm{d}\left(O_{f}\right) e^{2 A} \operatorname{Re} \Psi_{2}-s_{\theta_{c}^{+}} \mathrm{d}\left(e^{-2 A} O_{f}\right) e^{4 A} \operatorname{Im} \Psi_{2}=e^{-2 A} s_{\theta_{c}^{+}} O_{f} R$
$s_{\theta_{c}^{+}} \mathrm{d}\left(e^{2 A} O_{f}\right) e^{2 A} \operatorname{Re} \Psi_{2}+c_{\theta_{c}^{+}} \mathrm{d}\left(O_{f}\right) e^{4 A} \operatorname{Im} \Psi_{2}=R^{\prime}-c_{\theta_{c}^{+}} O_{f} R$.
O_{f}, θ_{c}^{+}constrained with respect to the first solution $\Psi_{1,2}, R$.
Note that automatically satisfied for ordinary T-duality.
Last equation: only definition of R^{\prime} :

$$
R^{\prime}=c_{\theta_{c}^{+}} O_{f} R+s_{\theta_{c}^{-}} \mathrm{d}\left(e^{2 A} O_{f}\right) e^{2 A} \operatorname{Re} \Psi_{2}+c_{\theta_{c}^{+}} \mathrm{d}\left(O_{f}\right) e^{4 A} \operatorname{Im} \Psi_{2} .
$$

$\theta_{c}^{+} \neq 0$, coordinate dependent O_{f}

Mapping type IIB solutions

Constraints to generate solutions

Consider a solution of the SUSY conditions.
Perform a twist: $\Psi_{ \pm}^{\prime}=e^{i \theta_{c}^{ \pm}} O_{f} \Psi_{ \pm} \Rightarrow$ Get a new solution?

$$
\begin{array}{ll}
\mathrm{d}\left(e^{3 A} \Psi_{1}\right)=0 & \mathrm{~d}\left(e^{3 A} \Psi_{1}^{\prime}\right)=0 \\
\mathrm{~d}\left(e^{2 A} \operatorname{Re} \Psi_{2}\right)=0 & \Rightarrow \\
\mathrm{~d}\left(e^{4 A} \operatorname{Im} \Psi_{2}\right)=e^{4 A} e^{-B} * \lambda(F)=R . & \mathrm{d}\left(e^{4 A} \operatorname{Im} \Psi_{2}^{\prime}\right)=0 \\
\left.{ }_{2}^{\prime}\right)=R^{\prime} .
\end{array}
$$

Develop in terms of $\Psi_{1,2}, R, O_{f}, \theta_{c}^{ \pm} \Rightarrow$ constraints on the twist:
$\mathrm{d}\left(O_{f}\right) \Psi_{1}=0$
$c_{\theta_{c}^{+}} \mathrm{d}\left(O_{f}\right) e^{2 A} \operatorname{Re} \Psi_{2}-s_{\theta_{c}^{+}} \mathrm{d}\left(e^{-2 A} O_{f}\right) e^{4 A} \operatorname{Im} \Psi_{2}=e^{-2 A} s_{\theta_{c}^{+}} O_{f} R$
$s_{\theta_{c}^{+}} \mathrm{d}\left(e^{2 A} O_{f}\right) e^{2 A} \operatorname{Re} \Psi_{2}+c_{\theta_{c}^{+}} \mathrm{d}\left(O_{f}\right) e^{4 A} \operatorname{Im} \Psi_{2}=R^{\prime}-c_{\theta_{c}^{+}} O_{f} R$.
O_{f}, θ_{c}^{+}constrained with respect to the first solution $\Psi_{1,2}, R$.
Note that automatically satisfied for ordinary T-duality.
Last equation: only definition of R^{\prime} :

$$
R^{\prime}=c_{\theta_{c}^{+}} O_{f} R+s_{\theta_{c}^{-}} \mathrm{d}\left(e^{2 A} O_{f}\right) e^{2 A} \operatorname{Re} \Psi_{2}+c_{\theta_{c}^{+}} \mathrm{d}\left(O_{f}\right) e^{4 A} \operatorname{Im} \Psi_{2} .
$$

$\theta_{c}^{+} \neq 0$, coordinate dependent $O_{f} \Rightarrow$ mix NSNS and RR sectors.

Examples of type IIB dual solutions

Introduction

Solutions:

$\mathcal{M}_{\text {internal }}$	$T^{6}=T^{2} \times T^{4}$	

Examples of type IIB dual solutions

Introduction

Solutions:

	$T^{6}=T^{2} \times T^{4}$	
$d s_{6}^{2}$	$e^{-2 A} \mathrm{~d} x_{\mathcal{B}}^{2}+e^{-2 A} \mathrm{~d} x_{\mathcal{F}}^{2}$	

Examples of type IIB dual solutions

Introduction

Constraints

Examples

Heterotic

 Conclusions
Solutions:

$\mathcal{M}_{\text {internal }}$	$T^{6}=T^{2} \times T^{4}$	
$d s_{6}^{2}$	$e^{-2 A} \mathrm{~d} x_{\mathcal{B}}^{2}+e^{-2 A} \mathrm{~d} x_{\mathcal{F}}^{2}$	
Sources, θ	$O 3, \theta=\frac{\pi}{2}$	

Examples of type IIB dual solutions

Introduction

Solutions:

$\mathcal{M}_{\text {internal }}$	$T^{6}=T^{2} \times T^{4}$			
$d s_{6}^{2}$	$e^{-2 A} \mathrm{~d} x_{\mathcal{B}}^{2}+e^{-2 A} \mathrm{~d} x_{\mathcal{F}}^{2}$			
Sources, θ	$O 3, \theta=\frac{\pi}{2}$			
RR	$g_{s} F_{5}=e^{4 A} * \mathrm{~d}\left(e^{-4 A}\right),\left(F_{3}\right)$			

Examples of type IIB dual solutions

Introduction

Solutions:

$\mathcal{M}_{\text {internal }}$	$T^{6}=T^{2} \times T^{4}$			
$d s_{6}^{2}$	$e^{-2 A} \mathrm{~d} x_{\mathcal{B}}^{2}+e^{-2 A} \mathrm{~d} x_{\mathcal{F}}^{2}$			
Sources, θ	$O 3, \theta=\frac{\pi}{2}$			
RR	$g_{s} F_{5}=e^{4 A} * \mathrm{~d}\left(e^{-4 A}\right),\left(F_{3}\right)$			
NSNS	$\left(H=g_{s} * F_{3}\right)$			

Examples of type IIB dual solutions

Solutions:

$\mathcal{M}_{\text {internal }}$	$T^{6}=T^{2} \times T^{4}$	
$d s_{6}^{2}$	$e^{-2 A} \mathrm{~d} x_{\mathcal{B}}^{2}+e^{-2 A} \mathrm{~d} x_{\mathcal{F}}^{2}$	
Sources, θ	$O 3, \theta=\frac{\pi}{2}$	
RR	$g_{s} F_{5}=e^{4 A} * \mathrm{~d}\left(e^{-4 A}\right),\left(F_{3}\right)$	
NSNS	$\left(H=g_{s} * F_{3}\right)$	
e^{ϕ}	g_{s}	

Examples of type IIB dual solutions

Solutions:

\mathcal{M} internal	$T^{6}=T^{2} \times T^{4}$	T^{2}	\hookrightarrow
		\mathcal{M}	
		\downarrow	
$d s_{6}^{2}$	$e^{-2 A} \mathrm{~d} x_{\mathcal{B}}^{2}+e^{-2 A} \mathrm{~d} x_{\mathcal{F}}^{2}$		
Sources, θ	$O 3, \theta=\frac{\pi}{2}$		
RR	$g_{s} F_{5}=e^{4 A} * \mathrm{~d}\left(e^{-4 A}\right),\left(F_{3}\right)$		
NSNS	$\left(H=g_{s} * F_{3}\right)$		
e^{ϕ}	g_{s}		

Examples of type IIB dual solutions

Solutions:

\mathcal{M} internal	$T^{6}=T^{2} \times T^{4}$	$T^{2} \quad \hookrightarrow$	\mathcal{M}
$d s_{6}^{2}$	$e^{-2 A} \mathrm{~d} x_{\mathcal{B}}^{2}+e^{-2 A} \mathrm{~d} x_{\mathcal{F}}^{2}$	$e^{-2 A} \mathrm{~d} x_{\mathcal{B}}^{2}+e^{2 A}\left(\mathrm{~d} x_{\mathcal{F}}+A\right)^{2}$	
Sources, θ	$O 3, \theta=\frac{\pi}{2}$		
RR	$g_{s} F_{5}=e^{4 A} * \mathrm{~d}\left(e^{-4 A}\right),\left(F_{3}\right)$		
NSNS	$\left(H=g_{s} * F_{3}\right)$		
e^{ϕ}	g_{s}		

Examples of type IIB dual solutions

Solutions:

internal	$T^{6}=T^{2} \times T^{4}$	$T^{2} \quad \hookrightarrow$

Examples of type IIB dual solutions

Solutions:

internal	$T^{6}=T^{2} \times T^{4}$	$T^{2} \quad \hookrightarrow$

Examples of type IIB dual solutions

Solutions:

internal	$T^{6}=T^{2} \times T^{4}$	$T^{2} \quad \hookrightarrow$
		\downarrow
$d s_{6}^{2}$	$e^{-2 A} \mathrm{~d} x_{\mathcal{B}}^{2}+e^{-2 A} \mathrm{~d} x_{\mathcal{F}}^{2}$	$e^{-2 A} \mathrm{~d} x_{\mathcal{B}}^{2}+e^{2 A}\left(\mathrm{~d} x_{\mathcal{F}}+A\right)^{2}$
Sources, θ	$O 3, \theta=\frac{\pi}{2}$	$O 5 / / \mathcal{F}, \theta=0$
RR	$g_{s} F_{5}=e^{4 A} * \mathrm{~d}\left(e^{-4 A}\right),\left(F_{3}\right)$	$g_{s} F_{3}=-e^{-4 A} * \mathrm{~d}\left(e^{2 A} J\right)$
NSNS	$\left(H=g_{s} * F_{3}\right)$	0
e^{ϕ}	g_{s}	

Examples of type IIB dual solutions

Solutions:

internal	$T^{6}=T^{2} \times T^{4}$	$T^{2} \hookrightarrow$

Examples of type IIB dual solutions

Solutions:

$\mathcal{M}_{\text {internal }}$	$T^{6}=T^{2} \times T^{4}$	$T^{2} \hookrightarrow$
$d s_{6}^{2}$	$e^{-2 A} \mathrm{~d} x_{\mathcal{B}}^{2}+e^{-2 A} \mathrm{~d} x_{\mathcal{F}}^{2}$	$e^{-2 A} \mathrm{~d} x_{\mathcal{B}}^{2}+e^{2 A}\left(\mathrm{~d} x_{\mathcal{F}}+A\right)^{2}$
T^{4}		
Sources, θ	$O 3, \theta=\frac{\pi}{2}$	$O 5 / / \mathcal{F}, \theta=0$
RR	$g_{s} F_{5}=e^{4 A} * \mathrm{~d}\left(e^{-4 A}\right),\left(F_{3}\right)$	$g_{s} F_{3}=-e^{-4 A} * \mathrm{~d}\left(e^{2 A} J\right)$
NSNS	$\left(H=g_{s} * F_{3}\right)$	0
e^{ϕ}	g_{s}	$g_{s} e^{2 A}$

Twist duality map?

Examples of type IIB dual solutions

Solutions:

internal	$T^{6}=T^{2} \times T^{4}$	$T^{2} \hookrightarrow$
$d s_{6}^{2}$	$e^{-2 A} \mathrm{~d} x_{\mathcal{B}}^{2}+e^{-2 A} \mathrm{~d} x_{\mathcal{F}}^{2}$	$e^{-2 A} \mathrm{~d} x_{\mathcal{B}}^{2}+e^{2 A}\left(\mathrm{~d} x_{\mathcal{F}}+A\right)^{2}$
T^{4}		
Sources, θ	$O 3, \theta=\frac{\pi}{2}$	$O 5 / / \mathcal{F}, \theta=0$
RR	$g_{s} F_{5}=e^{4 A} * \mathrm{~d}\left(e^{-4 A}\right),\left(F_{3}\right)$	$g_{s} F_{3}=-e^{-4 A} * \mathrm{~d}\left(e^{2 A} J\right)$
NSNS	$\left(H=g_{s} * F_{3}\right)$	0
e^{ϕ}	g_{s}	$g_{s} e^{2 A}$

Twist duality map?

$$
A_{\mathcal{B}}=1_{4}
$$

Examples of type IIB dual solutions

Solutions:

\mathcal{M} internal	$T^{6}=T^{2} \times T^{4}$	$T^{2} \hookrightarrow$
$d s_{6}^{2}$	$e^{-2 A} \mathrm{~d} x_{\mathcal{B}}^{2}+e^{-2 A} \mathrm{~d} x_{\mathcal{F}}^{2}$	$e^{-2 A} \mathrm{~d} x_{\mathcal{B}}^{2}+e^{2 A}\left(\mathrm{~d} x_{\mathcal{F}}+A\right)^{2}$
T^{4}		
Sources, θ	$O 3, \theta=\frac{\pi}{2}$	$O 5 / / \mathcal{F}, \theta=0$
RR	$g_{s} F_{5}=e^{4 A} * \mathrm{~d}\left(e^{-4 A}\right),\left(F_{3}\right)$	$g_{s} F_{3}=-e^{-4 A} * \mathrm{~d}\left(e^{2 A} J\right)$
NSNS	$\left(H=g_{s} * F_{3}\right)$	0
e^{ϕ}	g_{s}	$g_{s} e^{2 A}$

Twist duality map?

$$
A_{\mathcal{B}}=1_{4}, A_{\mathcal{F}}=1_{2} \times e^{2 A}
$$

Examples of type IIB dual solutions
Solutions:

internal	$T^{6}=T^{2} \times T^{4}$	$T^{2} \hookrightarrow$
$d s_{6}^{2}$	$e^{-2 A} \mathrm{~d} x_{\mathcal{B}}^{2}+e^{-2 A} \mathrm{~d} x_{\mathcal{F}}^{2}$	$e^{-2 A} \mathrm{~d} x_{\mathcal{B}}^{2}+e^{2 A}\left(\mathrm{~d} x_{\mathcal{F}}+A\right)^{2}$
T^{4}		
Sources, θ	$O 3, \theta=\frac{\pi}{2}$	$O 5 / / \mathcal{F}, \theta=0$
RR	$g_{s} F_{5}=e^{4 A} * \mathrm{~d}\left(e^{-4 A}\right),\left(F_{3}\right)$	$g_{s} F_{3}=-e^{-4 A} * \mathrm{~d}\left(e^{2 A} J\right)$
NSNS	$\left(H=g_{s} * F_{3}\right)$	0
e^{ϕ}	g_{s}	$g_{s} e^{2 A}$

Twist duality map?

$$
A_{\mathcal{B}}=1_{4}, A_{\mathcal{F}}=1_{2} \times e^{2 A}, A_{C}{ }^{I}{ }_{\mu}=e^{2 A} A_{\mu}^{I}
$$

Examples of type IIB dual solutions
Solutions:

internal	$T^{6}=T^{2} \times T^{4}$	$T^{2} \hookrightarrow$
	$e^{-2 A} \mathrm{~d} x_{\mathcal{B}}^{2}+e^{-2 A} \mathrm{~d} x_{\mathcal{F}}^{2}$	$e^{-2 A} \mathrm{~d} x_{\mathcal{B}}^{2}+e^{2 A}\left(\mathrm{~d} x_{\mathcal{F}}+A\right)^{2}$
T^{4}		
Sources, θ	$O 3, \theta=\frac{\pi}{2}$	$O 5 / / \mathcal{F}, \theta=0$
RR	$g_{s} F_{5}=e^{4 A} * \mathrm{~d}\left(e^{-4 A}\right),\left(F_{3}\right)$	$g_{s} F_{3}=-e^{-4 A} * \mathrm{~d}\left(e^{2 A} J\right)$
NSNS	$\left(H=g_{s} * F_{3}\right)$	0
e^{ϕ}	g_{s}	$g_{s} e^{2 A}$

Twist duality map?

$$
A_{\mathcal{B}}=1_{4}, A_{\mathcal{F}}=1_{2} \times e^{2 A}, A_{\mathcal{C}}{ }^{I}{ }_{\mu}=e^{2 A} A_{\mu}^{I}, \theta_{c}^{+}=-\frac{\pi}{2} .
$$

Examples of type IIB dual solutions
Solutions:

internal	$T^{6}=T^{2} \times T^{4}$	$T^{2} \hookrightarrow$
$d s_{6}^{2}$	$e^{-2 A} \mathrm{~d} x_{\mathcal{B}}^{2}+e^{-2 A} \mathrm{~d} x_{\mathcal{F}}^{2}$	$e^{-2 A} \mathrm{~d} x_{\mathcal{B}}^{2}+e^{2 A}\left(\mathrm{~d} x_{\mathcal{F}}+A\right)^{2}$
T^{4}		
Sources, θ	$O 3, \theta=\frac{\pi}{2}$	$O 5 / / \mathcal{F}, \theta=0$
RR	$g_{s} F_{5}=e^{4 A} * \mathrm{~d}\left(e^{-4 A}\right),\left(F_{3}\right)$	$g_{s} F_{3}=-e^{-4 A} * \mathrm{~d}\left(e^{2 A} J\right)$
NSNS	$\left(H=g_{s} * F_{3}\right)$	0
e^{ϕ}	g_{s}	$g_{s} e^{2 A}$

Twist duality map?

$$
A_{\mathcal{B}}=1_{4}, A_{\mathcal{F}}=1_{2} \times e^{2 A}, A_{\mathcal{C}}{ }^{I}{ }_{\mu}=e^{2 A} A_{\mu}^{I}, \theta_{c}^{+}=-\frac{\pi}{2} .
$$

B-transform if needed...

Examples of type IIB dual solutions
Solutions:

internal	$T^{6}=T^{2} \times T^{4}$	$T^{2} \hookrightarrow$

Twist duality map?

$$
A_{\mathcal{B}}=1_{4}, A_{\mathcal{F}}=1_{2} \times e^{2 A}, A_{\mathcal{C}}{ }^{I}{ }_{\mu}=e^{2 A} A_{\mu}^{I}, \theta_{c}^{+}=-\frac{\pi}{2} .
$$

B-transform if needed...
\hookrightarrow Twist duals \checkmark

Examples of type IIB dual solutions
Solutions:

	$T_{\text {internal }}$	$T^{6}=T^{2} \times T^{4}$
	\hookrightarrow	\mathcal{M}
\downarrow		
$d s_{6}^{2}$	$e^{-2 A} \mathrm{~d} x_{\mathcal{B}}^{2}+e^{-2 A} \mathrm{~d} x_{\mathcal{F}}^{2}$	$e^{-2 A} \mathrm{~d} x_{\mathcal{B}}^{2}+e^{2 A}\left(\mathrm{~d} x_{\mathcal{F}}+A\right)^{2}$
Sources, θ	$O 3, \theta=\frac{\pi}{2}$	$O 5 / / \mathcal{F}, \theta=0$
RR	$g_{s} F_{5}=e^{4 A} * \mathrm{~d}\left(e^{-4 A}\right),\left(F_{3}\right)$	$g_{s} F_{3}=-e^{-4 A} * \mathrm{~d}\left(e^{2 A} J\right)$
NSNS	$\left(H=g_{s} * F_{3}\right)$	0
e^{ϕ}	g_{s}	$g_{s} e^{2 A}$

Twist duality map?

$$
A_{\mathcal{B}}=1_{4}, A_{\mathcal{F}}=1_{2} \times e^{2 A}, A_{\mathcal{C}}{ }^{I}{ }_{\mu}=e^{2 A} A_{\mu}^{I}, \theta_{c}^{+}=-\frac{\pi}{2} .
$$

B-transform if needed...
\hookrightarrow Twist duals \checkmark
T-duals only for very specific $H \neq 0$.

Examples of type IIB dual solutions
Solutions:

$\mathcal{M}_{\text {internal }}$	$T^{6}=T^{2} \times T^{4}$	$T^{2} \hookrightarrow$
$d s_{6}^{2}$	$e^{-2 A} \mathrm{~d} x_{\mathcal{B}}^{2}+e^{-2 A} \mathrm{~d} x_{\mathcal{F}}^{2}$	$e^{-2 A} \mathrm{~d} x_{\mathcal{B}}^{2}+e^{2 A}\left(\mathrm{~d} x_{\mathcal{F}}+A\right)^{2}$
T^{4}		
Sources, θ	$O 3, \theta=\frac{\pi}{2}$	$O 5 / / \mathcal{F}, \theta=0$
RR	$g_{s} F_{5}=e^{4 A} * \mathrm{~d}\left(e^{-4 A}\right),\left(F_{3}\right)$	$g_{s} F_{3}=-e^{-4 A} * \mathrm{~d}\left(e^{2 A} J\right)$
NSNS	$\left(H=g_{s} * F_{3}\right)$	0
e^{ϕ}	g_{s}	$g_{s} e^{2 A}$

Twist duality map?

$$
A_{\mathcal{B}}=1_{4}, A_{\mathcal{F}}=1_{2} \times e^{2 A}, A_{\mathcal{C}}{ }^{I}{ }_{\mu}=e^{2 A} A_{\mu}^{I}, \theta_{c}^{+}=-\frac{\pi}{2} .
$$

B-transform if needed...
\hookrightarrow Twist duals \checkmark
T-duals only for very specific $H \neq 0$.
Explicit non-trivial fibration solutions?

Examples of type IIB dual solutions
Solutions:

$\mathcal{M}_{\text {internal }}$	$T^{6}=T^{2} \times T^{4}$	$T^{2} \hookrightarrow$
$d s_{6}^{2}$	$e^{-2 A} \mathrm{~d} x_{\mathcal{B}}^{2}+e^{-2 A} \mathrm{~d} x_{\mathcal{F}}^{2}$	$e^{-2 A} \mathrm{~d} x_{\mathcal{B}}^{2}+e^{2 A}\left(\mathrm{~d} x_{\mathcal{F}}+A\right)^{2}$
T^{4}		
Sources, θ	$O 3, \theta=\frac{\pi}{2}$	$O 5 / / \mathcal{F}, \theta=0$
RR	$g_{s} F_{5}=e^{4 A} * \mathrm{~d}\left(e^{-4 A}\right),\left(F_{3}\right)$	$g_{s} F_{3}=-e^{-4 A} * \mathrm{~d}\left(e^{2 A} J\right)$
NSNS	$\left(H=g_{s} * F_{3}\right)$	0
e^{ϕ}	g_{s}	$g_{s} e^{2 A}$

Twist duality map?

$$
A_{\mathcal{B}}=1_{4}, A_{\mathcal{F}}=1_{2} \times e^{2 A}, A_{\mathcal{C}}{ }^{I}{ }_{\mu}=e^{2 A} A_{\mu}^{I}, \theta_{c}^{+}=-\frac{\pi}{2} .
$$

B-transform if needed...
\hookrightarrow Twist duals \checkmark
T-duals only for very specific $H \neq 0$.
Explicit non-trivial fibration solutions? Among nilmanifolds: twisted tori, GCY...

Among 34 nilmanifolds, only 5 non-trivial T^{2} bundles.

David ANDRIOT

Introduction

GCG and type II
Twist
Dual solutions
Constraints
Examples
Heterotic
Conclusions

David ANDRIOT

Introduction

 GCG and type II TwistDual solutions
Constraints
Examples
Heterotic
Conclusions

Among 34 nilmanifolds, only 5 non-trivial T^{2} bundles. They have different topologies:

David ANDRIOT

Introduction

 GCG and type II TwistDual solutions
Constraints
Examples
Heterotic
Conclusions

Among 34 nilmanifolds, only 5 non-trivial T^{2} bundles. They have different topologies:

David ANDRIOT

Introduction

 GCG and type II Twist Dual solutions ConstraintsExamples
Heterotic Conclusions

Among 34 nilmanifolds, only 5 non-trivial T^{2} bundles. They have different topologies:

David ANDRIOT

Introduction

 GCG and type II Twist Dual solutions ConstraintsExamples
Heterotic Conclusions

Among 34 nilmanifolds, only 5 non-trivial T^{2} bundles. They have different topologies:

Introduction

 GCG and type II Twist Dual solutions
Constraints

Examples
Heterotic Conclusions

Among 34 nilmanifolds, only 5 non-trivial T^{2} bundles. They have different topologies:

Introduction

 GCG and type II Twist Dual solutions
Constraints

Examples

Heterotic

Conclusions

Among 34 nilmanifolds, only 5 non-trivial T^{2} bundles. They have different topologies:
$\left.\begin{array}{|c|ccccccc|}\hline n 4.4, n 4.7 & & & T^{2} & \hookrightarrow & \mathcal{M} \\ & & & & & \\ \hline\end{array}\right)$

They have precise curvatures $F=d \alpha$.

Introduction

 GCG and type II
Twist

Dual solutions

Constraints

Examples

Heterotic

 ConclusionsAmong 34 nilmanifolds, only 5 non-trivial T^{2} bundles. They have different topologies:
$\left.\begin{array}{|c|ccccccc|}\hline n 4.4, n 4.7 & & & T^{2} & \hookrightarrow & \mathcal{M} \\ & & & & & & \\ \hline\end{array}\right)$

They have precise curvatures $F=d \alpha$.
Possible to get solutions on these \mathcal{M} by twist from some T^{6} solutions?

Introduction

Among 34 nilmanifolds, only 5 non-trivial T^{2} bundles. They have different topologies:

They have precise curvatures $F=d \alpha$.
Possible to get solutions on these \mathcal{M} by twist from some T^{6} solutions? \Rightarrow constraints on twist parameter α :

Introduction

Among 34 nilmanifolds, only 5 non-trivial T^{2} bundles. They have different topologies:
$\left.\begin{array}{|c|ccccccc|}\hline n 4.4, n 4.7 & & & T^{2} & \hookrightarrow & \mathcal{M} \\ & & & & & & \\ \hline\end{array}\right)$

They have precise curvatures $F=d \alpha$.
Possible to get solutions on these \mathcal{M} by twist from some T^{6} solutions? \Rightarrow constraints on twist parameter α :

$$
d \alpha \wedge J_{\mathcal{B}}=0, \quad d \alpha \wedge \omega_{\mathcal{B}}=0
$$

Introduction

Among 34 nilmanifolds, only 5 non-trivial T^{2} bundles. They have different topologies:
$\left.\begin{array}{|c|cccccccc|}\hline n 4.4, n 4.7 & & & T^{2} & \hookrightarrow & \mathcal{M} \\ & & & & & & \\ \hline\end{array}\right)$

They have precise curvatures $F=d \alpha$.
Possible to get solutions on these \mathcal{M} by twist from some T^{6} solutions? \Rightarrow constraints on twist parameter α :

$$
d \alpha \wedge J_{\mathcal{B}}=0, \quad d \alpha \wedge \omega_{\mathcal{B}}=0
$$

They can be satisfied on all these \mathcal{M}

Introduction

Among 34 nilmanifolds, only 5 non-trivial T^{2} bundles. They have different topologies:
$\left.\begin{array}{|c|cccccccc|}\hline n 4.4, n 4.7 & & & T^{2} & \hookrightarrow & \mathcal{M} \\ & & & & & & \\ \hline\end{array}\right)$

They have precise curvatures $F=d \alpha$.
Possible to get solutions on these \mathcal{M} by twist from some T^{6} solutions? \Rightarrow constraints on twist parameter α :

$$
d \alpha \wedge J_{\mathcal{B}}=0, \quad d \alpha \wedge \omega_{\mathcal{B}}=0
$$

They can be satisfied on all these $\mathcal{M} \Rightarrow$ solutions found !

Among 34 nilmanifolds, only 5 non-trivial T^{2} bundles. They have different topologies:

They have precise curvatures $F=d \alpha$.
Possible to get solutions on these \mathcal{M} by twist from some T^{6} solutions? \Rightarrow constraints on twist parameter α :

$$
d \alpha \wedge J_{\mathcal{B}}=0, \quad d \alpha \wedge \omega_{\mathcal{B}}=0
$$

They can be satisfied on all these $\mathcal{M} \Rightarrow$ solutions found !
Another solution on $n 3.14: S^{1} \hookrightarrow \mathcal{M} \rightarrow \mathcal{M}_{1}$.

Among 34 nilmanifolds, only 5 non-trivial T^{2} bundles. They have different topologies:

They have precise curvatures $F=d \alpha$.
Possible to get solutions on these \mathcal{M} by twist from some T^{6} solutions? \Rightarrow constraints on twist parameter α :

$$
d \alpha \wedge J_{\mathcal{B}}=0, \quad d \alpha \wedge \omega_{\mathcal{B}}=0
$$

They can be satisfied on all these $\mathcal{M} \Rightarrow$ solutions found !
Another solution on n 3.14: $S^{1} \hookrightarrow \mathcal{M} \rightarrow \mathcal{M}_{1}$. No T^{6} T-dual.

Among 34 nilmanifolds, only 5 non-trivial T^{2} bundles. They have different topologies:
$\left.\begin{array}{|c|ccccccc|}\hline n 4.4, n 4.7 & & & T^{2} & \hookrightarrow & \mathcal{M} \\ & & & & & & \\ \hline\end{array}\right)$

They have precise curvatures $F=d \alpha$.
Possible to get solutions on these \mathcal{M} by twist from some T^{6} solutions? \Rightarrow constraints on twist parameter α :

$$
d \alpha \wedge J_{\mathcal{B}}=0, \quad d \alpha \wedge \omega_{\mathcal{B}}=0
$$

They can be satisfied on all these $\mathcal{M} \Rightarrow$ solutions found !
Another solution on n 3.14: $S^{1} \hookrightarrow \mathcal{M} \rightarrow \mathcal{M}_{1}$. No T^{6} T-dual. Obtained by a twist from $n 4.6$!

Introduction

Twisting heterotic flux backgrounds

Mapping two solutions

Twisting heterotic flux backgrounds

Mapping two solutions
SUSY conditions in the presence of $H \neq 0$ and Bianchi id.:
Nucl. Phys. B 274 (1986) 253 by A. Strominger

Twisting heterotic flux backgrounds

Mapping two solutions
SUSY conditions in the presence of $H \neq 0$ and Bianchi id.:
Nucl. Phys. B 274 (1986) 253 by A. Strominger $H=\mathrm{d} B+\frac{\alpha^{\prime}}{4}\left[\omega_{3}(M)-\operatorname{tr}\left(\mathcal{A} \wedge d \mathcal{A}-i \frac{2}{3} \mathcal{A}^{3}\right)\right]$,

Twisting heterotic flux backgrounds

Mapping two solutions
SUSY conditions in the presence of $H \neq 0$ and Bianchi id.:
Nucl. Phys. B 274 (1986) 253 by A. Strominger $H=\mathrm{d} B+\frac{\alpha^{\prime}}{4}\left[\omega_{3}(M)-\operatorname{tr}\left(\mathcal{A} \wedge d \mathcal{A}-i \frac{2}{3} \mathcal{A}^{3}\right)\right], \mathrm{d} H=\frac{\alpha^{\prime}}{4}[\operatorname{tr}(\mathcal{R} \wedge \mathcal{R})-\operatorname{tr}(\mathcal{F} \wedge \mathcal{F})]$

Twisting heterotic flux backgrounds

Mapping two solutions
SUSY conditions in the presence of $H \neq 0$ and Bianchi id.:
Nucl. Phys. B 274 (1986) 253 by A. Strominger
$H=\mathrm{d} B+\frac{\alpha^{\prime}}{4}\left[\omega_{3}(M)-\operatorname{tr}\left(\mathcal{A} \wedge d \mathcal{A}-i \frac{2}{3} \mathcal{A}^{3}\right)\right], \mathrm{d} H=\frac{\alpha^{\prime}}{4}[\operatorname{tr}(\mathcal{R} \wedge \mathcal{R})-\operatorname{tr}(\mathcal{F} \wedge \mathcal{F})]$.
Non-trivial solutions were found later :
hep-th/9908088 by K. Dasgupta, G. Rajesh, S. Sethi

Twisting heterotic flux backgrounds

Mapping two solutions

SUSY conditions in the presence of $H \neq 0$ and Bianchi id.:
Nucl. Phys. B 274 (1986) 253 by A. Strominger $H=\mathrm{d} B+\frac{\alpha^{\prime}}{4}\left[\omega_{3}(M)-\operatorname{tr}\left(\mathcal{A} \wedge d \mathcal{A}-i \frac{2}{3} \mathcal{A}^{3}\right)\right], \mathrm{d} H=\frac{\alpha^{\prime}}{4}[\operatorname{tr}(\mathcal{R} \wedge \mathcal{R})-\operatorname{tr}(\mathcal{F} \wedge \mathcal{F})]$.
Non-trivial solutions were found later :
hep-th/9908088 by K. Dasgupta, G. Rajesh, S. Sethi Two $\mathcal{N}=2$ solutions: (non)-Kähler transition via dualities.

Twisting heterotic flux backgrounds

Mapping two solutions

SUSY conditions in the presence of $H \neq 0$ and Bianchi id.:
Nucl. Phys. B 274 (1986) 253 by A. Strominger $H=\mathrm{d} B+\frac{\alpha^{\prime}}{4}\left[\omega_{3}(M)-\operatorname{tr}\left(\mathcal{A} \wedge d \mathcal{A}-i \frac{2}{3} \mathcal{A}^{3}\right)\right], \mathrm{d} H=\frac{\alpha^{\prime}}{4}[\operatorname{tr}(\mathcal{R} \wedge \mathcal{R})-\operatorname{tr}(\mathcal{F} \wedge \mathcal{F})]$.
Non-trivial solutions were found later :
hep-th/9908088 by K. Dasgupta, G. Rajesh, S. Sethi Two $\mathcal{N}=2$ solutions: (non)-Kähler transition via dualities.

$\mathcal{M}_{\text {internal }}$	$T^{2} \times K 3$	

Twisting heterotic flux backgrounds

Mapping two solutions

SUSY conditions in the presence of $H \neq 0$ and Bianchi id.:
Nucl. Phys. B 274 (1986) 253 by A. Strominger $H=\mathrm{d} B+\frac{\alpha^{\prime}}{4}\left[\omega_{3}(M)-\operatorname{tr}\left(\mathcal{A} \wedge d \mathcal{A}-i \frac{2}{3} \mathcal{A}^{3}\right)\right], \mathrm{d} H=\frac{\alpha^{\prime}}{4}[\operatorname{tr}(\mathcal{R} \wedge \mathcal{R})-\operatorname{tr}(\mathcal{F} \wedge \mathcal{F})]$.
Non-trivial solutions were found later :
hep-th/9908088 by K. Dasgupta, G. Rajesh, S. Sethi Two $\mathcal{N}=2$ solutions: (non)-Kähler transition via dualities.

$\mathcal{M}_{\text {internal }}$	$T^{2} \times K 3$	
$d s_{6}^{2}$	$e^{2 \phi} \mathrm{~d} s_{\mathcal{B}}^{2}+\|\mathrm{d} z\|^{2}$	

Twisting heterotic flux backgrounds

Mapping two solutions

SUSY conditions in the presence of $H \neq 0$ and Bianchi id.:
Nucl. Phys. B 274 (1986) 253 by A. Strominger $H=\mathrm{d} B+\frac{\alpha^{\prime}}{4}\left[\omega_{3}(M)-\operatorname{tr}\left(\mathcal{A} \wedge d \mathcal{A}-i \frac{2}{3} \mathcal{A}^{3}\right)\right], \mathrm{d} H=\frac{\alpha^{\prime}}{4}[\operatorname{tr}(\mathcal{R} \wedge \mathcal{R})-\operatorname{tr}(\mathcal{F} \wedge \mathcal{F})]$.
Non-trivial solutions were found later :
hep-th/9908088 by K. Dasgupta, G. Rajesh, S. Sethi Two $\mathcal{N}=2$ solutions: (non)-Kähler transition via dualities.

$\mathcal{M}_{\text {internal }}$	$T^{2} \times K 3$	
$d s_{6}^{2}$	$e^{2 \phi} \mathrm{~d} s_{\mathcal{B}}^{2}+\|\mathrm{d} z\|^{2}$	
e^{ϕ}	e^{ϕ}	

Twisting heterotic flux backgrounds

Mapping two solutions

SUSY conditions in the presence of $H \neq 0$ and Bianchi id.:
Nucl. Phys. B 274 (1986) 253 by A. Strominger $H=\mathrm{d} B+\frac{\alpha^{\prime}}{4}\left[\omega_{3}(M)-\operatorname{tr}\left(\mathcal{A} \wedge d \mathcal{A}-i \frac{2}{3} \mathcal{A}^{3}\right)\right], \mathrm{d} H=\frac{\alpha^{\prime}}{4}[\operatorname{tr}(\mathcal{R} \wedge \mathcal{R})-\operatorname{tr}(\mathcal{F} \wedge \mathcal{F})]$.
Non-trivial solutions were found later :
hep-th/9908088 by K. Dasgupta, G. Rajesh, S. Sethi Two $\mathcal{N}=2$ solutions: (non)-Kähler transition via dualities.

$\mathcal{M}_{\text {internal }}$	$T^{2} \times K 3$	
$d s_{6}^{2}$	$e^{2 \phi} \mathrm{~d} s_{\mathcal{B}}^{2}+\|\mathrm{d} z\|^{2}$	
e^{ϕ}	e^{ϕ}	
B-field	0	

Twisting heterotic flux backgrounds

Mapping two solutions

SUSY conditions in the presence of $H \neq 0$ and Bianchi id.:
Nucl. Phys. B 274 (1986) 253 by A. Strominger $H=\mathrm{d} B+\frac{\alpha^{\prime}}{4}\left[\omega_{3}(M)-\operatorname{tr}\left(\mathcal{A} \wedge d \mathcal{A}-i \frac{2}{3} \mathcal{A}^{3}\right)\right], \mathrm{d} H=\frac{\alpha^{\prime}}{4}[\operatorname{tr}(\mathcal{R} \wedge \mathcal{R})-\operatorname{tr}(\mathcal{F} \wedge \mathcal{F})]$.
Non-trivial solutions were found later :
hep-th/9908088 by K. Dasgupta, G. Rajesh, S. Sethi Two $\mathcal{N}=2$ solutions: (non)-Kähler transition via dualities.

$\mathcal{M}_{\text {internal }}$	$T^{2} \times K 3$	
$d s_{6}^{2}$	$e^{2 \phi} \mathrm{~d} s_{\mathcal{B}}^{2}+\|\mathrm{d} z\|^{2}$	
e^{ϕ}	e^{ϕ}	
B-field	0	
Gauge field \mathcal{F}	$\mathcal{F} \neq 0$ on \mathcal{B}	

Twisting heterotic flux backgrounds

Mapping two solutions

SUSY conditions in the presence of $H \neq 0$ and Bianchi id.:
Nucl. Phys. B 274 (1986) 253 by A. Strominger $H=\mathrm{d} B+\frac{\alpha^{\prime}}{4}\left[\omega_{3}(M)-\operatorname{tr}\left(\mathcal{A} \wedge d \mathcal{A}-i \frac{2}{3} \mathcal{A}^{3}\right)\right], \mathrm{d} H=\frac{\alpha^{\prime}}{4}[\operatorname{tr}(\mathcal{R} \wedge \mathcal{R})-\operatorname{tr}(\mathcal{F} \wedge \mathcal{F})]$.
Non-trivial solutions were found later :
hep-th/9908088 by K. Dasgupta, G. Rajesh, S. Sethi Two $\mathcal{N}=2$ solutions: (non)-Kähler transition via dualities.

		T^{2}	\hookrightarrow	\mathcal{M}
$\mathcal{M}_{\text {internal }}$	$T^{2} \times K 3$			\downarrow
				$K 3$
$d s_{6}^{2}$	$e^{2 \phi} \mathrm{~d} s_{\mathcal{B}}^{2}+\|\mathrm{d} z\|^{2}$			
e^{ϕ}	e^{ϕ}			
B-field	0			
Gauge field \mathcal{F}	$\mathcal{F} \neq 0$ on \mathcal{B}			

Twisting heterotic flux backgrounds

Mapping two solutions

SUSY conditions in the presence of $H \neq 0$ and Bianchi id.:
Nucl. Phys. B 274 (1986) 253 by A. Strominger $H=\mathrm{d} B+\frac{\alpha^{\prime}}{4}\left[\omega_{3}(M)-\operatorname{tr}\left(\mathcal{A} \wedge d \mathcal{A}-i \frac{2}{3} \mathcal{A}^{3}\right)\right], \mathrm{d} H=\frac{\alpha^{\prime}}{4}[\operatorname{tr}(\mathcal{R} \wedge \mathcal{R})-\operatorname{tr}(\mathcal{F} \wedge \mathcal{F})]$.
Non-trivial solutions were found later :
hep-th/9908088 by K. Dasgupta, G. Rajesh, S. Sethi Two $\mathcal{N}=2$ solutions: (non)-Kähler transition via dualities.

		T^{2}	
$\mathcal{M}_{\text {internal }}$	$T^{2} \times K 3$		\downarrow
$d s_{6}^{2}$	$e^{2 \phi} \mathrm{~d} s_{\mathcal{B}}^{2}+\|\mathrm{d} z\|^{2}$	$e^{2 \phi} \mathrm{~d} s_{\mathcal{B}}^{2}+\|\mathrm{d} z+\alpha\|^{2}$	
e^{ϕ}	e^{ϕ}		
B-field	0		
Gauge field \mathcal{F}	$\mathcal{F} \neq 0$ on \mathcal{B}		

Twisting heterotic flux backgrounds

Mapping two solutions

SUSY conditions in the presence of $H \neq 0$ and Bianchi id.:
Nucl. Phys. B 274 (1986) 253 by A. Strominger $H=\mathrm{d} B+\frac{\alpha^{\prime}}{4}\left[\omega_{3}(M)-\operatorname{tr}\left(\mathcal{A} \wedge d \mathcal{A}-i \frac{2}{3} \mathcal{A}^{3}\right)\right], \mathrm{d} H=\frac{\alpha^{\prime}}{4}[\operatorname{tr}(\mathcal{R} \wedge \mathcal{R})-\operatorname{tr}(\mathcal{F} \wedge \mathcal{F})]$.
Non-trivial solutions were found later :
hep-th/9908088 by K. Dasgupta, G. Rajesh, S. Sethi Two $\mathcal{N}=2$ solutions: (non)-Kähler transition via dualities.

$\mathcal{M}_{\text {internal }}$	$T^{2} \times K 3$	
$d s_{6}^{2}$	$e^{2 \phi} \mathrm{~d} s_{\mathcal{B}}^{2}+\|\mathrm{d} z\|^{2}$	$e^{2 \phi} \mathrm{~d} s_{\mathcal{B}}^{2}+\|\mathrm{d} z+\alpha\|^{2}$
e^{ϕ}	e^{ϕ}	e^{ϕ}
B-field	0	
Gauge field \mathcal{F}	$\mathcal{F} \neq 0$ on \mathcal{B}	

Twisting heterotic flux backgrounds

Mapping two solutions

SUSY conditions in the presence of $H \neq 0$ and Bianchi id.:
Nucl. Phys. B 274 (1986) 253 by A. Strominger $H=\mathrm{d} B+\frac{\alpha^{\prime}}{4}\left[\omega_{3}(M)-\operatorname{tr}\left(\mathcal{A} \wedge d \mathcal{A}-i \frac{2}{3} \mathcal{A}^{3}\right)\right], \mathrm{d} H=\frac{\alpha^{\prime}}{4}[\operatorname{tr}(\mathcal{R} \wedge \mathcal{R})-\operatorname{tr}(\mathcal{F} \wedge \mathcal{F})]$.
Non-trivial solutions were found later :
hep-th/9908088 by K. Dasgupta, G. Rajesh, S. Sethi Two $\mathcal{N}=2$ solutions: (non)-Kähler transition via dualities.

		T^{2}
$\mathcal{M}_{\text {internal }}$	$T^{2} \times K 3$	\mathcal{M}
		\downarrow
$d s_{6}^{2}$	$e^{2 \phi} \mathrm{~d} s_{\mathcal{B}}^{2}+\|\mathrm{d} z\|^{2}$	$e^{2 \phi} \mathrm{~d} s_{\mathcal{B}}^{2}+\|\mathrm{d} z+\alpha\|^{2}$
e^{ϕ}	e^{ϕ}	e^{ϕ}
B-field	0	$B=\operatorname{Re}(\alpha \wedge d \bar{z})$
Gauge field \mathcal{F}	$\mathcal{F} \neq 0$ on \mathcal{B}	

Twisting heterotic flux backgrounds

Mapping two solutions

SUSY conditions in the presence of $H \neq 0$ and Bianchi id.:
Nucl. Phys. B 274 (1986) 253 by A. Strominger $H=\mathrm{d} B+\frac{\alpha^{\prime}}{4}\left[\omega_{3}(M)-\operatorname{tr}\left(\mathcal{A} \wedge d \mathcal{A}-i \frac{2}{3} \mathcal{A}^{3}\right)\right], \mathrm{d} H=\frac{\alpha^{\prime}}{4}[\operatorname{tr}(\mathcal{R} \wedge \mathcal{R})-\operatorname{tr}(\mathcal{F} \wedge \mathcal{F})]$.
Non-trivial solutions were found later :
hep-th/9908088 by K. Dasgupta, G. Rajesh, S. Sethi Two $\mathcal{N}=2$ solutions: (non)-Kähler transition via dualities.

		T^{2}
$\mathcal{M}_{\text {internal }}$	$T^{2} \times K 3$	\mathcal{M}
		\downarrow
$d s_{6}^{2}$	$e^{2 \phi} \mathrm{~d} s_{\mathcal{B}}^{2}+\|\mathrm{d} z\|^{2}$	$e^{2 \phi} \mathrm{~d} s_{\mathcal{B}}^{2}+\|\mathrm{d} z+\alpha\|^{2}$
e^{ϕ}	e^{ϕ}	e^{ϕ}
B-field	0	$B=\operatorname{Re}(\alpha \wedge d \bar{z})$
Gauge field \mathcal{F}	$\mathcal{F} \neq 0$ on \mathcal{B}	$\mathcal{F}=0$

Twisting heterotic flux backgrounds

Mapping two solutions

SUSY conditions in the presence of $H \neq 0$ and Bianchi id.:
Nucl. Phys. B 274 (1986) 253 by A. Strominger $H=\mathrm{d} B+\frac{\alpha^{\prime}}{4}\left[\omega_{3}(M)-\operatorname{tr}\left(\mathcal{A} \wedge d \mathcal{A}-i \frac{2}{3} \mathcal{A}^{3}\right)\right], \mathrm{d} H=\frac{\alpha^{\prime}}{4}[\operatorname{tr}(\mathcal{R} \wedge \mathcal{R})-\operatorname{tr}(\mathcal{F} \wedge \mathcal{F})]$.
Non-trivial solutions were found later :
hep-th/9908088 by K. Dasgupta, G. Rajesh, S. Sethi Two $\mathcal{N}=2$ solutions: (non)-Kähler transition via dualities.

		T^{2}	\hookrightarrow
\mathcal{M}			
internal	$T^{2} \times K 3$		\downarrow
$d s_{6}^{2}$	$e^{2 \phi} \mathrm{~d} s_{\mathcal{B}}^{2}+\|\mathrm{d} z\|^{2}$	$e^{2 \phi} \mathrm{~d} s_{\mathcal{B}}^{2}+\|\mathrm{d} z+\alpha\|^{2}$	
e^{ϕ}	e^{ϕ}	e^{ϕ}	
B-field	0	$B=\operatorname{Re}(\alpha \wedge d \bar{z})$	
Gauge field \mathcal{F}	$\mathcal{F} \neq 0$ on \mathcal{B}	$\mathcal{F}=0$	

Twist map? Only needs connection!

Twisting heterotic flux backgrounds

Mapping two solutions

SUSY conditions in the presence of $H \neq 0$ and Bianchi id.:
Nucl. Phys. B 274 (1986) 253 by A. Strominger $H=\mathrm{d} B+\frac{\alpha^{\prime}}{4}\left[\omega_{3}(M)-\operatorname{tr}\left(\mathcal{A} \wedge d \mathcal{A}-i \frac{2}{3} \mathcal{A}^{3}\right)\right], \mathrm{d} H=\frac{\alpha^{\prime}}{4}[\operatorname{tr}(\mathcal{R} \wedge \mathcal{R})-\operatorname{tr}(\mathcal{F} \wedge \mathcal{F})]$.
Non-trivial solutions were found later :
hep-th/9908088 by K. Dasgupta, G. Rajesh, S. Sethi Two $\mathcal{N}=2$ solutions: (non)-Kähler transition via dualities.

		T^{2}	\hookrightarrow
\mathcal{M}			
internal	$T^{2} \times K 3$		\downarrow
$d s_{6}^{2}$	$e^{2 \phi} \mathrm{~d} s_{\mathcal{B}}^{2}+\|\mathrm{d} z\|^{2}$	$e^{2 \phi} \mathrm{~d} s_{\mathcal{B}}^{2}+\|\mathrm{d} z+\alpha\|^{2}$	
e^{ϕ}	e^{ϕ}	e^{ϕ}	
B-field	0	$B=\operatorname{Re}(\alpha \wedge d \bar{z})$	
Gauge field \mathcal{F}	$\mathcal{F} \neq 0$ on \mathcal{B}	$\mathcal{F}=0$	

Twist map? Only needs connection!

Twisting heterotic flux backgrounds

Mapping two solutions

SUSY conditions in the presence of $H \neq 0$ and Bianchi id.:
Nucl. Phys. B 274 (1986) 253 by A. Strominger $H=\mathrm{d} B+\frac{\alpha^{\prime}}{4}\left[\omega_{3}(M)-\operatorname{tr}\left(\mathcal{A} \wedge d \mathcal{A}-i \frac{2}{3} \mathcal{A}^{3}\right)\right], \mathrm{d} H=\frac{\alpha^{\prime}}{4}[\operatorname{tr}(\mathcal{R} \wedge \mathcal{R})-\operatorname{tr}(\mathcal{F} \wedge \mathcal{F})]$.
Non-trivial solutions were found later :
hep-th/9908088 by K. Dasgupta, G. Rajesh, S. Sethi Two $\mathcal{N}=2$ solutions: (non)-Kähler transition via dualities.

		T^{2}	\hookrightarrow
\mathcal{M}			
internal	$T^{2} \times K 3$		\downarrow
$d s_{6}^{2}$	$e^{2 \phi} \mathrm{~d} s_{\mathcal{B}}^{2}+\|\mathrm{d} z\|^{2}$	$e^{2 \phi} \mathrm{~d} s_{\mathcal{B}}^{2}+\|\mathrm{d} z+\alpha\|^{2}$	
e^{ϕ}	e^{ϕ}	e^{ϕ}	
B-field	0	$B=\operatorname{Re}(\alpha \wedge d \bar{z})$	
Gauge field \mathcal{F}	$\mathcal{F} \neq 0$ on \mathcal{B}	$\mathcal{F}=0$	

Twist map? Only needs connection!

Twisting heterotic flux backgrounds

Mapping two solutions

SUSY conditions in the presence of $H \neq 0$ and Bianchi id.:
Nucl. Phys. B 274 (1986) 253 by A. Strominger $H=\mathrm{d} B+\frac{\alpha^{\prime}}{4}\left[\omega_{3}(M)-\operatorname{tr}\left(\mathcal{A} \wedge d \mathcal{A}-i \frac{2}{3} \mathcal{A}^{3}\right)\right], \mathrm{d} H=\frac{\alpha^{\prime}}{4}[\operatorname{tr}(\mathcal{R} \wedge \mathcal{R})-\operatorname{tr}(\mathcal{F} \wedge \mathcal{F})]$.
Non-trivial solutions were found later :
hep-th/9908088 by K. Dasgupta, G. Rajesh, S. Sethi Two $\mathcal{N}=2$ solutions: (non)-Kähler transition via dualities.

$\mathcal{M}_{\text {internal }}$	$T^{2} \times K 3$	T^{2}	\mathcal{M}
		\downarrow	
		$K 3$	
$d s_{6}^{2}$	$e^{2 \phi} \mathrm{~d} s_{\mathcal{B}}^{2}+\|\mathrm{d} z\|^{2}$	$e^{2 \phi} \mathrm{~d} s_{\mathcal{B}}^{2}+\|\mathrm{d} z+\alpha\|^{2}$	
e^{ϕ}	e^{ϕ}	e^{ϕ}	
B-field	0	$B=\operatorname{Re}(\alpha \wedge d \bar{z})$	
Gauge field \mathcal{F}	$\mathcal{F} \neq 0$ on \mathcal{B}	$\mathcal{F}=0$	

Twist map? Only needs connection! No need of B-transform!

Twisting heterotic flux backgrounds

Mapping two solutions

SUSY conditions in the presence of $H \neq 0$ and Bianchi id.:
Nucl. Phys. B 274 (1986) 253 by A. Strominger
$H=\mathrm{d} B+\frac{\alpha^{\prime}}{4}\left[\omega_{3}(M)-\operatorname{tr}\left(\mathcal{A} \wedge d \mathcal{A}-i \frac{2}{3} \mathcal{A}^{3}\right)\right], \mathrm{d} H=\frac{\alpha^{\prime}}{4}[\operatorname{tr}(\mathcal{R} \wedge \mathcal{R})-\operatorname{tr}(\mathcal{F} \wedge \mathcal{F})]$.
Non-trivial solutions were found later :
hep-th/9908088 by K. Dasgupta, G. Rajesh, S. Sethi Two $\mathcal{N}=2$ solutions: (non)-Kähler transition via dualities.

$\mathcal{M}_{\text {internal }}$	$T^{2} \times K 3$	T^{2}	\mathcal{M}
		\downarrow	
$d s_{6}^{2}$	$e^{2 \phi} \mathrm{~d} s_{\mathcal{B}}^{2}+\|\mathrm{d} z\|^{2}$	$e^{2 \phi} \mathrm{~d} s_{\mathcal{B}}^{2}+\|\mathrm{d} z+\alpha\|^{2}$	
e^{ϕ}	e^{ϕ}	e^{ϕ}	
B-field	0	$B=\operatorname{Re}(\alpha \wedge d \bar{z})$	
Gauge field \mathcal{F}	$\mathcal{F} \neq 0$ on \mathcal{B}	$\mathcal{F}=0$	

Twist map? Only needs connection! No need of B-transform!

$$
H^{\prime}=i(\partial-\bar{\partial}) J^{\prime}=(\partial-\bar{\partial})(\ldots)+\mathrm{d}(\operatorname{Re}(\alpha \wedge \mathrm{~d} \bar{z})) .
$$

Twisting heterotic flux backgrounds

Mapping two solutions

SUSY conditions in the presence of $H \neq 0$ and Bianchi id.:
Nucl. Phys. B 274 (1986) 253 by A. Strominger
$H=\mathrm{d} B+\frac{\alpha^{\prime}}{4}\left[\omega_{3}(M)-\operatorname{tr}\left(\mathcal{A} \wedge d \mathcal{A}-i \frac{2}{3} \mathcal{A}^{3}\right)\right], \mathrm{d} H=\frac{\alpha^{\prime}}{4}[\operatorname{tr}(\mathcal{R} \wedge \mathcal{R})-\operatorname{tr}(\mathcal{F} \wedge \mathcal{F})]$.
Non-trivial solutions were found later :
hep-th/9908088 by K. Dasgupta, G. Rajesh, S. Sethi
Two $\mathcal{N}=2$ solutions: (non)-Kähler transition via dualities.

$\mathcal{M}_{\text {internal }}$	$T^{2} \times K 3$	T^{2}	\mathcal{M}
		\downarrow	
$d s_{6}^{2}$	$e^{2 \phi} \mathrm{~d} s_{\mathcal{B}}^{2}+\|\mathrm{d} z\|^{2}$	$e^{2 \phi} \mathrm{~d} s_{\mathcal{B}}^{2}+\|\mathrm{d} z+\alpha\|^{2}$	
e^{ϕ}	e^{ϕ}	e^{ϕ}	
B-field	0	$B=\operatorname{Re}(\alpha \wedge d \bar{z})$	
Gauge field \mathcal{F}	$\mathcal{F} \neq 0$ on \mathcal{B}	$\mathcal{F}=0$	

Twist map? Only needs connection! No need of B-transform!

$$
H^{\prime}=i(\partial-\bar{\partial}) J^{\prime}=(\partial-\bar{\partial})(\ldots)+\mathrm{d}(\operatorname{Re}(\alpha \wedge \mathrm{~d} \bar{z}))
$$

Transform the gauge field? Included in H, but...

Twisting heterotic flux backgrounds

Mapping two solutions

SUSY conditions in the presence of $H \neq 0$ and Bianchi id.:
Nucl. Phys. B 274 (1986) 253 by A. Strominger
$H=\mathrm{d} B+\frac{\alpha^{\prime}}{4}\left[\omega_{3}(M)-\operatorname{tr}\left(\mathcal{A} \wedge d \mathcal{A}-i \frac{2}{3} \mathcal{A}^{3}\right)\right], \mathrm{d} H=\frac{\alpha^{\prime}}{4}[\operatorname{tr}(\mathcal{R} \wedge \mathcal{R})-\operatorname{tr}(\mathcal{F} \wedge \mathcal{F})]$.
Non-trivial solutions were found later :
hep-th/9908088 by K. Dasgupta, G. Rajesh, S. Sethi
Two $\mathcal{N}=2$ solutions: (non)-Kähler transition via dualities.

		T^{2}	
$\mathcal{M}_{\text {internal }}$	$T^{2} \times K 3$		\downarrow
$d s_{6}^{2}$	$e^{2 \phi} \mathrm{~d} s_{\mathcal{B}}^{2}+\|\mathrm{d} z\|^{2}$	$e^{2 \phi} \mathrm{~d} s_{\mathcal{B}}^{2}+\|\mathrm{d} z+\alpha\|^{2}$	
e^{ϕ}	e^{ϕ}	e^{ϕ}	
B-field	0	$B=\operatorname{Re}(\alpha \wedge d \bar{z})$	
Gauge field \mathcal{F}	$\mathcal{F} \neq 0$ on \mathcal{B}	$\mathcal{F}=0$	

Twist map? Only needs connection! No need of B-transform!

$$
H^{\prime}=i(\partial-\bar{\partial}) J^{\prime}=(\partial-\bar{\partial})(\ldots)+\mathrm{d}(\operatorname{Re}(\alpha \wedge \mathrm{~d} \bar{z})) .
$$

Transform the gauge field? Included in H, but... Extend $T \oplus T^{*}$ with gauge bundle, apply an $O(d+16, d+16) \ldots$

Constructing GCG pure spinors and SUSY conditions

Constructing GCG pure spinors and SUSY conditions

For heterotic: no GCG construction

Constructing GCG pure spinors and SUSY conditions
For heterotic: no GCG construction \Rightarrow first try to do it !

Constructing GCG pure spinors and SUSY conditions
For heterotic: no GCG construction \Rightarrow first try to do it ! \hookrightarrow construct pure spinors, twist them; SUSY conditions.

Constructing GCG pure spinors and SUSY conditions

For heterotic: no GCG construction \Rightarrow first try to do it ! \hookrightarrow construct pure spinors, twist them; SUSY conditions. $\mathcal{N}_{10 D}=1: \epsilon$

Constructing GCG pure spinors and SUSY conditions
For heterotic: no GCG construction \Rightarrow first try to do it ! \hookrightarrow construct pure spinors, twist them; SUSY conditions. $\mathcal{N}_{10 D}=1: \epsilon \Rightarrow$ decomposition on $4 D+6 D$ for $\mathcal{N}_{4 D}=1:$

$$
\epsilon=\zeta_{+} \otimes \eta_{+}+\zeta_{-} \otimes \eta_{-}
$$

Constructing GCG pure spinors and SUSY conditions
For heterotic: no GCG construction \Rightarrow first try to do it ! \hookrightarrow construct pure spinors, twist them; SUSY conditions. $\mathcal{N}_{10 D}=1: \epsilon \Rightarrow$ decomposition on $4 D+6 D$ for $\mathcal{N}_{4 D}=1:$

$$
\epsilon=\zeta_{+} \otimes \eta_{+}+\zeta_{-} \otimes \eta_{-} .
$$

Only one internal spinor $\eta_{+}(S U(3)$ structure $)$

Constructing GCG pure spinors and SUSY conditions
For heterotic: no GCG construction \Rightarrow first try to do it ! \hookrightarrow construct pure spinors, twist them; SUSY conditions. $\mathcal{N}_{10 D}=1: \epsilon \Rightarrow$ decomposition on $4 D+6 D$ for $\mathcal{N}_{4 D}=1:$

$$
\epsilon=\zeta_{+} \otimes \eta_{+}+\zeta_{-} \otimes \eta_{-} .
$$

Only one internal spinor $\eta_{+}(S U(3)$ structure $) \Rightarrow$ Pure spinors:

$$
\begin{aligned}
& \Psi_{+}=8 e^{-\phi} \eta_{+} \otimes \eta_{+}^{\dagger}=e^{-\phi} e^{-i J} \\
& \Psi_{-}=8 e^{-\phi} \eta_{+} \otimes \eta_{-}^{\dagger}=-i e^{-\phi} \Omega_{3}
\end{aligned}
$$

Constructing GCG pure spinors and SUSY conditions
For heterotic: no GCG construction \Rightarrow first try to do it ! \hookrightarrow construct pure spinors, twist them; SUSY conditions. $\mathcal{N}_{10 D}=1: \epsilon \Rightarrow$ decomposition on $4 D+6 D$ for $\mathcal{N}_{4 D}=1:$

$$
\epsilon=\zeta_{+} \otimes \eta_{+}+\zeta_{-} \otimes \eta_{-} .
$$

Only one internal spinor $\eta_{+}(S U(3)$ structure $) \Rightarrow$ Pure spinors:

$$
\begin{aligned}
& \Psi_{+}=8 e^{-\phi} \eta_{+} \otimes \eta_{+}^{\dagger}=e^{-\phi} e^{-i J} \\
& \Psi_{-}=8 e^{-\phi} \eta_{+} \otimes \eta_{-}^{\dagger}=-i e^{-\phi} \Omega_{3} .
\end{aligned}
$$

As before, except that no B-field:

Constructing GCG pure spinors and SUSY conditions
For heterotic: no GCG construction \Rightarrow first try to do it ! \hookrightarrow construct pure spinors, twist them; SUSY conditions. $\mathcal{N}_{10 D}=1: \epsilon \Rightarrow$ decomposition on $4 D+6 D$ for $\mathcal{N}_{4 D}=1:$

$$
\epsilon=\zeta_{+} \otimes \eta_{+}+\zeta_{-} \otimes \eta_{-} .
$$

Only one internal spinor $\eta_{+}(S U(3)$ structure $) \Rightarrow$ Pure spinors:

$$
\begin{aligned}
& \Psi_{+}=8 e^{-\phi} \eta_{+} \otimes \eta_{+}^{\dagger}=e^{-\phi} e^{-i J} \\
& \Psi_{-}=8 e^{-\phi} \eta_{+} \otimes \eta_{-}^{\dagger}=-i e^{-\phi} \Omega_{3} .
\end{aligned}
$$

As before, except that no B-field: B plays a very different role in heterotic string...

Constructing GCG pure spinors and SUSY conditions
For heterotic: no GCG construction \Rightarrow first try to do it ! \hookrightarrow construct pure spinors, twist them; SUSY conditions. $\mathcal{N}_{10 D}=1: \epsilon \Rightarrow$ decomposition on $4 D+6 D$ for $\mathcal{N}_{4 D}=1:$

$$
\epsilon=\zeta_{+} \otimes \eta_{+}+\zeta_{-} \otimes \eta_{-} .
$$

Only one internal spinor $\eta_{+}(S U(3)$ structure $) \Rightarrow$ Pure spinors:

$$
\begin{aligned}
& \Psi_{+}=8 e^{-\phi} \eta_{+} \otimes \eta_{+}^{\dagger}=e^{-\phi} e^{-i J}, \\
& \Psi_{-}=8 e^{-\phi} \eta_{+} \otimes \eta_{-}^{\dagger}=-i e^{-\phi} \Omega_{3} .
\end{aligned}
$$

As before, except that no B-field: B plays a very different role in heterotic string...
$T \oplus T^{*}$ and not $E \ldots$

Constructing GCG pure spinors and SUSY conditions
For heterotic: no GCG construction \Rightarrow first try to do it ! \hookrightarrow construct pure spinors, twist them; SUSY conditions. $\mathcal{N}_{10 D}=1: \epsilon \Rightarrow$ decomposition on $4 D+6 D$ for $\mathcal{N}_{4 D}=1:$

$$
\epsilon=\zeta_{+} \otimes \eta_{+}+\zeta_{-} \otimes \eta_{-} .
$$

Only one internal spinor $\eta_{+}(S U(3)$ structure $) \Rightarrow$ Pure spinors:

$$
\begin{aligned}
& \Psi_{+}=8 e^{-\phi} \eta_{+} \otimes \eta_{+}^{\dagger}=e^{-\phi} e^{-i J} \\
& \Psi_{-}=8 e^{-\phi} \eta_{+} \otimes \eta_{-}^{\dagger}=-i e^{-\phi} \Omega_{3} .
\end{aligned}
$$

As before, except that no B-field: B plays a very different role in heterotic string...
$T \oplus T^{*}$ and not E...
\hookrightarrow The generalized vielbein \mathcal{E} point of view: more difficult.

Constructing GCG pure spinors and SUSY conditions

For heterotic: no GCG construction \Rightarrow first try to do it ! \hookrightarrow construct pure spinors, twist them; SUSY conditions. $\mathcal{N}_{10 D}=1: \epsilon \Rightarrow$ decomposition on $4 D+6 D$ for $\mathcal{N}_{4 D}=1$:

$$
\epsilon=\zeta_{+} \otimes \eta_{+}+\zeta_{-} \otimes \eta_{-} .
$$

Only one internal spinor $\eta_{+}(S U(3)$ structure $) \Rightarrow$ Pure spinors:

$$
\begin{aligned}
& \Psi_{+}=8 e^{-\phi} \eta_{+} \otimes \eta_{+}^{\dagger}=e^{-\phi} e^{-i J}, \\
& \Psi_{-}=8 e^{-\phi} \eta_{+} \otimes \eta_{-}^{\dagger}=-i e^{-\phi} \Omega_{3} .
\end{aligned}
$$

As before, except that no B-field: B plays a very different role in heterotic string...
$T \oplus T^{*}$ and not E...
\hookrightarrow The generalized vielbein \mathcal{E} point of view: more difficult.
Twist $\Psi_{ \pm}$: only connection transformation, no B-transform

Constructing GCG pure spinors and SUSY conditions

For heterotic: no GCG construction \Rightarrow first try to do it ! \hookrightarrow construct pure spinors, twist them; SUSY conditions. $\mathcal{N}_{10 D}=1: \epsilon \Rightarrow$ decomposition on $4 D+6 D$ for $\mathcal{N}_{4 D}=1$:

$$
\epsilon=\zeta_{+} \otimes \eta_{+}+\zeta_{-} \otimes \eta_{-} .
$$

Only one internal spinor $\eta_{+}(S U(3)$ structure $) \Rightarrow$ Pure spinors:

$$
\begin{aligned}
& \Psi_{+}=8 e^{-\phi} \eta_{+} \otimes \eta_{+}^{\dagger}=e^{-\phi} e^{-i J} \\
& \Psi_{-}=8 e^{-\phi} \eta_{+} \otimes \eta_{-}^{\dagger}=-i e^{-\phi} \Omega_{3} .
\end{aligned}
$$

As before, except that no B-field: B plays a very different role in heterotic string...
$T \oplus T^{*}$ and not E...
\hookrightarrow The generalized vielbein \mathcal{E} point of view: more difficult.
Twist $\Psi_{ \pm}$: only connection transformation, no B-transform \hookrightarrow previous solutions mapped!

David ANDRIOT

Introduction

Twist

Dual solutions

Heterotic

Solutions
Pure spinors, SUSY Conclusions

$$
\begin{aligned}
& \delta \psi_{M}=\left(D_{M}-\frac{1}{4} H_{M}\right) \epsilon=0, \\
& \delta \lambda=\left(\not \partial \phi-\frac{1}{2} H H\right) \epsilon=0, \\
& \delta \chi=2 \mathcal{F} \epsilon=0 .
\end{aligned}
$$

SUSY conditions:

Introduction

$$
\begin{aligned}
& \delta \psi_{M}=\left(D_{M}-\frac{1}{4} H_{M}\right) \epsilon=0, \\
& \delta \lambda=\left(\not \partial \phi-\frac{1}{2} \not H\right) \epsilon=0, \\
& \delta \chi=2 \mathcal{F} \epsilon=0 .
\end{aligned}
$$

\hookrightarrow decompose on $4 D+6 D$, and work out conditions for $\Psi_{ \pm}$

SUSY conditions:

Introduction

$$
\begin{aligned}
& \delta \psi_{M}=\left(D_{M}-\frac{1}{4} H_{M}\right) \epsilon=0, \\
& \delta \lambda=\left(\not \partial \phi-\frac{1}{2} \not H\right) \epsilon=0, \\
& \delta \chi=2 \mathcal{F} \epsilon=0 .
\end{aligned}
$$

\hookrightarrow decompose on $4 D+6 D$, and work out conditions for $\Psi_{ \pm}$ Same as "type A" solutions of type IIB with $F=0, A=0$

SUSY conditions:

$$
\begin{aligned}
& \delta \psi_{M}=\left(D_{M}-\frac{1}{4} H_{M}\right) \epsilon=0 \\
& \delta \lambda=\left(\not \partial \phi-\frac{1}{2} \not H\right) \epsilon=0 \\
& \delta \chi=2 \mathcal{F} \epsilon=0
\end{aligned}
$$

\hookrightarrow decompose on $4 D+6 D$, and work out conditions for $\Psi_{ \pm}$ Same as "type A " solutions of type IIB with $F=0, A=0$ \hookrightarrow worked out in

hep-th/0406137 by M. Graña, R. Minasian, M. Petrini, A. Tomasiello

SUSY conditions:

$$
\begin{aligned}
& \delta \psi_{M}=\left(D_{M}-\frac{1}{4} H_{M}\right) \epsilon=0, \\
& \delta \lambda=\left(\not \partial \phi-\frac{1}{2} \not H\right) \epsilon=0, \\
& \delta \chi=2 \mathcal{F} \epsilon=0 .
\end{aligned}
$$

\hookrightarrow decompose on $4 D+6 D$, and work out conditions for $\Psi_{ \pm}$ Same as "type A" solutions of type IIB with $F=0, A=0$ \hookrightarrow worked out in
hep-th/0406137 by M. Graña, R. Minasian, M. Petrini, A. Tomasiello
Rewrite the result as a wedge product:
$\mathrm{d}\left(\Psi_{ \pm}\right)= \pm \check{H} \wedge \Psi_{ \pm}$

SUSY conditions:

$$
\begin{aligned}
& \delta \psi_{M}=\left(D_{M}-\frac{1}{4} H_{M}\right) \epsilon=0, \\
& \delta \lambda=\left(\not \partial \phi-\frac{1}{2} \not H\right) \epsilon=0, \\
& \delta \chi=2 \mathcal{F} \epsilon=0 .
\end{aligned}
$$

\hookrightarrow decompose on $4 D+6 D$, and work out conditions for $\Psi_{ \pm}$ Same as "type A" solutions of type IIB with $F=0, A=0$ \hookrightarrow worked out in
hep-th/0406137 by M. Graña, R. Minasian, M. Petrini, A. Tomasiello
Rewrite the result as a wedge product:
$\mathrm{d}\left(\Psi_{ \pm}\right)= \pm \check{H} \wedge \Psi_{ \pm}= \pm\left[\left(H^{1,2}-H^{2,1}\right)-i\left(H^{0,1}-H^{1,0}\right)\right] \wedge \Psi_{ \pm}$.

SUSY conditions:

$$
\begin{aligned}
& \delta \psi_{M}=\left(D_{M}-\frac{1}{4} H_{M}\right) \epsilon=0, \\
& \delta \lambda=\left(\not \partial \phi-\frac{1}{2} \not H\right) \epsilon=0, \\
& \delta \chi=2 \mathcal{F} \epsilon=0 .
\end{aligned}
$$

\hookrightarrow decompose on $4 D+6 D$, and work out conditions for $\Psi_{ \pm}$ Same as "type A" solutions of type IIB with $F=0, A=0$ \hookrightarrow worked out in
hep-th/0406137 by M. Graña, R. Minasian, M. Petrini, A. Tomasiello

Rewrite the result as a wedge product:
$\mathrm{d}\left(\Psi_{ \pm}\right)= \pm \check{H} \wedge \Psi_{ \pm}= \pm\left[\left(H^{1,2}-H^{2,1}\right)-i\left(H^{0,1}-H^{1,0}\right)\right] \wedge \Psi_{ \pm}$.
Decomposing on various degrees \Rightarrow usual SUSY conditions

SUSY conditions:

$$
\begin{aligned}
& \delta \psi_{M}=\left(D_{M}-\frac{1}{4} H_{M}\right) \epsilon=0, \\
& \delta \lambda=\left(\not \partial \phi-\frac{1}{2} \not H\right) \epsilon=0, \\
& \delta \chi=2 \mathcal{F} \epsilon=0 .
\end{aligned}
$$

\hookrightarrow decompose on $4 D+6 D$, and work out conditions for $\Psi_{ \pm}$ Same as "type A" solutions of type IIB with $F=0, A=0$ \hookrightarrow worked out in

> hep-th/0406137 by M. Graña, R. Minasian, M. Petrini, A. Tomasiello

Rewrite the result as a wedge product:
$\mathrm{d}\left(\Psi_{ \pm}\right)= \pm \check{H} \wedge \Psi_{ \pm}= \pm\left[\left(H^{1,2}-H^{2,1}\right)-i\left(H^{0,1}-H^{1,0}\right)\right] \wedge \Psi_{ \pm}$.
Decomposing on various degrees \Rightarrow usual SUSY conditions Equation for Ψ_{-}: integrability of complex structure

SUSY conditions:

$$
\begin{aligned}
& \delta \psi_{M}=\left(D_{M}-\frac{1}{4} H_{M}\right) \epsilon=0, \\
& \delta \lambda=\left(\not \partial \phi-\frac{1}{2} \not H\right) \epsilon=0, \\
& \delta \chi=2 \mathcal{F} \epsilon=0 .
\end{aligned}
$$

\hookrightarrow decompose on $4 D+6 D$, and work out conditions for $\Psi_{ \pm}$ Same as "type A" solutions of type IIB with $F=0, A=0$ \hookrightarrow worked out in

> hep-th/0406137 by M. Graña, R. Minasian, M. Petrini, A. Tomasiello

Rewrite the result as a wedge product:
$\mathrm{d}\left(\Psi_{ \pm}\right)= \pm \check{H} \wedge \Psi_{ \pm}= \pm\left[\left(H^{1,2}-H^{2,1}\right)-i\left(H^{0,1}-H^{1,0}\right)\right] \wedge \Psi_{ \pm}$.
Decomposing on various degrees \Rightarrow usual SUSY conditions Equation for Ψ_{-}: integrability of complex structure $\hookrightarrow \mathcal{M}_{\text {internal }}$ is complex (GCY).

SUSY conditions:

Heterotic

$$
\begin{aligned}
& \delta \psi_{M}=\left(D_{M}-\frac{1}{4} H_{M}\right) \epsilon=0, \\
& \delta \lambda=\left(\not \partial \phi-\frac{1}{2} \not H\right) \epsilon=0, \\
& \delta \chi=2 \mathcal{F} \epsilon=0 .
\end{aligned}
$$

\hookrightarrow decompose on $4 D+6 D$, and work out conditions for $\Psi_{ \pm}$ Same as "type A" solutions of type IIB with $F=0, A=0$ \hookrightarrow worked out in

> hep-th/0406137 by M. Graña, R. Minasian, M. Petrini, A. Tomasiello

Rewrite the result as a wedge product:
$\mathrm{d}\left(\Psi_{ \pm}\right)= \pm \check{H} \wedge \Psi_{ \pm}= \pm\left[\left(H^{1,2}-H^{2,1}\right)-i\left(H^{0,1}-H^{1,0}\right)\right] \wedge \Psi_{ \pm}$.
Decomposing on various degrees \Rightarrow usual SUSY conditions Equation for Ψ_{-}: integrability of complex structure $\hookrightarrow \mathcal{M}_{\text {internal }}$ is complex (GCY).

Perform a twist: $\Psi_{ \pm}^{\prime}=O_{c} \Psi_{ \pm}$

SUSY conditions:

$$
\begin{aligned}
& \delta \psi_{M}=\left(D_{M}-\frac{1}{4} H_{M}\right) \epsilon=0 \\
& \delta \lambda=\left(\not \partial \phi-\frac{1}{2} \not H\right) \epsilon=0 \\
& \delta \chi=2 \mathcal{F} \epsilon=0
\end{aligned}
$$

\hookrightarrow decompose on $4 D+6 D$, and work out conditions for $\Psi_{ \pm}$ Same as "type A" solutions of type IIB with $F=0, A=0$ \hookrightarrow worked out in

> hep-th/0406137 by M. Graña, R. Minasian, M. Petrini, A. Tomasiello

Rewrite the result as a wedge product:
$\mathrm{d}\left(\Psi_{ \pm}\right)= \pm \check{H} \wedge \Psi_{ \pm}= \pm\left[\left(H^{1,2}-H^{2,1}\right)-i\left(H^{0,1}-H^{1,0}\right)\right] \wedge \Psi_{ \pm}$.
Decomposing on various degrees \Rightarrow usual SUSY conditions Equation for Ψ_{-}: integrability of complex structure $\hookrightarrow \mathcal{M}_{\text {internal }}$ is complex (GCY).

Perform a twist: $\Psi_{ \pm}^{\prime}=O_{c} \Psi_{ \pm}$, check at least that

$$
\left(\mathrm{d} \mp \check{H}^{\prime} \wedge\right)\left(O_{c} \Psi_{ \pm}\right)=0 .
$$

SUSY conditions:

$$
\begin{aligned}
& \delta \psi_{M}=\left(D_{M}-\frac{1}{4} H_{M}\right) \epsilon=0, \\
& \delta \lambda=\left(\not \partial \phi-\frac{1}{2} \not H\right) \epsilon=0, \\
& \delta \chi=2 \mathcal{F} \epsilon=0 .
\end{aligned}
$$

\hookrightarrow decompose on $4 D+6 D$, and work out conditions for $\Psi_{ \pm}$ Same as "type A" solutions of type IIB with $F=0, A=0$ \hookrightarrow worked out in

> hep-th/0406137 by M. Graña, R. Minasian, M. Petrini, A. Tomasiello

Rewrite the result as a wedge product:
$\mathrm{d}\left(\Psi_{ \pm}\right)= \pm \check{H} \wedge \Psi_{ \pm}= \pm\left[\left(H^{1,2}-H^{2,1}\right)-i\left(H^{0,1}-H^{1,0}\right)\right] \wedge \Psi_{ \pm}$.
Decomposing on various degrees \Rightarrow usual SUSY conditions Equation for Ψ_{-}: integrability of complex structure $\hookrightarrow \mathcal{M}_{\text {internal }}$ is complex (GCY).

Perform a twist: $\Psi_{ \pm}^{\prime}=O_{c} \Psi_{ \pm}$, check at least that

$$
\left(\mathrm{d} \mp \check{H}^{\prime} \wedge\right)\left(O_{c} \Psi_{ \pm}\right)=0 .
$$

\hookrightarrow constraints...

Conclusions

Conclusions

- GCG provides a mathematical characterization of $\mathcal{M}_{\text {internal }}$ in the presence of fluxes.

Conclusions

Introduction

- GCG provides a mathematical characterization of $\mathcal{M}_{\text {internal }}$ in the presence of fluxes.
- GCG aspects:

Conclusions

Introduction

- GCG provides a mathematical characterization of $\mathcal{M}_{\text {internal }}$ in the presence of fluxes.
- GCG aspects: E, B-field

Conclusions

Introduction

- GCG provides a mathematical characterization of $\mathcal{M}_{\text {internal }}$ in the presence of fluxes.
- GCG aspects: E, B-field, $\mathcal{E}, \Psi_{ \pm}$

Conclusions

Introduction

- GCG provides a mathematical characterization of $\mathcal{M}_{\text {internal }}$ in the presence of fluxes.
- GCG aspects: E, B-field, $\mathcal{E}, \Psi_{ \pm}$, action of $O(d, d)$.

Conclusions

Introduction

- GCG provides a mathematical characterization of $\mathcal{M}_{\text {internal }}$ in the presence of fluxes.
- GCG aspects: E, B-field, $\mathcal{E}, \Psi_{ \pm}$, action of $O(d, d)$.
- Twist transformation: provides a connection

Conclusions

Introduction

- GCG provides a mathematical characterization of $\mathcal{M}_{\text {internal }}$ in the presence of fluxes.
- GCG aspects: E, B-field, $\mathcal{E}, \Psi_{ \pm}$, action of $O(d, d)$.
- Twist transformation: provides a connection, transforms metric, dilaton, B-field.

Conclusions

Introduction

- GCG provides a mathematical characterization of $\mathcal{M}_{\text {internal }}$ in the presence of fluxes.
- GCG aspects: E, B-field, $\mathcal{E}, \Psi_{ \pm}$, action of $O(d, d)$.
- Twist transformation: provides a connection, transforms metric, dilaton, B-field.
- Generating new solutions: constraints

Conclusions

Introduction

- GCG provides a mathematical characterization of $\mathcal{M}_{\text {internal }}$ in the presence of fluxes.
- GCG aspects: E, B-field, $\mathcal{E}, \Psi_{ \pm}$, action of $O(d, d)$.
- Twist transformation: provides a connection, transforms metric, dilaton, B-field.
- Generating new solutions: constraints, action on RR (sectors mixing).

Conclusions

- GCG provides a mathematical characterization of $\mathcal{M}_{\text {internal }}$ in the presence of fluxes.
- GCG aspects: E, B-field, $\mathcal{E}, \Psi_{ \pm}$, action of $O(d, d)$.
- Twist transformation: provides a connection, transforms metric, dilaton, B-field.
- Generating new solutions: constraints, action on RR (sectors mixing).
- Family of (non)-trivial $T^{2} \times T^{4}$ bundles twist duals in IIB.

Conclusions

- GCG provides a mathematical characterization of $\mathcal{M}_{\text {internal }}$ in the presence of fluxes.
- GCG aspects: E, B-field, $\mathcal{E}, \Psi_{ \pm}$, action of $O(d, d)$.
- Twist transformation: provides a connection, transforms metric, dilaton, B-field.
- Generating new solutions: constraints, action on RR (sectors mixing).
- Family of (non)-trivial $T^{2} \times T^{4}$ bundles twist duals in IIB.
- (Non)-trivial $T^{2} \times K 3$ bundles a priori twist duals in het.

Conclusions

- GCG provides a mathematical characterization of $\mathcal{M}_{\text {internal }}$ in the presence of fluxes.
- GCG aspects: E, B-field, $\mathcal{E}, \Psi_{ \pm}$, action of $O(d, d)$.
- Twist transformation: provides a connection, transforms metric, dilaton, B-field.
- Generating new solutions: constraints, action on RR (sectors mixing).
- Family of (non)-trivial $T^{2} \times T^{4}$ bundles twist duals in IIB.
- (Non)-trivial $T^{2} \times K 3$ bundles a priori twist duals in het.
- GCG pure spinors on $T \oplus T^{*}$, not E.

Conclusions

- GCG provides a mathematical characterization of $\mathcal{M}_{\text {internal }}$ in the presence of fluxes.
- GCG aspects: E, B-field, $\mathcal{E}, \Psi_{ \pm}$, action of $O(d, d)$.
- Twist transformation: provides a connection, transforms metric, dilaton, B-field.
- Generating new solutions: constraints, action on RR (sectors mixing).
- Family of (non)-trivial $T^{2} \times T^{4}$ bundles twist duals in IIB.
- (Non)-trivial $T^{2} \times K 3$ bundles a priori twist duals in het.
- GCG pure spinors on $T \oplus T^{*}$, not E. SUSY conditions.

Conclusions

- GCG provides a mathematical characterization of $\mathcal{M}_{\text {internal }}$ in the presence of fluxes.
- GCG aspects: E, B-field, $\mathcal{E}, \Psi_{ \pm}$, action of $O(d, d)$.
- Twist transformation: provides a connection, transforms metric, dilaton, B-field.
- Generating new solutions: constraints, action on RR (sectors mixing).
- Family of (non)-trivial $T^{2} \times T^{4}$ bundles twist duals in IIB.
- (Non)-trivial $T^{2} \times K 3$ bundles a priori twist duals in het.
- GCG pure spinors on $T \oplus T^{*}$, not E. SUSY conditions.
- Open issues...

