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Introduction
Dualities are a major tool to study string theory.

Different string theories related by a web of dualities
↪→ understand structures of string theory...
Some SUGRA backgrounds related by dualities
↪→ understand structures of the landscape,
↪→ use dualities to find new backgrounds...
Flux backgrounds, non-trivial background geometries
Performing a duality → non-trivial change of geometry:

T-duality (mirror symmetry) relates different topologies,
geometric/non-geometric backgrounds
Kähler/non-Kähler transition in heterotic via a chain of
dualities

arXiv:0706.4290 by M. Becker, L-S. Tseng, S-T. Yau

arXiv:0707.0295 by S. Sethi

Propose Twist duality, relating SUSY flux backgrounds of
type II or heterotic string.
Geometric change: essentially provides a connection.
Transform metric and dilaton, and B-transform.
It relates backgrounds not related (simply) before.
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Flux backgrounds for compactifications.

String theory → Real world low energy physics
↪→ Compactification: R3,1 ×Minternal
Try to preserve the minimal amount of 4D supersymmetry
↪→ Usually led toMinternal = Calabi-Yau (CY)
Effective theory on it ⇒ the moduli problem...

Flux compactifications: background fluxes ⇒ a scalar
potential which stabilizes (some) of the moduli
But fluxes change the SUSY conditions
Generically,Minternal is no longer a CY
↪→ On whatMinternal to compactify ?

For type II SUGRA with fluxes, mathematical
characterization ofMinternal given in terms of Generalized
Complex Geometry (GCG):

math.DG/0209099 by N. Hitchin, math.DG/0401221 by M. Gualtieri

Minternal preserving at least N = 1 are Generalized CY
(GCY)
hep-th/0406137, hep-th/0505212 by M. Graña, R. Minasian, M. Petrini, A. Tomasiello
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T-dual or not to T6 solutions with O3.
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In heterotic string: transition between flux backgrounds
with (non)-trivial fibrations of T2 over K3.
Twist duality could map them (geometric transition...)
But no GCG here...
↪→ Introduce some GCG objects, and then perform Twist
duality to map two solutions.
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Generalized Complex Geometry and type II
flux compactifications

The SUSY conditions for a SUGRA vacuum

Type II SUGRA: N10D = 2
Spectrum: g, φ,H = dB,Fp, ψ

1,2
µ , λ1,2

Compactification: R3,1 ×Minternal
↪→ Metric Ansatz : ds2

(10) = e2A(y) ηµνdxµdxν + gµν(y)dyµdyν

Find some SUSY Minkowski flux vacuum of it:
vacuum: equations of motion (e.o.m.)
fluxes: Bianchi Identities (BI)
SUSY: supersymmetry conditions
Other constraints...

One can show:

SUSY conditions + BI ⇒ e.o.m.
Main focus: solve the SUSY conditions
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SUSY conditions :

CY condition

0 = δψµ = Dµε+ 1
4HµPε+ 1

16eφ
∑

n
/F2nγµPnε

0 = δλ =
(
/∂φ+ 1

2/HP
)
ε+ 1

8eφ
∑

n
(−1)2n(5− 2n) /F2nPnε

SUSY parameters of type II SUGRA: ε = (ε1, ε2) .

Fluxes in the SUSY conditions ⇒ GCG rewriting.

SUSY parameters decomposed, for N4D = 1:

ε1 = ζ ⊗ η1 + c.c.
ε2 = ζ ⊗ η2 + c.c.

an internal pair (η1, η2). For a consistent reduction,

Two globally defined non-vanishing spinors onMinternal: η1, η2

Consider in the following η1 = η2 (SU (3) structure).
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Dmη
1 = 0 d(e3A Ψ1) = 0

Dmη
2 = 0 d(e2A Re(Ψ2)) = 0

d(e4A Im(Ψ2)) = e4Ae−B ∗ λ(
∑

p Fp)
η1,2 spinors on T Ψ1,2 spinors on T ⊕ T∗

CY GCY
First define differential forms (with η− = (η+)∗) for SU (3):

Jµν = −iη†+γµνη+ , Ωµνρ = −iη†−γµνρη+ .

SUSY conditions can be expressed in terms of forms !

Further define the bi-spinors:
Φ+ = η1

+ ⊗ η
2†
+ , Φ− = η1

+ ⊗ η
2†
−

Φ± = polyforms, for SU (3):

Ψ+ = e−φe−B

Φ+/N+ = eiθ

e−φe−B

e−iJ

Ψ− = e−φe−B

Φ−/N− = −i

e−φe−B

Ω3

SUSY conditions can be expressed in terms of Ψ± !
Spinors on T ⊕ T∗, use of Ψ± ⇒ GCG interpretations !
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The generalized tangent bundle

GCG considers the fibration:
T∗ ↪→ E

↓
T

E : the generalized tangent bundle.

Locally: T ⊕ T∗. Sections: generalized vectors:

X = v + ξ =
(

v
ξ

)
, v ∈ T , ξ ∈ T∗ .

Transition functions between two patches Uα and Uβ are(
v
ξ

)
(α)

=
(

a 0
ωa a−T

)
(αβ)

(
v
ξ

)
(β)

=
(

av
a−Tξ − iavω

)
.

a ∈ GL(d,R): a, a−T usual patching of vectors and 1-forms.
Additional shift of the 1-form, given by the 2-form
ω(αβ) = dΛ(αβ): due to the non-trivial fibration of T∗ over T .

This non-trivial fibration: given by the 2-form B.
Geometrical interpretation of B: "connective structure" of a
gerbe.
↪→ ω = dΛ is "a gauge transformation" from Uα to Uβ .
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E is equipped with a natural metric η :

η(X ,X) = ivξ = vµξµ ⇔ XTηX = 1
2
(
v ξ

) (0 1
1 0

) (
v
ξ

)
.

O(d, d) action on T ⊕ T∗ leaves η invariant.
Twist duality is an O(d, d) transformation.
Structure group of E reduced by patching conditions to
Ggeom = GB o GL(d) ⊂ O(d, d)

P = eB
(

a 0
0 a−T

)
=
(
1 0
B 1

)(
a 0
0 a−T

)
=
(

a 0
Ba a−T

)
.

Twist duality ⊂ Ggeom.

Minternal: a bundle with base B along dxµ, fiber F along
dym, and connection Am

µ :

ds2 = gµνdxµdxν + gmn(dym + Am
ρdxρ)(dyn + An

σdxσ) .

In the (dxµ,dym) basis: vielbeins and metric:

e =
(

eB 0
eFA eF

)
g = eTe =

(
gB + ATgFA ATgF

gFA gF

)
,

gB = eT
B eB , gF = eT

F eF .
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On E , B plays the role of a connection

↪→ in GCG, we introduce generalized vielbeins/metric:

E =
(

e 0
−e−TB e−T

)
, H = ETE =

(
g − Bg−1B Bg−1

−g−1B g−1

)
,

η = ET
(
0 I
I 0

)
E , H = ET

(
I 0
0 I

)
E .

Transformation under O(d, d) :

E 7→ E ′ = EO , H 7→ H′ = OTHO , eφ 7→ eφ
′

= eφ
(
det(g′)
det(g)

) 1
4

.

H looks like an object in T-duality on torus.
Same transformation under T-duality group O(dF , dF ).
Here d = dM > dF ⇒ T-duality natural in GCG; we will
consider a "generalization of T-duality".

Pure spinors:
Ψ± = 1

N±
e−φe−B η1

+ ⊗ η
2†
± .

Majorana-Weyl Spin(d, d) spinors on E (locally T ⊕ T∗)
↪→ should transform under the spinorial rep. of O(d, d):

Ψ 7→ Ψ′ = O Ψ .
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The Twist transformation
On generalized vielbeins E

We consider O ∈ Ggeom ⊂ O(d, d) :
AT C + C T A = 0 ,

O =
(

A 0
C A−T

)
=

 AB 0 0 0
AC AF 0 0
CB CC A−T

B −A−T
B AT

CA−T
F

CC′ CF 0 A−T
F

 ,

with separation of B and F .
The O(d, d) constraint parameterizes C as

C =
(

A−T
B (C̃B −AT

CA−T
F C̃C) −A−T

B (C̃CT + AT
CA−T
F C̃F )

A−T
F C̃C A−T

F C̃F

)
,

with C̃B and C̃F anti-symmetric, C̃C unconstrained.

We perform the transformation:

φ , E =
(

e 0
−e−T B e−T

)
7→ φ′ , E ′ = EO .

↪→ e′ = eA , B′ = AT BA−AT C , eφ
′

= eφ| det(A)|
1
2 .
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Concrete example:

A = 0 :

e =
(

eB 0
0 eF

)
, ds2 = gµνdxµdxν + gmn(dym + 0)(dyn + 0) ,

B = 0 , eφ .

The twist transformation gives:

e′ =
(

eBAB 0
(eFAF )(A−1

F AC) eFAF

)
ds2 = g′µνdxµdxν + g′mn(dym + A′mρ dxρ)(dyn + A′nσ dxσ) ,
A′ = A−1

F AC , g′µν = (AT
B gB AB)µν , g′mn = (AT

F gF AF )mn .

↪→ AC generates a connection A′ (AC has to be coordinate
dependent... Important difference with T-duality),
↪→ AB, AF transform the metric .

↪→ The dilaton transforms accordingly:
eφ
′

= eφ|det(AB) det(AF )| 12 .
↪→ The free parameters in C generate a new B-field:

B′ = −
(

C̃B −C̃ T
C

C̃C C̃F

)
.
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On pure spinors Ψ±

Metric η ⇒ Clifford algebra Cliff(d, d) on E :

{Γm,Γn} = {Γm,Γn} = 0 , {Γm,Γn} = δm
n m, n = 1 . . . d .

Action on Ψ±: wedges, contractions: Γn = dxn∧ , Γm = ι∂m .

↪→ O(d, d) in the spinorial representation:

O = e− 1
4 ΘMNσ

MN
, M ,N = 1 . . . d + d .

σMN = [ΓM ,ΓN ] , ΘMN =
(

am
n βmn

Bmn −a n
m

)
.

GL(d) transformation (previous A):

Oa = e− 1
4 (am

n [Γm ,Γn ]−a n
m [Γm ,Γn ]) = · · · = 1√

detA
eam

ndxn∧ ι∂m .

B-transform (previous C ):

OB = e− 1
2 BmnΓmn

= e− 1
2 Bmndxm∧dxn

.
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Previous twist transformation:

E 7→ E ′ = EO , O =
(

A 0
C A−T

)

=
(
1 0
B 1

)(
A 0
0 A−T

)(
1 0
−B′ 1

)
becomes:

Ψ 7→ Of Ψ′ , Of = 1√
detA

e−B′ eam
ndxn∧ ι∂m eB .

We consider a further phase transformation:

O±c = eiθ±c Of .

Check the twist on Ψ±: do we have:

Ψ+ = eiθe−φe−B e−iJ −→ Ψ′+ = ei(θ+θ+
c )e−φ

′
e−B′e−iJ ′ ,

Ψ− = − ie−φe−BΩ3 −→ Ψ′− = − ieiθ−c e−φ
′
e−B′Ω′3 .

B-transform: X, dilaton transform: X, phases: X.
↪→ left with the "A-transform"Oa : action on J , Ω3.
It should transform the metric and provide a connection.
Particular case: F = T2, only gF transformation, and provide
a holomorphic connection α:

J = JB + i
2gzz dz ∧ dz 7→ J ′ = JB + i

2g′zz (dz + α) ∧ (dz + α) ,

Ω3 = √gzz ωB ∧ dz 7→ Ω′3 =
√

g′zz ωB ∧ (dz + α) . X
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SUSY.
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Mapping type IIB solutions
Constraints to generate solutions

Consider a solution of the SUSY conditions.
Perform a twist: Ψ′± = eiθ±c Of Ψ± ⇒ Get a new solution?

d(e3AΨ1) = 0 d(e3AΨ′1) = 0
d(e2A ReΨ2) = 0 ⇒ d(e2AReΨ′2) = 0
d(e4A ImΨ2) = e4Ae−B ∗ λ(F) = R . d(e4AImΨ′2) = R′ .

Develop in terms of Ψ1,2,R,Of , θ
±
c ⇒ constraints on the twist:

d(Of ) Ψ1 = 0
cθ+

c
d(Of ) e2A ReΨ2 − sθ+

c
d(e−2AOf ) e4A ImΨ2 = e−2Asθ+

c
Of R

sθ+
c
d(e2AOf ) e2A ReΨ2 + cθ+

c
d(Of ) e4A ImΨ2 = R′ − cθ+

c
Of R .

Of , θ+
c constrained with respect to the first solution Ψ1,2,R.

Note that automatically satisfied for ordinary T-duality.
Last equation: only definition of R′:

R′ = cθ+
c

Of R + sθ+
c
d(e2AOf ) e2A ReΨ2 + cθ+

c
d(Of ) e4A ImΨ2 .

θ+
c 6= 0, coordinate dependent Of ⇒ mix NSNS and RR sectors.
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Examples of type IIB dual solutions

Solutions:

T2 ↪→ M

Minternal T6 = T2 × T4

↓
T4

ds2
6 e−2Adx2

B + e−2Adx2
F e−2Adx2

B + e2A(dxF + A)2

Sources, θ O3 , θ = π
2 O5 // F , θ = 0

RR gsF5 = e4A ∗ d(e−4A) , (F3) gsF3 = −e−4A ∗ d(e2AJ)
NSNS (H = gs ∗ F3) 0

eφ gs gse2A

Twist duality map?

AB = 14 , AF = 12 × e2A , A I
C µ = e2AAI

µ , θ
+
c = −

π

2
.

B-transform if needed...
↪→ Twist duals X
T-duals only for very specific H 6= 0.

Explicit non-trivial fibration solutions?
Among nilmanifolds: twisted tori, GCY...
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Among 34 nilmanifolds, only 5 non-trivial T2 bundles.

They have different topologies:
T2 ↪→ M

n 4.4 , n 4.7 ↓
T4

S1 ↪→ M1 S1 ↪→ M2
n 4.5 ↓ × ↓

T2 T2

T2 ↪→ M1
n 4.6 ↓ × S1

T3

S1 ↪→ M1
n 5.1 ↓ × S1

T4

They have precise curvatures F = dα.
Possible to get solutions on theseM by twist from some T6

solutions? ⇒ constraints on twist parameter α:
dα ∧ JB = 0 , dα ∧ ωB = 0 .

They can be satisfied on all theseM ⇒ solutions found !

Another solution on n 3.14 : S1 ↪→M→M1. No T6 T-dual.
Obtained by a twist from n 4.6 !
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Twisting heterotic flux backgrounds
Mapping two solutions

SUSY conditions in the presence of H 6= 0 and Bianchi id.:
Nucl. Phys. B 274 (1986) 253 by A. Strominger

H = dB+
α′

4
[ω3(M)−tr

(
A ∧ dA− i

2
3
A3
)

] , dH =
α′

4
[tr(R∧R)−tr(F∧F)] .

Non-trivial solutions were found later :
hep-th/9908088 by K. Dasgupta, G. Rajesh, S. Sethi

Two N = 2 solutions: (non)-Kähler transition via dualities.

T2 ↪→ M
Minternal T2 ×K3 ↓

K3
ds2

6 e2φds2
B + |dz|2 e2φds2

B + |dz + α|2

eφ eφ eφ

B-field 0 B = Re(α ∧ dz)
Gauge field F F 6= 0 on B F = 0

Twist map? Only needs connection ! No need of B-transform !
H ′ = i(∂ − ∂)J ′ = (∂ − ∂)(. . . ) + d (Re(α ∧ dz)) .

Transform the gauge field? Included in H , but...
Extend T ⊕T∗ with gauge bundle, apply an O(d + 16, d + 16)...
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Constructing GCG pure spinors and SUSY conditions

For heterotic: no GCG construction ⇒ first try to do it !
↪→ construct pure spinors, twist them; SUSY conditions.
N10D = 1 : ε ⇒ decomposition on 4D + 6D for N4D = 1:

ε = ζ+ ⊗ η+ + ζ− ⊗ η− .

Only one internal spinor η+ (SU (3) structure) ⇒ Pure spinors:

Ψ+ = 8 e−φη+ ⊗ η†+ = e−φ e−iJ ,

Ψ− = 8 e−φη+ ⊗ η†− = −ie−φΩ3 .

As before, except that no B-field: B plays a very different role
in heterotic string...
T ⊕ T∗ and not E ...
↪→ The generalized vielbein E point of view: more difficult.

Twist Ψ±: only connection transformation, no B-transform
↪→ previous solutions mapped !
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Ψ+ = 8 e−φη+ ⊗ η†+ = e−φ e−iJ ,

Ψ− = 8 e−φη+ ⊗ η†− = −ie−φΩ3 .

As before, except that no B-field: B plays a very different role
in heterotic string...
T ⊕ T∗ and not E ...
↪→ The generalized vielbein E point of view: more difficult.

Twist Ψ±: only connection transformation, no B-transform
↪→ previous solutions mapped !
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SUSY conditions:

δψM = (DM −
1
4HM )ε = 0 ,

δλ = (6∂φ− 1
2 6H )ε = 0 ,

δχ = 2 6 Fε = 0 .

↪→ decompose on 4D + 6D, and work out conditions for Ψ±
Same as "type A" solutions of type IIB with F = 0, A = 0
↪→ worked out in

hep-th/0406137 by M. Graña, R. Minasian, M. Petrini, A. Tomasiello

Rewrite the result as a wedge product:

d (Ψ±) = ±Ȟ ∧Ψ± = ±
[
(H 1,2 −H 2,1)− i(H 0,1 −H 1,0)

]
∧Ψ± .

Decomposing on various degrees ⇒ usual SUSY conditions
Equation for Ψ−: integrability of complex structure
↪→ Minternal is complex (GCY).

Perform a twist: Ψ′± = Oc Ψ±, check at least that

(d∓ Ȟ ′∧)(Oc Ψ±) = 0 .
↪→ constraints...
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(d∓ Ȟ ′∧)(Oc Ψ±) = 0 .
↪→ constraints...



David
ANDRIOT

Introduction

GCG and type II

Twist

Dual solutions

Heterotic
Solutions

Pure spinors, SUSY

Conclusions

SUSY conditions:

δψM = (DM −
1
4HM )ε = 0 ,

δλ = (6∂φ− 1
2 6H )ε = 0 ,

δχ = 2 6 Fε = 0 .

↪→ decompose on 4D + 6D, and work out conditions for Ψ±
Same as "type A" solutions of type IIB with F = 0, A = 0
↪→ worked out in

hep-th/0406137 by M. Graña, R. Minasian, M. Petrini, A. Tomasiello

Rewrite the result as a wedge product:

d (Ψ±) = ±Ȟ ∧Ψ± = ±
[
(H 1,2 −H 2,1)− i(H 0,1 −H 1,0)

]
∧Ψ± .

Decomposing on various degrees ⇒ usual SUSY conditions
Equation for Ψ−: integrability of complex structure
↪→ Minternal is complex (GCY).

Perform a twist: Ψ′± = Oc Ψ±, check at least that
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Conclusions

GCG provides a mathematical characterization of
Minternal in the presence of fluxes.
GCG aspects: E , B-field, E , Ψ±, action of O(d, d).

Twist transformation: provides a connection, transforms
metric, dilaton, B-field.

Generating new solutions: constraints, action on RR
(sectors mixing).
Family of (non)-trivial T2 ×T4 bundles twist duals in IIB.

(Non)-trivial T2 ×K3 bundles a priori twist duals in het.
GCG pure spinors on T ⊕ T∗, not E . SUSY conditions.

Open issues...
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