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— On what Mipternal to compactify ?

o For type II SUGRA with fluxes, mathematical
characterization of Miyternal given in terms of

math.DG /0209099 by N. Hitchin, math.DG /0401221 by M. Gualtieri

Minternal Preserving at least N’ = 1 are

hep-th/0406137, hep-th/0505212 by M. Grafia, R. Minasian, M. Petrini, A. Tomasiello
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o Type II SUGRA: Nigp = 2
Spectrum: g, ¢, H = dB, F,, ¢%, \"?
Conclusions Compactification: R31 x Minternal
< Metric Ansatz : ds?w) = AW g, dat de¥ + g, (y) dyt dy”

o Find some SUSY Minkowski flux vacuum of it:

o vacuum: equations of motion (e.o.m.)
o fluxes: Bianchi Identities (BI)

o SUSY: supersymmetry conditions

o Other constraints...

One can show:

SUSY conditions + BI = e.o.m.

Main focus: solve the SUSY conditions
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Fluxes in the SUSY conditions = GCG rewriting.
o SUSY parameters decomposed, for Nyp = 1:

e = ¢(ent+ce

e = (®n’+cec

an internal pair (n',7?). For a consistent reduction,

Two globally defined non-vanishing spinors on Migternal: 7", 72

Consider in the following n* = n? (SU(3) structure).
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o SUSY conditions on Minternal:

No flux
Dyt =0
D,n?=0

n'2 spinors on T

CY

o First define differential

Ly =

= inT+7uu77+ )

With flux (GCG)

(4 W) =0
d(e*” Re(W2)) =0

d(e*4 Im(T2)) = e*e™? x A3, Fy)

W, 5 spinors on T'® T
GCY
(with n_ = (n4)*) for SU(3):

Quup — _inilyul/anr .

SUSY conditions can be expressed in terms of forms !
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Transition functions between two patches U, and Ug are

(6, = (e o), (6, = (ere ine)
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a € GL(d,R): a, a~T usual patching of vectors and 1-forms.
Additional shift of the 1-form, given by the 2-form
W(ap) = dA(ap): due to the non-trivial fibration of T™* over T.

This : given by the 2-form

: "connective structure" of a
gerbe.
— w = dA is "a gauge transformation" from U, to Ug.
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on T @ T* leaves n invariant.
e Structure group of E reduced by patching conditions to
Gyeom = G x GL(d) C O(d, d)

= )-GO -5 )

0 Minternal: @ bundle with along dz*, along
dy™, and connection A} :

ds® = gudatdz” + gma(dy™ + A™ ,dz”)(dy" + A" ,dz?) .

Dual solutions

In the (dz*,dy™) basis: vielbeins and metric:
T T
e (e 0 g=eTe— g8+ AT grA ATgr 7
erd er grA 9F

T T
9B =¢€peB, gF = €r€F .
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det(g)
‘H looks like an object in T-duality on torus.
Same transformation under T-duality group O(dg, dr).
Here d = dyq > dF = T-duality natural in GCG; we will
consider a "generalization of T-duality".

° 1
U,=—e% Pl @t .
Ny
Majorana-Weyl (locally T & T*)
— should transform under the spinorial rep. of O(d, d):
U0 =00,

Geometrical info. contained in J, Q3, (B, ¢) (SU(3)).
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d(e34vh) =0
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d(e*Am¥,) = R’ .

d(63A‘I’1) =0
d(e?4 ReW¥y) =0
d(e* ImWy) = e*e B N\(F) =R .

Develop in terms of Wy o, R, Oy, 0F = constraints on the twist:

Conclusions
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Sy d(e*05) e Re ¥ + co+ d(Oy) A Im Uy =
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with respect to the first solution ¥ o, R.
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They have precise curvatures F' = da.

Possible to get solutions on these M by twist from some 7°

solutions? =- constraints on twist parameter c:
daNJg=0, daNwg=0.

They can be satisfied on all these M = solutions found !

Another solution on n 3.14 : S' < M — M;. No 76 T-dual.
Obtained by a twist from n 4.6 !
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Non-trivial solutions were found later :
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Transform the ? Included in H, but...

Extend T @ T* with gauge bundle, apply an O(d + 16, d + 16)...
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Only one internal spinor 74 (SU(3) structure) = Pure spinors:
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As before, except that : B plays a very different role

in heterotic string...
T @ T* and not E...
— The generalized vielbein £ point of view: more difficult.

Twist W: only connection transformation, no B-transform
< previous solutions mapped !
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o Open issues...
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