Introduction GCG and type Twist

Daar Soravio

Heterotic

Conclusions

Twist duality for flux backgrounds of type II and heterotic String Theory from Generalized Complex Geometry

David ANDRIOT

LPTHE, UPMC Univ Paris 6, France

arXiv:0903.0633 by D. A., R. Minasian, M. Petrini

01/05/2009, Cornell University, NY, USA

Introduction

David ANDRIOT

Introduction

GCG and type II

Twist

Dual solutions

Heterotic

Conclusions

• Dualities are a major tool to study string theory.

Introduction

GCG and type II

Twist

Dual solutions

Heterotic

Conclusions

Introduction

• Dualities are a major tool to study string theory. Different string theories related by a web of dualities

Introduction

GCG and type II

Twist

Dual solutions

Heterotic

Conclusions

Introduction

Dualities are a major tool to study string theory.
 Different string theories related by a web of dualities
 → understand structures of string theory...

Introduction

GCG and type II

Twist

Dual solutions

Heterotic

Conclusions

Introduction

Dualities are a major tool to study string theory.
 Different string theories related by a web of dualities
 → understand structures of string theory...
 Some SUGRA backgrounds related by dualities

Introduction

GCG and type II

Twist

Dual solutions

Heterotic

Conclusions

Introduction

 Dualities are a major tool to study string theory. Different string theories related by a web of dualities
 → understand structures of string theory...
 Some SUGRA backgrounds related by dualities
 → understand structures of the landscape,

Introduction

GCG and type II

Twist

Dual solutions

Heterotic

Conclusions

Introduction

 Dualities are a major tool to study string theory. Different string theories related by a web of dualities
 → understand structures of string theory...
 Some SUGRA backgrounds related by dualities
 → understand structures of the landscape,
 → use dualities to find new backgrounds...

Introduction

GCG and type II

Twist

Dual solution

Heterotic

Conclusions

Introduction

 Dualities are a major tool to study string theory. Different string theories related by a web of dualities
 → understand structures of string theory...
 Some SUGRA backgrounds related by dualities
 → understand structures of the landscape,
 → use dualities to find new backgrounds...

• Flux backgrounds

Introduction

GCG and type II

Twist

Dual solution

Heterotic

Conclusions

Introduction

 Dualities are a major tool to study string theory. Different string theories related by a web of dualities
 → understand structures of string theory...
 Some SUGRA backgrounds related by dualities
 → understand structures of the landscape,
 → use dualities to find new backgrounds...

• Flux backgrounds, non-trivial background geometries

Introduction

GCG and type II

Twist

Dual solution:

Heterotic

Conclusions

Introduction

- Dualities are a major tool to study string theory. Different string theories related by a web of dualities

 → understand structures of string theory...
 Some SUGRA backgrounds related by dualities

 → understand structures of the landscape,

 → use dualities to find new backgrounds...
- Flux backgrounds, non-trivial background geometries Performing a duality → non-trivial change of geometry:

Introduction

GCG and type II

Twist

Dual solution:

Heterotic

Conclusions

Introduction

- Dualities are a major tool to study string theory. Different string theories related by a web of dualities

 → understand structures of string theory...
 Some SUGRA backgrounds related by dualities

 → understand structures of the landscape,

 → use dualities to find new backgrounds...
- Flux backgrounds, non-trivial background geometries Performing a duality → non-trivial change of geometry:
 - T-duality (mirror symmetry) relates different topologies,

Introduction

GCG and type II

Twist

Dual solution:

Heterotic

Conclusions

Introduction

- Dualities are a major tool to study string theory. Different string theories related by a web of dualities

 → understand structures of string theory... Some SUGRA backgrounds related by dualities

 → understand structures of the landscape,

 → use dualities to find new backgrounds...
- Flux backgrounds, non-trivial background geometries Performing a duality → non-trivial change of geometry:
 - T-duality (mirror symmetry) relates different topologies, geometric/non-geometric backgrounds

Introduction

GCG and type II

Twist

Dual solution:

Heterotic

Conclusions

Introduction

- Dualities are a major tool to study string theory. Different string theories related by a web of dualities

 → understand structures of string theory...
 Some SUGRA backgrounds related by dualities

 → understand structures of the landscape,

 → use dualities to find new backgrounds...
- Flux backgrounds, non-trivial background geometries Performing a duality → non-trivial change of geometry:
 - T-duality (mirror symmetry) relates different topologies, geometric/non-geometric backgrounds
 - Kähler/non-Kähler transition in heterotic via a chain of dualities

arXiv:0706.4290 by M. Becker, L-S. Tseng, S-T. Yau

arXiv:0707.0295 by S. Sethi

Introduction

GCG and type II

Twist

Dual solutions

Heterotic

Conclusions

Introduction

- Dualities are a major tool to study string theory. Different string theories related by a web of dualities

 → understand structures of string theory...
 Some SUGRA backgrounds related by dualities

 → understand structures of the landscape,

 → use dualities to find new backgrounds...
- Flux backgrounds, non-trivial background geometries Performing a duality → non-trivial change of geometry:
 - T-duality (mirror symmetry) relates different topologies, geometric/non-geometric backgrounds
 - Kähler/non-Kähler transition in heterotic via a chain of dualities

arXiv:0706.4290 by M. Becker, L-S. Tseng, S-T. Yau

arXiv:0707.0295 by S. Sethi

• Propose Twist duality

Introduction

GCG and type II

Twist

Dual solutions

Heterotic

Conclusions

Introduction

- Dualities are a major tool to study string theory. Different string theories related by a web of dualities

 → understand structures of string theory...
 Some SUGRA backgrounds related by dualities

 → understand structures of the landscape,

 → use dualities to find new backgrounds...
- Flux backgrounds, non-trivial background geometries Performing a duality \rightarrow non-trivial change of geometry:
 - T-duality (mirror symmetry) relates different topologies, geometric/non-geometric backgrounds
 - Kähler/non-Kähler transition in heterotic via a chain of dualities

arXiv:0706.4290 by M. Becker, L-S. Tseng, S-T. Yau

arXiv:0707.0295 by S. Sethi

• Propose Twist duality, relating SUSY flux backgrounds of type II or heterotic string.

Introduction

GCG and type II

Twist

Dual solutions

Heterotic

Conclusions

Introduction

- Dualities are a major tool to study string theory. Different string theories related by a web of dualities

 → understand structures of string theory...
 Some SUGRA backgrounds related by dualities

 → understand structures of the landscape,

 → use dualities to find new backgrounds...
- Flux backgrounds, non-trivial background geometries Performing a duality → non-trivial change of geometry:
 - T-duality (mirror symmetry) relates different topologies, geometric/non-geometric backgrounds
 - Kähler/non-Kähler transition in heterotic via a chain of dualities

arXiv:0706.4290 by M. Becker, L-S. Tseng, S-T. Yau

arXiv:0707.0295 by S. Sethi

• Propose Twist duality, relating SUSY flux backgrounds of type II or heterotic string. Geometric change: essentially provides a connection.

Introduction

GCG and type II

Twist

Dual solutions

Heterotic

Conclusions

Introduction

- Dualities are a major tool to study string theory. Different string theories related by a web of dualities

 → understand structures of string theory...
 Some SUGRA backgrounds related by dualities

 → understand structures of the landscape,

 → use dualities to find new backgrounds...
- Flux backgrounds, non-trivial background geometries Performing a duality → non-trivial change of geometry:
 - T-duality (mirror symmetry) relates different topologies, geometric/non-geometric backgrounds
 - Kähler/non-Kähler transition in heterotic via a chain of dualities

arXiv:0706.4290 by M. Becker, L-S. Tseng, S-T. Yau

arXiv:0707.0295 by S. Sethi

• Propose Twist duality, relating SUSY flux backgrounds of type II or heterotic string. Geometric change: essentially provides a connection. Transform metric and dilaton, and B-transform.

Introduction

GCG and type II

Twist

Dual solutions

Heterotic

Conclusions

Introduction

- Dualities are a major tool to study string theory. Different string theories related by a web of dualities

 → understand structures of string theory...
 Some SUGRA backgrounds related by dualities

 → understand structures of the landscape,

 → use dualities to find new backgrounds...
- Flux backgrounds, non-trivial background geometries Performing a duality → non-trivial change of geometry:
 - T-duality (mirror symmetry) relates different topologies, geometric/non-geometric backgrounds
 - Kähler/non-Kähler transition in heterotic via a chain of dualities

arXiv:0706.4290 by M. Becker, L-S. Tseng, S-T. Yau

arXiv:0707.0295 by S. Sethi

• Propose Twist duality, relating SUSY flux backgrounds of type II or heterotic string. Geometric change: essentially provides a connection. Transform metric and dilaton, and B-transform. It relates backgrounds not related (simply) before.

Introduction

GCG and type II

Twist

Dual solutions

Heterotic

Conclusions

Introduction

GCG and type II

Twist

Dual solutions

Heterotic

Conclusions

Flux backgrounds for compactifications.

 ${\scriptstyle \bullet}\,$ String theory \rightarrow Real world low energy physics

Introduction

GCG and type II

Twist

Dual solutions

Heterotic

Conclusions

Flux backgrounds for compactifications.

• String theory \rightarrow Real world low energy physics \hookrightarrow Compactification: $\mathbb{R}^{3,1} \times \mathcal{M}_{internal}$

Introduction

GCG and type II

Twist

Dual solutions

Heterotic

Conclusions

Flux backgrounds for compactifications.

• String theory \rightarrow Real world low energy physics

 \hookrightarrow Compactification: $\mathbb{R}^{3,1} \times \mathcal{M}_{internal}$

Try to preserve the minimal amount of 4D supersymmetry

Introduction

- GCG and type II
- Twist
- Dual solutions
- Heterotic
- Conclusions

- String theory \rightarrow Real world low energy physics
 - \hookrightarrow Compactification: $\mathbb{R}^{3,1} \times \mathcal{M}_{internal}$
 - Try to preserve the minimal amount of 4D supersymmetry
 - \hookrightarrow Usually led to $\mathcal{M}_{internal} = Calabi-Yau (CY)$

Introduction

GCG and type II

Twist

Dual solutions

Heterotic

Conclusions

Flux backgrounds for compactifications

String theory → Real world low energy physics
 → Compactification: ℝ^{3,1} × M_{internal}
 Try to preserve the minimal amount of 4D supersymmetry
 → Usually led to M_{internal} = Calabi-Yau (CY)
 Effective theory on it ⇒ the moduli problem...

Introduction

- GCG and type II
- Twist
- Dual solutions
- Heterotic
- Conclusions

- String theory \rightarrow Real world low energy physics \hookrightarrow Compactification: $\mathbb{R}^{3,1} \times \mathcal{M}_{internal}$ Try to preserve the minimal amount of 4D supersymmetry \hookrightarrow Usually led to $\mathcal{M}_{internal} =$ Calabi-Yau (CY) Effective theory on it \Rightarrow the moduli problem...
- Flux compactifications: background fluxes ⇒ a scalar potential which stabilizes (some) of the moduli

Introduction

- GCG and type II
- Twist
- Dual solutions
- Heterotic
- Conclusions

- String theory \rightarrow Real world low energy physics \hookrightarrow Compactification: $\mathbb{R}^{3,1} \times \mathcal{M}_{internal}$ Try to preserve the minimal amount of 4D supersymmetry \hookrightarrow Usually led to $\mathcal{M}_{internal} =$ Calabi-Yau (CY) Effective theory on it \Rightarrow the moduli problem...
- Flux compactifications: background fluxes ⇒ a scalar potential which stabilizes (some) of the moduli But fluxes change the SUSY conditions

Introduction

- GCG and type II
- Twist
- Dual solutions
- Heterotic
- Conclusions

- String theory \rightarrow Real world low energy physics \leftrightarrow Compactification: $\mathbb{R}^{3,1} \times \mathcal{M}_{internal}$ Try to preserve the minimal amount of 4D supersymmetry \leftrightarrow Usually led to $\mathcal{M}_{internal} =$ Calabi-Yau (CY) Effective theory on it \Rightarrow the moduli problem...
- Flux compactifications: background fluxes ⇒ a scalar potential which stabilizes (some) of the moduli But fluxes change the SUSY conditions Generically, M_{internal} is no longer a CY

Introduction

- GCG and type II
- Twist
- Dual solutions
- Heterotic
- Conclusions

- String theory \rightarrow Real world low energy physics \hookrightarrow Compactification: $\mathbb{R}^{3,1} \times \mathcal{M}_{internal}$ Try to preserve the minimal amount of 4D supersymmetry \hookrightarrow Usually led to $\mathcal{M}_{internal} =$ Calabi-Yau (CY) Effective theory on it \Rightarrow the moduli problem...
- Flux compactifications: background fluxes ⇒ a scalar potential which stabilizes (some) of the moduli But fluxes change the SUSY conditions Generically, M_{internal} is no longer a CY
 → On what M_{internal} to compactify ?

Introduction

- GCG and type II
- Twist
- Dual solutions
- Heterotic
- Conclusions

Flux backgrounds for compactifications

- String theory \rightarrow Real world low energy physics \leftarrow Compactification: $\mathbb{R}^{3,1} \times \mathcal{M}_{internal}$ Try to preserve the minimal amount of 4D supersymmetry \leftarrow Usually led to $\mathcal{M}_{internal} =$ Calabi-Yau (CY) Effective theory on it \Rightarrow the moduli problem...
- Flux compactifications: background fluxes ⇒ a scalar potential which stabilizes (some) of the moduli But fluxes change the SUSY conditions Generically, M_{internal} is no longer a CY
 ↔ On what M_{internal} to compactify ?
- For type II SUGRA with fluxes, mathematical characterization of $\mathcal{M}_{internal}$ given in terms of Generalized Complex Geometry (GCG):

math. DG/0209099 by N. Hitchin, math. DG/0401221 by M. Gualtieri

Introduction

- GCG and type II
- Twist
- Dual solutions
- Heterotic
- Conclusions

Flux backgrounds for compactifications.

- String theory \rightarrow Real world low energy physics \leftarrow Compactification: $\mathbb{R}^{3,1} \times \mathcal{M}_{internal}$ Try to preserve the minimal amount of 4D supersymmetry \leftarrow Usually led to $\mathcal{M}_{internal} =$ Calabi-Yau (CY) Effective theory on it \Rightarrow the moduli problem...
- Flux compactifications: background fluxes ⇒ a scalar potential which stabilizes (some) of the moduli But fluxes change the SUSY conditions Generically, M_{internal} is no longer a CY
 ↔ On what M_{internal} to compactify ?
- For type II SUGRA with fluxes, mathematical characterization of $\mathcal{M}_{internal}$ given in terms of Generalized Complex Geometry (GCG):

math. DG/0209099 by N. Hitchin, math. DG/0401221 by M. Gualtieri

 $\mathcal{M}_{internal}$ preserving at least $\mathcal{N} = 1$ are Generalized CY (GCY)

hep-th/0406137, hep-th/0505212 by M. Graña, R. Minasian, M. Petrini, A. Tomasiello

Introduction

GCG and type II

Twist

Dual solutions

Heterotic

Conclusions

• More generally: GCG is a natural set-up to study type II SUSY flux backgrounds.

Introduction

GCG and type II

Twist

Dual solutions

Heterotic

Conclusions

• More generally: GCG is a natural set-up to study type II SUSY flux backgrounds. Useful for non-geometry,

Introduction

GCG and type II

Twist

Dual solutions

Heterotic

Conclusions

• More generally: GCG is a natural set-up to study type II SUSY flux backgrounds. Useful for non-geometry, effective actions,

Introduction

GCG and type II

Twist

Dual solutions

Heterotic

Conclusions

• More generally: GCG is a natural set-up to study type II SUSY flux backgrounds.

Useful for non-geometry, effective actions, gauge/gravity context...

Introduction

GCG and type II

Twist

Dual solutions

Heterotic

Conclusions

• More generally: GCG is a natural set-up to study type II SUSY flux backgrounds.

Useful for non-geometry, effective actions, gauge/gravity context...

Propose Twist duality in this language.

Introduction

GCG and type II

Twist

Dual solutions

Heterotic

Conclusions

• More generally: GCG is a natural set-up to study type II SUSY flux backgrounds.

Useful for non-geometry, effective actions, gauge/gravity context...

Propose Twist duality in this language.

Consider geometric flux compactifications:
Introduction

GCG and type II

Twist

Dual solutions

Heterotic

Conclusions

• More generally: GCG is a natural set-up to study type II SUSY flux backgrounds.

Useful for non-geometry, effective actions, gauge/gravity context...

Propose Twist duality in this language.

Consider geometric flux compactifications:

• In type II: a family of flux backgrounds with O5,

Introduction

- GCG and type II
- Twist
- Dual solutions
- Heterotic
- Conclusions

• More generally: GCG is a natural set-up to study type II SUSY flux backgrounds.

Useful for non-geometry, effective actions, gauge/gravity context...

Propose Twist duality in this language.

Consider geometric flux compactifications:

• In type II: a family of flux backgrounds with O5, on twisted tori (non-trivial fibrations of tori over tori).

Introduction

- GCG and type II
- Twist
- Dual solutions
- Heterotic
- Conclusions

• More generally: GCG is a natural set-up to study type II SUSY flux backgrounds.

Useful for non-geometry, effective actions, gauge/gravity context...

Propose Twist duality in this language.

Consider geometric flux compactifications:

 In type II: a family of flux backgrounds with O5, on twisted tori (non-trivial fibrations of tori over tori). T-dual or not to T⁶ solutions with O3.

Introduction

GCG and type II

Twist

Dual solutions

Heterotic

Conclusions

• More generally: GCG is a natural set-up to study type II SUSY flux backgrounds.

Useful for non-geometry, effective actions, gauge/gravity context...

Propose Twist duality in this language.

Consider geometric flux compactifications:

 In type II: a family of flux backgrounds with O5, on twisted tori (non-trivial fibrations of tori over tori). T-dual or not to T⁶ solutions with O3.

hep-th/0609124 by M. Graña, R. Minasian, M. Petrini, A. Tomasiello

Introduction

GCG and type II

Twist

Dual solutions

Heterotic

Conclusions

• More generally: GCG is a natural set-up to study type II SUSY flux backgrounds.

Useful for non-geometry, effective actions, gauge/gravity context...

Propose Twist duality in this language.

Consider geometric flux compactifications:

 In type II: a family of flux backgrounds with O5, on twisted tori (non-trivial fibrations of tori over tori).
T-dual or not to T⁶ solutions with O3.

hep-th/0609124 by M. Graña, R. Minasian, M. Petrini, A. Tomasiello Twist duality maps them to T^6 solutions with O3.

Introduction

GCG and type II

Twist

Dual solutions

Heterotic

Conclusions

• More generally: GCG is a natural set-up to study type II SUSY flux backgrounds.

Useful for non-geometry, effective actions, gauge/gravity context...

Propose Twist duality in this language.

Consider geometric flux compactifications:

 In type II: a family of flux backgrounds with O5, on twisted tori (non-trivial fibrations of tori over tori). T-dual or not to T⁶ solutions with O3.

hep-th/0609124 by M. Graña, R. Minasian, M. Petrini, A. Tomasiello Twist duality maps them to T^6 solutions with O3.

• In heterotic string: transition between flux backgrounds with (non)-trivial fibrations of T^2 over K3.

Introduction

GCG and type II

Twist

Dual solutions

Heterotic

Conclusions

• More generally: GCG is a natural set-up to study type II SUSY flux backgrounds.

Useful for non-geometry, effective actions, gauge/gravity context...

Propose Twist duality in this language.

Consider geometric flux compactifications:

 In type II: a family of flux backgrounds with O5, on twisted tori (non-trivial fibrations of tori over tori).
T-dual or not to T⁶ solutions with O3.

hep-th/0609124 by M. Graña, R. Minasian, M. Petrini, A. Tomasiello Twist duality maps them to T^6 solutions with O3.

• In heterotic string: transition between flux backgrounds with (non)-trivial fibrations of T^2 over K3. Twist duality could map them (geometric transition...)

Introduction

- GCG and type II
- Twist
- Dual solutions
- Heterotic
- Conclusions

• More generally: GCG is a natural set-up to study type II SUSY flux backgrounds.

Useful for non-geometry, effective actions, gauge/gravity context...

Propose Twist duality in this language.

Consider geometric flux compactifications:

 In type II: a family of flux backgrounds with O5, on twisted tori (non-trivial fibrations of tori over tori).
T-dual or not to T⁶ solutions with O3.

hep-th/0609124 by M. Graña, R. Minasian, M. Petrini, A. Tomasiello Twist duality maps them to T^6 solutions with O3.

• In heterotic string: transition between flux backgrounds with (non)-trivial fibrations of T^2 over K3. Twist duality could map them (geometric transition...) But no GCG here...

Introduction

- GCG and type II
- Twist
- Dual solutions
- Heterotic
- Conclusions

• More generally: GCG is a natural set-up to study type II SUSY flux backgrounds.

Useful for non-geometry, effective actions, gauge/gravity context...

Propose Twist duality in this language.

Consider geometric flux compactifications:

 In type II: a family of flux backgrounds with O5, on twisted tori (non-trivial fibrations of tori over tori). T-dual or not to T⁶ solutions with O3.

hep-th/0609124 by M. Graña, R. Minasian, M. Petrini, A. Tomasiello Twist duality maps them to T^6 solutions with O3.

• In heterotic string: transition between flux backgrounds with (non)-trivial fibrations of T^2 over K3. Twist duality could map them (geometric transition...) But no GCG here...

 \hookrightarrow Introduce some GCG objects, and then perform Twist duality to map two solutions.

Introduction

GCG and type II

Twist

Dual solutions

Heterotic

Conclusions

Plan:

• Review appearance of GCG in type II SUSY flux backgrounds.

Introduction

GCG and type II

Twist

Dual solution

Heterotic

Conclusions

Plan:

• Review appearance of GCG in type II SUSY flux backgrounds. More elements of GCG in type II.

Introduction

- GCG and type II
- Twist
- Dual solutions
- Heterotic
- Conclusions

Plan:

- Review appearance of GCG in type II SUSY flux backgrounds. More elements of GCG in type II.
- Twist duality on GCG objects.

Introduction

- GCG and type II
- Twist
- Dual solutions
- Heterotic
- Conclusions

Plan:

- Review appearance of GCG in type II SUSY flux backgrounds.
 - More elements of GCG in type II.
- Twist duality on GCG objects. Application to map flux backgrounds, generate new solutions?

Introduction

- GCG and type II
- Twist
- Dual solutions
- Heterotic
- Conclusions

Plan:

- Review appearance of GCG in type II SUSY flux backgrounds.
 - More elements of GCG in type II.
- Twist duality on GCG objects. Application to map flux backgrounds, generate new solutions?
- Heterotic backgrounds treatment.

Introduction

GCG and type II SUSY conditions $T \oplus T^*$ bundle

Twist

Dual solutions

Heterotic

Conclusions

Generalized Complex Geometry and type II flux compactifications

The SUSY conditions for a SUGRA vacuum

• Type II SUGRA: $\mathcal{N}_{10D} = 2$ Spectrum: $g, \phi, H = dB, F_p, \psi^{1,2}_{\mu}, \lambda^{1,2}$

Introduction

GCG and type II SUSY conditions $T \oplus T^*$ bundle

Twist

Dual solutions

Heterotic

Conclusions

Generalized Complex Geometry and type II flux compactifications

The SUSY conditions for a SUGRA vacuum

• Type II SUGRA: $\mathcal{N}_{10D} = 2$ Spectrum: $g, \phi, H = dB, F_p, \psi^{1,2}_{\mu}, \lambda^{1,2}$ Compactification: $\mathbb{R}^{3,1} \times \mathcal{M}_{\text{internal}}$

Introduction

GCG and type II SUSY conditions $T \oplus T^*$ bundle

Twist

Dual solutions

Heterotic

Conclusions

Generalized Complex Geometry and type II flux compactifications

The SUSY conditions for a SUGRA vacuum

• Type II SUGRA: $\mathcal{N}_{10D} = 2$ Spectrum: $g, \phi, H = dB, F_p, \psi^{1,2}, \lambda^{1,2}$ Compactification: $\mathbb{R}^{3,1} \times \mathcal{M}_{\text{internal}}$ \hookrightarrow Metric Ansatz : $ds^2_{(10)} = e^{2A(y)} \eta_{\mu\nu} dx^{\mu} dx^{\nu} + g_{\mu\nu}(y) dy^{\mu} dy^{\nu}$

Introduction

GCG and type II SUSY conditions $T \oplus T^*$ bundle

Twist

Dual solutions

Heterotic

Conclusions

Generalized Complex Geometry and type II flux compactifications

The SUSY conditions for a SUGRA vacuum

• Type II SUGRA: $\mathcal{N}_{10D} = 2$ Spectrum: $g, \phi, H = dB, F_p, \psi^{1,2}_{\mu}, \lambda^{1,2}$ Compactification: $\mathbb{R}^{3,1} \times \mathcal{M}_{\text{internal}}$ \hookrightarrow Metric Ansatz : $ds^2_{(10)} = e^{2A(y)} \eta_{\mu\nu} dx^{\mu} dx^{\nu} + g_{\mu\nu}(y) dy^{\mu} dy^{\nu}$

Introduction

GCG and type II SUSY conditions $T \oplus T^*$ bundle

Twist

Dual solutions

Heterotic

Conclusions

Generalized Complex Geometry and type II flux compactifications

The SUSY conditions for a SUGRA vacuum

• Type II SUGRA: $\mathcal{N}_{10D} = 2$ Spectrum: $g, \phi, H = dB, F_p, \ \psi_{\mu}^{1,2}, \lambda^{1,2}$ Compactification: $\mathbb{R}^{3,1} \times \mathcal{M}_{\text{internal}}$ \hookrightarrow Metric Ansatz : $ds_{(10)}^2 = e^{2A(y)} \ \eta_{\mu\nu} dx^{\mu} dx^{\nu} + g_{\mu\nu}(y) dy^{\mu} dy^{\nu}$

• Find some SUSY Minkowski flux vacuum of it:

• vacuum: equations of motion (e.o.m.)

Introduction

GCG and type II SUSY conditions $T \oplus T^*$ bundle

Twist

Dual solutions

Heterotic

Conclusions

Generalized Complex Geometry and type II flux compactifications

The SUSY conditions for a SUGRA vacuum

• Type II SUGRA: $\mathcal{N}_{10D} = 2$ Spectrum: $g, \phi, H = dB, F_p, \ \psi_{\mu}^{1,2}, \lambda^{1,2}$ Compactification: $\mathbb{R}^{3,1} \times \mathcal{M}_{\text{internal}}$ \hookrightarrow Metric Ansatz : $ds_{(10)}^2 = e^{2A(y)} \ \eta_{\mu\nu} dx^{\mu} dx^{\nu} + g_{\mu\nu}(y) dy^{\mu} dy^{\nu}$

- vacuum: equations of motion (e.o.m.)
- fluxes: Bianchi Identities (BI)

Introduction

GCG and type II SUSY conditions $T \oplus T^*$ bundle

Twist

Dual solutions

Heterotic

Conclusions

Generalized Complex Geometry and type II flux compactifications

The SUSY conditions for a SUGRA vacuum

• Type II SUGRA: $\mathcal{N}_{10D} = 2$ Spectrum: $g, \phi, H = dB, F_p, \psi^{1,2}_{\mu}, \lambda^{1,2}$ Compactification: $\mathbb{R}^{3,1} \times \mathcal{M}_{\text{internal}}$ \hookrightarrow Metric Ansatz : $ds^2_{(10)} = e^{2A(y)} \eta_{\mu\nu} dx^{\mu} dx^{\nu} + g_{\mu\nu}(y) dy^{\mu} dy^{\nu}$

- vacuum: equations of motion (e.o.m.)
- fluxes: Bianchi Identities (BI)
- SUSY: supersymmetry conditions

Introduction

GCG and type II SUSY conditions $T \oplus T^*$ bundle

Twist

Dual solutions

Heterotic

Conclusions

Generalized Complex Geometry and type II flux compactifications

The SUSY conditions for a SUGRA vacuum

• Type II SUGRA: $\mathcal{N}_{10D} = 2$ Spectrum: $g, \phi, H = dB, F_p, \ \psi_{\mu}^{1,2}, \lambda^{1,2}$ Compactification: $\mathbb{R}^{3,1} \times \mathcal{M}_{\text{internal}}$ \hookrightarrow Metric Ansatz : $ds_{(10)}^2 = e^{2A(y)} \ \eta_{\mu\nu} dx^{\mu} dx^{\nu} + g_{\mu\nu}(y) dy^{\mu} dy^{\nu}$

- vacuum: equations of motion (e.o.m.)
- fluxes: Bianchi Identities (BI)
- SUSY: supersymmetry conditions
- Other constraints...

Introduction

GCG and type II SUSY conditions $T \oplus T^*$ bundle

Twist

Dual solutions

Heterotic

Conclusions

Generalized Complex Geometry and type II flux compactifications

The SUSY conditions for a SUGRA vacuum

• Type II SUGRA: $\mathcal{N}_{10D} = 2$ Spectrum: $g, \phi, H = dB, F_p, \psi^{1,2}_{\mu}, \lambda^{1,2}$ Compactification: $\mathbb{R}^{3,1} \times \mathcal{M}_{\text{internal}}$ \hookrightarrow Metric Ansatz : $ds^2_{(10)} = e^{2A(y)} \eta_{\mu\nu} dx^{\mu} dx^{\nu} + g_{\mu\nu}(y) dy^{\mu} dy^{\nu}$

• Find some SUSY Minkowski flux vacuum of it:

- vacuum: equations of motion (e.o.m.)
- fluxes: Bianchi Identities (BI)
- SUSY: supersymmetry conditions
- Other constraints...

One can show:

Introduction

GCG and type II SUSY conditions $T \oplus T^*$ bundle

Twist

Dual solutions

Heterotic

Conclusions

Generalized Complex Geometry and type II flux compactifications

The SUSY conditions for a SUGRA vacuum

• Type II SUGRA: $\mathcal{N}_{10D} = 2$ Spectrum: $g, \phi, H = dB, F_p, \ \psi^{1,2}_{\mu}, \lambda^{1,2}$ Compactification: $\mathbb{R}^{3,1} \times \mathcal{M}_{\text{internal}}$ \hookrightarrow Metric Ansatz : $ds^2_{(10)} = e^{2A(y)} \ \eta_{\mu\nu} dx^{\mu} dx^{\nu} + g_{\mu\nu}(y) dy^{\mu} dy^{\nu}$

• Find some SUSY Minkowski flux vacuum of it:

- vacuum: equations of motion (e.o.m.)
- fluxes: Bianchi Identities (BI)
- SUSY: supersymmetry conditions
- Other constraints...

One can show:

SUSY conditions + BI \Rightarrow e.o.m.

Introduction

GCG and type II SUSY conditions $T \oplus T^*$ bundle

Twist

Dual solutions

Heterotic

Conclusions

Generalized Complex Geometry and type II flux compactifications

The SUSY conditions for a SUGRA vacuum

• Type II SUGRA: $\mathcal{N}_{10D} = 2$ Spectrum: $g, \phi, H = dB, F_p, \psi^{1,2}_{\mu}, \lambda^{1,2}$ Compactification: $\mathbb{R}^{3,1} \times \mathcal{M}_{\text{internal}}$ \hookrightarrow Metric Ansatz : $ds^2_{(10)} = e^{2A(y)} \eta_{\mu\nu} dx^{\mu} dx^{\nu} + g_{\mu\nu}(y) dy^{\mu} dy^{\nu}$

• Find some SUSY Minkowski flux vacuum of it:

- vacuum: equations of motion (e.o.m.)
- fluxes: Bianchi Identities (BI)
- SUSY: supersymmetry conditions
- Other constraints...

One can show:

SUSY conditions + BI \Rightarrow e.o.m. Main focus: solve the SUSY conditions

Introduction

GCG and type II SUSY conditions $T \oplus T^*$ bundle

Twist

Dual solutions

Heterotic

Conclusions

• SUSY conditions :

$$0 = \delta \psi_{\mu} = D_{\mu}\epsilon + \frac{1}{4}H_{\mu}\mathcal{P}\epsilon + \frac{1}{16}e^{\phi}\sum_{n} I_{2n}^{\mu}\gamma_{\mu}\mathcal{P}_{n}\epsilon$$
$$0 = \delta\lambda = \left(\partial \!\!\!/ \phi + \frac{1}{2}I_{n}^{\mu}\mathcal{P}\right)\epsilon + \frac{1}{8}e^{\phi}\sum_{n}(-1)^{2n}(5-2n)I_{2n}^{\mu}\mathcal{P}_{n}\epsilon$$

SUSY parameters of type II SUGRA: $\epsilon = (\epsilon^1, \epsilon^2)$.

Introduction

GCG and type II SUSY conditions

Twist

Dual solutions

Heterotic

Conclusions

• SUSY conditions :

$$= \delta \psi_{\mu} = D_{\mu}\epsilon + \frac{1}{4}H_{\mu}\mathcal{P}\epsilon + \frac{1}{16}e^{\phi}\sum_{n} I\!\!\!/_{2n}\gamma_{\mu}\mathcal{P}_{n}\epsilon$$
$$= \delta\lambda = \left(\partial\!\!\!/\phi + \frac{1}{2}I\!\!/_{2n}\mathcal{P}\right)\epsilon + \frac{1}{8}e^{\phi}\sum_{n}(-1)^{2n}(5-2n)I\!\!/_{2n}\mathcal{P}_{n}\epsilon$$

SUSY parameters of type II SUGRA: $\epsilon=(\epsilon^1,\epsilon^2)$. Fluxes in the SUSY conditions

Introduction

GCG and type II SUSY conditions $T \oplus T^*$ bundle

Twist

Dual solutions

Heterotic

Conclusions

• SUSY conditions : CY condition

$$0 = \delta \psi_{\mu} = D_{\mu} \epsilon$$
$$0 = \delta \lambda = \left(\partial \phi \right) \epsilon$$

SUSY parameters of type II SUGRA: $\epsilon=(\epsilon^1,\epsilon^2)$. Fluxes in the SUSY conditions

Introduction

GCG and type II SUSY conditions

Twist

Dual solutions

Heterotic

Conclusions

• SUSY conditions :

$$= \delta \psi_{\mu} = D_{\mu}\epsilon + \frac{1}{4}H_{\mu}\mathcal{P}\epsilon + \frac{1}{16}e^{\phi}\sum_{n} I_{2n}^{r}\gamma_{\mu}\mathcal{P}_{n}\epsilon$$
$$= \delta \lambda = \left(\partial \!\!\!/ \phi + \frac{1}{2}I_{n}^{r}\mathcal{P}\right)\epsilon + \frac{1}{8}e^{\phi}\sum_{n}(-1)^{2n}(5-2n)I_{2n}^{r}\mathcal{P}_{n}\epsilon$$

SUSY parameters of type II SUGRA: $\epsilon = (\epsilon^1, \epsilon^2)$. Fluxes in the SUSY conditions \Rightarrow GCG rewriting.

Introduction

GCG and type II SUSY conditions $T \oplus T^*$ bundle

Twist

Dual solutions

Heterotic

Conclusions

• SUSY conditions :

$$= \delta \psi_{\mu} = D_{\mu} \epsilon + \frac{1}{4} H_{\mu} \mathcal{P} \epsilon + \frac{1}{16} e^{\phi} \sum_{n} \mathcal{F}_{2n} \gamma_{\mu} \mathcal{P}_{n} \epsilon$$
$$= \delta \lambda = \left(\partial \!\!\!/ \phi + \frac{1}{2} \mathcal{F}_{n} \mathcal{P} \right) \epsilon + \frac{1}{8} e^{\phi} \sum_{n} (-1)^{2n} (5 - 2n) \mathcal{F}_{2n} \mathcal{P}_{n} \epsilon$$

SUSY parameters of type II SUGRA: $\epsilon = (\epsilon^1, \epsilon^2)$. Fluxes in the SUSY conditions \Rightarrow GCG rewriting.

• SUSY parameters decomposed

Introduction

GCG and type II SUSY conditions $T \oplus T^*$ bundle

Twist

Dual solutions

Heterotic

Conclusions

• SUSY conditions :

$$= \delta \psi_{\mu} = D_{\mu} \epsilon + \frac{1}{4} H_{\mu} \mathcal{P} \epsilon + \frac{1}{16} e^{\phi} \sum_{n} \mathcal{F}_{2n} \gamma_{\mu} \mathcal{P}_{n} \epsilon$$
$$= \delta \lambda = \left(\partial \!\!\!/ \phi + \frac{1}{2} \mathcal{F}_{n} \mathcal{P} \right) \epsilon + \frac{1}{8} e^{\phi} \sum_{n} (-1)^{2n} (5 - 2n) \mathcal{F}_{2n} \mathcal{P}_{n} \epsilon$$

SUSY parameters of type II SUGRA: $\epsilon = (\epsilon^1, \epsilon^2)$. Fluxes in the SUSY conditions \Rightarrow GCG rewriting.

• SUSY parameters decomposed, for $\mathcal{N}_{4D} = 1$:

$$\begin{aligned} \epsilon^1 &= \zeta \otimes \eta^1 + c.c. \\ \epsilon^2 &= \zeta \otimes \eta^2 + c.c. \end{aligned}$$

an internal pair (η^1, η^2) .

Introduction

GCG and type II SUSY conditions $T \oplus T^*$ bundle

Twist

Dual solutions

Heterotic

Conclusions

• SUSY conditions :

SUSY parameters of type II SUGRA: $\epsilon = (\epsilon^1, \epsilon^2)$. Fluxes in the SUSY conditions \Rightarrow GCG rewriting.

• SUSY parameters decomposed, for $\mathcal{N}_{4D} = 1$:

$$\begin{aligned} \epsilon^1 &= \zeta \otimes \eta^1 + c.c. \\ \epsilon^2 &= \zeta \otimes \eta^2 + c.c. \end{aligned}$$

an internal pair (η^1, η^2) . For a consistent reduction,

Two globally defined non-vanishing spinors on $\mathcal{M}_{internal}$: η^1, η^2

Introduction

GCG and type II SUSY conditions $T \oplus T^*$ bundle

Twist

Dual solutions

Heterotic

Conclusions

• SUSY conditions :

SUSY parameters of type II SUGRA: $\epsilon = (\epsilon^1, \epsilon^2)$. Fluxes in the SUSY conditions \Rightarrow GCG rewriting.

• SUSY parameters decomposed, for $\mathcal{N}_{4D} = 1$:

$$\begin{aligned} \epsilon^1 &= \zeta \otimes \eta^1 + c.c. \\ \epsilon^2 &= \zeta \otimes \eta^2 + c.c. \end{aligned}$$

an internal pair (η^1, η^2) . For a consistent reduction,

Two globally defined non-vanishing spinors on $\mathcal{M}_{\text{internal}}$: η^1, η^2 Consider in the following $\eta^1 = \eta^2$ (SU(3) structure).

David ANDRIOT Introduction GCG and type II SUSY conditions $T \oplus T^*$ bundle Twist Dual solutions Heterotic

Conclusions

• SUSY conditions on $\mathcal{M}_{internal}$:

	• SUSY conditions on $\mathcal{M}_{\text{internal}}$:	
David ANDRIOT	No flux	With flux (GCG)
GCG and type II SUSY conditions $T \oplus T^*$ bundle		

Introduction

GCG and type II SUSY conditions

Twist

Dual solutions

Heterotic

Conclusions

• SUSY conditions on $\mathcal{M}_{internal}$:

No flux

With flux (GCG)

$$\begin{array}{l} D_m\eta^1=0\\ D_m\eta^2=0 \end{array}$$
Introduction

GCG and type II SUSY conditions

Twist

Dual solutions

Heterotic

Conclusions

• SUSY conditions on $\mathcal{M}_{internal}$:

No flux

With flux (GCG)

 $D_m \eta^1 = 0$ $D_m \eta^2 = 0$

 $\eta^{1,2}$ spinors on T

Introduction

GCG and type II SUSY conditions $T \oplus T^*$ bundle

Twist

Dual solutions

Heterotic

Conclusions

• SUSY conditions on $\mathcal{M}_{internal}$:

No flux

With flux (GCG)

 $D_m \eta^1 = 0$ $D_m \eta^2 = 0$

 $\eta^{1,2}$ spinors on TCY

Introduction

GCG and type II SUSY conditions $T \oplus T^*$ bundle

Twist

Dual solutions

Heterotic

Conclusions

• SUSY conditions on $\mathcal{M}_{internal}$:

No flux

With flux (GCG)

 $D_m \eta^1 = 0$ $D_m \eta^2 = 0$ $\eta^{1,2} \text{ spinors on } T$

CY

$$\begin{array}{l} {\rm d}(e^{3A} \ \Psi_1) = 0 \\ {\rm d}(e^{2A} \ {\rm Re}(\Psi_2)) = 0 \\ {\rm d}(e^{4A} \ {\rm Im}(\Psi_2)) = e^{4A}e^{-B} \ * \lambda(\sum_p F_p) \end{array}$$

SUSY conditions

• SUSY conditions on $\mathcal{M}_{internal}$:

 $\begin{array}{l} D_m\eta^1=0\\ D_m\eta^2=0 \end{array}$ $\eta^{1,2}$ spinors on T

No flux

CY

With flux (GCG)

$$d(e^{3A} \Psi_1) = 0$$

$$d(e^{2A} \operatorname{Re}(\Psi_2)) = 0$$

$$d(e^{4A} \operatorname{Im}(\Psi_2)) = e^{4A}e^{-B} * \lambda(\sum_p F_p)$$

$$\Psi_{1,2} \text{ spinors on } T \oplus T^*$$

	• SUSY conditions on	$\mathcal{M}_{ ext{internal}}$:
David ANDRIOT	No flux	With flux (GCG)
Introduction GCG and type II SUSY conditions $T \oplus T^*$ bundle Twist Dual solutions Heterotic	$D_m \eta^1 = 0$ $D_m \eta^2 = 0$ $\eta^{1,2} \text{ spinors on } T$ CY	$\begin{aligned} \mathbf{d}(e^{3A} \ \Psi_1) &= 0\\ \mathbf{d}(e^{2A} \ \mathrm{Re}(\Psi_2)) &= 0\\ \mathbf{d}(e^{4A} \ \mathrm{Im}(\Psi_2)) &= e^{4A} e^{-B} \ast \lambda(\sum_p F_p)\\ \Psi_{1,2} \ \mathrm{spinors \ on} \ T \oplus T^*\\ \mathrm{GCY} \end{aligned}$

	• SUSY conditions on $\mathcal{M}_{internal}$:		
David ANDRIOT	No flux	With flux (GCG)	
	$D_m \eta^1 = 0$	$d(e^{3A} \Psi_1) = 0$	
SUSY conditions	$D_m \eta^2 = 0$	$d(e^{2A} \operatorname{Re}(\Psi_2)) = 0$	
$T \oplus T^*$ bundle Twist	$n^{1,2}$ spinors on T	$d(e^{\dots} \operatorname{Im}(\Psi_2)) = e^{\dots}e^{-D^*} * \lambda(\sum_p F_p)$ $\Psi_{1,2} \text{ spinors on } T \oplus T^*$	
	CY	GCY	
	• First define different	ial forms (with $\eta_{-} = (\eta_{+})^*$) for $SU(3)$:	
	$J_{\mu\nu} = -i\eta_{\perp}^{\dagger}\gamma_{\mu}$	$\mu_{\mu}\eta_{\pm}$, $\Omega_{\mu\nu\rho} = -i\eta_{\pm}^{\dagger}\gamma_{\mu\nu\rho}\eta_{\pm}$.	

	• SUSY conditions on $\mathcal{M}_{internal}$:	
David ANDRIOT	No flux	With flux (GCG)
Introduction GCG and type II SUSY conditions $T \oplus T^*$ bundle	$D_m\eta^1=0\ D_m\eta^2=0$	$d(e^{3A} \Psi_1) = 0$ $d(e^{2A} \operatorname{Re}(\Psi_2)) = 0$ $d(e^{4A} \operatorname{Im}(\Psi_2)) = e^{4A}e^{-B} * \lambda(\sum_n F_n)$
Twist Dual solutions Heterotic Conclusions	$\eta^{1,2}$ spinors on T CY • First define different $J_{\mu\nu} = -i\eta^{\dagger}\gamma_{\mu}$	$\Psi_{1,2} \text{ spinors on } T \oplus T^*$ GCY ial forms (with $\eta = (\eta_+)^*$) for $SU(3)$: $\Omega_{\mu\nu\rho} = -i\eta^{\dagger} \gamma_{\mu\nu\rho} \eta_+ .$
	SUSY conditions ca	n be expressed in terms of forms !

	• SUSY conditions on	$\mathcal{M}_{ ext{internal}}$:
David ANDRIOT	No flux	With flux (GCG)
Introduction GCG and type II SUSY conditions $T \oplus T^*$ bundle Twist Dual solutions Heterotic Conclusions	$D_m \eta^1 = 0$ $D_m \eta^2 = 0$ $\eta^{1,2} \text{ spinors on } T$ CY • First define different	$\begin{aligned} \mathbf{d}(e^{3A} \ \Psi_1) &= 0\\ \mathbf{d}(e^{2A} \ \mathrm{Re}(\Psi_2)) &= 0\\ \mathbf{d}(e^{4A} \ \mathrm{Im}(\Psi_2)) &= e^{4A}e^{-B} * \lambda(\sum_p F_p)\\ \Psi_{1,2} \text{ spinors on } T \oplus T^*\\ \mathrm{GCY} \end{aligned}$ tial forms (with $\eta = (\eta_+)^*$) for $SU(3)$:
	$J_{\mu u}=-i\eta^{\dagger}_{+}\gamma_{\mu}$	$_{\mu\nu}\eta_+ , \qquad \Omega_{\mu\nu\rho} = -i\eta^\dagger \gamma_{\mu\nu\rho}\eta_+ .$
	 SUSY conditions can be expressed in terms of forms ! • Further define the bi-spinors: Φ₊ = η¹₊ ⊗ η^{2†}₊, Φ₋ = η¹₊ ⊗ η^{2†}₋ 	

	• SUSY conditions on $\mathcal{M}_{internal}$:	
David ANDRIOT	No flux	With flux (GCG)
Introduction GCG and type II SUSY conditions $T \oplus T^*$ bundle	$D_m \eta^1 = 0$ $D_m \eta^2 = 0$	$d(e^{3A} \Psi_1) = 0$ $d(e^{2A} \operatorname{Re}(\Psi_2)) = 0$ $d(e^{4A} \operatorname{Im}(\Psi_2)) = e^{4A}e^{-B} * \lambda(\Sigma - F_2)$
Twist Dual solutions Heterotic Conclusions	$\eta^{1,2}$ spinors on T CY • First define different	$\Psi_{1,2} \text{ spinors on } T \oplus T^*$ $\frac{\Psi_{1,2} \text{ spinors on } T \oplus T^*}{\text{GCY}}$ $\text{fial forms (with } \eta = (\eta_+)^*) \text{ for } SU(3):$
	$J_{\mu\nu} = -i\eta_{+}^{\dagger}\gamma_{\mu\nu}\eta_{+} , \qquad \Omega_{\mu\nu\rho} = -i\eta_{-}^{\dagger}\gamma_{\mu\nu\rho}\eta_{+} .$ SUSY conditions can be expressed in terms of forms ! • Further define the bi-spinors:	

 $\Phi_+ = \eta_+^1 \otimes \eta_+^{2\dagger}, \quad \Phi_- = \eta_+^1 \otimes \eta_-^{2\dagger}$

 $\Phi_{\pm} = \text{polyforms}, \text{ for } SU(3):$

	• SUSY conditions on $\mathcal{M}_{internal}$:		
David ANDRIOT	No flux	With flux (GCG)	
Introduction GCG and type II SUSY conditions $T \oplus T^*$ bundle Twist Dual solutions Heterotic Conclusions	$D_m \eta^1 = 0$ $D_m \eta^2 = 0$ $\eta^{1,2} \text{ spinors on } T$ CY • First define different $J_{\mu\nu} = -i\eta_+^{\dagger}\gamma_{\mu}$ SUSY conditions can	$\begin{aligned} d(e^{3A} \ \Psi_1) &= 0\\ d(e^{2A} \ \mathrm{Re}(\Psi_2)) &= 0\\ d(e^{4A} \ \mathrm{Im}(\Psi_2)) &= e^{4A} e^{-B} \ast \lambda(\sum_p F_p)\\ \Psi_{1,2} \text{ spinors on } T \oplus T^*\\ \mathrm{GCY} \end{aligned}$ ial forms (with $\eta = (\eta_+)^*$) for $SU(3)$: $_{\mu\nu}\eta_+ \ , \qquad \Omega_{\mu\nu\rho} &= -i\eta^{\dagger}\gamma_{\mu\nu\rho}\eta_+ \ . \end{aligned}$ n be expressed in terms of forms !	
	• Further define the b $\Phi_+ = \pi$ $\Phi_\pm = \text{polyforms, for } \Phi_+, \Phi, \Phi, \Phi, \Phi, \Phi, \Phi, \Phi, \Phi$	i-spinors: $\eta_{+}^{1} \otimes \eta_{+}^{2\dagger}, \Phi_{-} = \eta_{+}^{1} \otimes \eta_{-}^{2\dagger}$ or $SU(3)$: $N_{+} = e^{i\theta} \qquad e^{-iJ}$ $N_{-} = -i \qquad \Omega_{3}$	

ANDRIOT NO HUX WITH HUX (GCG)	
$ \begin{array}{c} \begin{array}{c} \text{Introduction} \\ \text{GCG and type II} \\ \text{SUSY conditions} \\ T \oplus T^* \text{ bundle} \end{array} \end{array} \begin{array}{c} D_m \eta^1 = 0 \\ D_m \eta^2 = 0 \\ \text{d}(e^{2A} \operatorname{Re}(\Psi_2)) = 0 \\ \text{d}(e^{4A} \operatorname{Im}(\Psi_2)) = e^{4A} e^{-B} * \lambda(\sum_{i=1}^{n} e^{-iA} e^{-iA}) \end{array} \end{array} $	F_n)
Twist Dual solutions Heterotic Conclusions $\eta^{1,2} \text{ spinors on } T \qquad \Psi_{1,2} \text{ spinors on } T \oplus T^*$ GCY o First define differential forms (with $\eta = (\eta_+)^*$) for $SU(\eta_+)^*$	(3):
SUSY conditions can be expressed in terms of forms !	

• Further define the bi-spinors: $\Phi_+ = \eta^1_+ \otimes \eta^{2\dagger}_+, \quad \Phi_- = \eta^1_+ \otimes \eta^{2\dagger}_-$

$$\begin{split} \Phi_{\pm} &= \text{polyforms, for } SU(3): \\ \Psi_{+} &= e^{-\phi} e^{-B} \; \Phi_{+}/N_{+} = e^{i\theta} e^{-\phi} e^{-B} e^{-iJ} \\ \Psi_{-} &= e^{-\phi} e^{-B} \; \Phi_{-}/N_{-} = -i e^{-\phi} e^{-B} \Omega_{3} \end{split}$$

	• SUSY conditions on	$\mathcal{M}_{\mathrm{internal}}$:
David ANDRIOT	No flux	With flux (GCG)
Introduction GCG and type II SUSY conditions $T \oplus T^*$ bundle Twist Dual solutions Heterotic Conclusions	$D_m \eta^1 = 0$ $D_m \eta^2 = 0$ $\eta^{1,2} \text{ spinors on } T$ CY • First define different $J_{\mu\nu} = -i\eta_+^{\dagger} \gamma_{\mu\nu}$	$\begin{aligned} & \operatorname{d}(e^{3A} \ \Psi_1) = 0 \\ & \operatorname{d}(e^{2A} \operatorname{Re}(\Psi_2)) = 0 \\ & \operatorname{d}(e^{4A} \ \operatorname{Im}(\Psi_2)) = e^{4A} e^{-B} \ast \lambda(\sum_p F_p) \\ & \Psi_{1,2} \text{ spinors on } T \oplus T^* \\ & \operatorname{GCY} \end{aligned}$ tial forms (with $\eta = (\eta_+)^*$) for $SU(3)$: $_{\mu\nu}\eta_+ \ , \qquad \Omega_{\mu\nu\rho} = -i\eta^{\dagger}\gamma_{\mu\nu\rho}\eta_+ \ . \end{aligned}$
	SUSY conditions can • Further define the b $\Phi_+ = r$	in be expressed in terms of forms ! $\eta_{+}^{1} \otimes \eta_{+}^{2\dagger}, \Phi_{-} = \eta_{+}^{1} \otimes \eta_{-}^{2\dagger}$ $\Phi_{-} = \eta_{+}^{1} \otimes \eta_{-}^{2\dagger}$

$$\begin{split} \Psi_{\pm} &= p \, {\rm ory}\, {\rm forms, \, for \, b \, c \, (5),} \\ \Psi_{\pm} &= e^{-\phi} e^{-B} \, \Phi_{\pm}/N_{\pm} = e^{i\theta} e^{-\phi} e^{-B} e^{-iJ} \\ \Psi_{\pm} &= e^{-\phi} e^{-B} \, \Phi_{\pm}/N_{\pm} = -i e^{-\phi} e^{-B} \Omega_{3} \end{split}$$

SUSY conditions can be expressed in terms of Ψ_{\pm} !

	• SUSY conditions on	$\mathcal{M}_{\mathrm{internal}}$:
David ANDRIOT	No flux	With flux (GCG)
Introduction GCG and type II SUSY conditions $T \oplus T^*$ bundle Twist Dual solutions Heterotic Conclusions	$D_m \eta^1 = 0$ $D_m \eta^2 = 0$ $\eta^{1,2} \text{ spinors on } T$ CY • First define different $J_{\mu\nu} = -i\eta_+^{\dagger} \gamma_{\mu}$ SUSY conditions ca	$d(e^{3A} \Psi_1) = 0$ $d(e^{2A} \operatorname{Re}(\Psi_2)) = 0$ $d(e^{4A} \operatorname{Im}(\Psi_2)) = e^{4A}e^{-B} * \lambda(\sum_p F_p)$ $\Psi_{1,2} \text{ spinors on } T \oplus T^*$ GCY dial forms (with $\eta = (\eta_+)^*$) for $SU(3)$: $u_{\mu\nu}\eta_+ , \qquad \Omega_{\mu\nu\rho} = -i\eta^{\dagger}\gamma_{\mu\nu\rho}\eta_+ .$ In be expressed in terms of forms !
	• Further define the b $\Phi_{\pm} = r$ $\Phi_{\pm} = \text{polyforms, fo}$	$egin{aligned} & ext{i-spinors:} \ \eta_+^1\otimes\eta_+^{2\dagger}, & \Phi=\eta_+^1\otimes\eta^{2\dagger} \ & ext{ir} \ SU(3): \end{aligned}$

$$\begin{split} \Psi_{+} &= e^{-\phi} e^{-B} \ \Phi_{+}/N_{+} = e^{i\theta} e^{-\phi} e^{-B} e^{-iJ} \\ \Psi_{-} &= e^{-\phi} e^{-B} \ \Phi_{-}/N_{-} = -i e^{-\phi} e^{-B} \Omega_{3} \end{split}$$

SUSY conditions can be expressed in terms of Ψ_{\pm} ! Spinors on $T \oplus T^*$,

	• SUSY conditions on $\mathcal{M}_{internal}$:	
David ANDRIOT	No flux	With flux (GCG)
Introduction GCG and type II SUSY conditions $T \oplus T^*$ bundle Twist Dual solutions Heterotic Conclusions	$D_m \eta^1 = 0$ $D_m \eta^2 = 0$ $\eta^{1,2} \text{ spinors on } T$ CY • First define different	$d(e^{3A} \Psi_1) = 0$ $d(e^{2A} \operatorname{Re}(\Psi_2)) = 0$ $d(e^{4A} \operatorname{Im}(\Psi_2)) = e^{4A}e^{-B} * \lambda(\sum_p F_p)$ $\Psi_{1,2} \text{ spinors on } T \oplus T^*$ GCY tial forms (with $\eta = (\eta_+)^*$) for $SU(3)$:
	$J_{\mu\nu} = -i\eta_{+}^{*}\gamma_{\mu}$ SUSY conditions ca • Further define the b $\Phi_{+} = \eta_{-}$ $\Phi_{+} = polyforms for$	$M_{\mu\nu\rho} = -i\eta_{-}^{\dagger}\gamma_{\mu\nu\rho}\eta_{+} .$ In be expressed in terms of forms ! i-spinors: $\eta_{+}^{1} \otimes \eta_{+}^{2\dagger}, \Phi_{-} = \eta_{+}^{1} \otimes \eta_{-}^{2\dagger}$ or $SU(3)$.

$$\begin{split} \Psi_{\pm} &= \text{polytorms, for } SU(3). \\ \Psi_{+} &= e^{-\phi}e^{-B} \; \Phi_{+}/N_{+} = e^{i\theta}e^{-\phi}e^{-B}e^{-iJ} \\ \Psi_{-} &= e^{-\phi}e^{-B} \; \Phi_{-}/N_{-} = -ie^{-\phi}e^{-B}\Omega_{3} \end{split}$$

SUSY conditions can be expressed in terms of Ψ_{\pm} ! Spinors on $T \oplus T^*$, use of $\Psi_{\pm} \Rightarrow$ GCG interpretations !

Introduction

GCG and type is SUSY conditions

 $T \oplus T^*$ bundle

Twist

Dual solutions

Heterotic

Conclusions

The generalized tangent bundle

GCG considers the fibration:

 $T^* \quad \hookrightarrow \quad E$

E: the generalized tangent bundle.

Introduction

GCG and type I SUSY conditions

 $T \oplus T^*$ bundle

Twist

Dual solutions

Heterotic

Conclusions

The generalized tangent bundle

GCG considers the fibration:

 $\begin{array}{cccc} \Gamma^* & \hookrightarrow & E \\ & & \downarrow & E \text{: the ge} \\ & & - \end{array}$

 $E\colon$ the generalized tangent bundle.

Locally: $T \oplus T^*$.

Introduction

GCG and type I SUSY conditions

 $T \oplus T^*$ bundle

Twist

Dual solutions

Heterotic

Conclusions

The generalized tangent bundle

GCG considers the fibration:

 $\begin{array}{cccc} T^* & \hookrightarrow & E \\ & & \downarrow & E \text{: the generalized tangent bundle.} \\ & & T \end{array}$

Locally: $T \oplus T^*$. Sections: generalized vectors:

$$X = v + \xi = \begin{pmatrix} v \\ \xi \end{pmatrix} , \ v \in T \ , \ \xi \in T^*$$

Introduction

GCG and type I SUSY conditions $T \oplus T^*$ bundle

-

Twist

Dual solutions

Heterotic

Conclusions

The generalized tangent bundle

GCG considers the fibration:

 $\begin{array}{rrrrr} T^* & \hookrightarrow & E \\ & \downarrow & & E : \mbox{ the generalized tangent bundle.} \\ & & T \end{array}$

Locally: $T \oplus T^*$. Sections: generalized vectors:

$$X = v + \xi = \begin{pmatrix} v \\ \xi \end{pmatrix}$$
 , $v \in T$, $\xi \in T^*$

Transition functions between two patches U_{α} and U_{β} are

$$\begin{pmatrix} v \\ \xi \end{pmatrix}_{(\alpha)} = \begin{pmatrix} a & 0 \\ \omega a & a^{-T} \end{pmatrix}_{(\alpha\beta)} \begin{pmatrix} v \\ \xi \end{pmatrix}_{(\beta)} = \begin{pmatrix} av \\ a^{-T}\xi - i_{av}\omega \end{pmatrix}$$

Introduction

GCG and type I SUSY conditions $T \oplus T^*$ bundle

1 () 1 Duin

Twist

Dual solutions

Heterotic

Conclusions

The generalized tangent bundle

GCG considers the fibration:

 $\begin{array}{cccc} T^* & \hookrightarrow & E \\ & \downarrow & & E: \mbox{ the generalized tangent bundle.} \\ & & T \end{array}$

Locally: $T \oplus T^*$. Sections: generalized vectors:

$$X = v + \xi = \begin{pmatrix} v \\ \xi \end{pmatrix}$$
 , $v \in T$, $\xi \in T^*$

Transition functions between two patches U_{α} and U_{β} are

$$\begin{pmatrix} v \\ \xi \end{pmatrix}_{(\alpha)} = \begin{pmatrix} a & 0 \\ \omega a & a^{-T} \end{pmatrix}_{(\alpha\beta)} \begin{pmatrix} v \\ \xi \end{pmatrix}_{(\beta)} = \begin{pmatrix} av \\ a^{-T}\xi - i_{av}\omega \end{pmatrix}$$

 $a \in GL(d, \mathbb{R})$: a, a^{-T} usual patching of vectors and 1-forms.

Introduction

GCG and type I SUSY conditions $T \oplus T^*$ bundle

Traint

Dual solutions

Heterotic

Conclusions

The generalized tangent bundle

GCG considers the fibration:

 $\begin{array}{rrrrr} T^* & \hookrightarrow & E \\ & \downarrow & & E : \mbox{ the generalized tangent bundle.} \\ & & T \end{array}$

Locally: $T \oplus T^*$. Sections: generalized vectors:

$$X = v + \xi = \begin{pmatrix} v \\ \xi \end{pmatrix}$$
 , $v \in T$, $\xi \in T^*$

Transition functions between two patches U_{α} and U_{β} are

$$\begin{pmatrix} v \\ \xi \end{pmatrix}_{(\alpha)} = \begin{pmatrix} a & 0 \\ \omega a & a^{-T} \end{pmatrix}_{(\alpha\beta)} \begin{pmatrix} v \\ \xi \end{pmatrix}_{(\beta)} = \begin{pmatrix} av \\ a^{-T}\xi - i_{av}\omega \end{pmatrix}$$

 $a \in GL(d, \mathbb{R})$: a, a^{-T} usual patching of vectors and 1-forms. Additional shift of the 1-form, given by the 2-form $\omega_{(\alpha\beta)} = d\Lambda_{(\alpha\beta)}$:

Introduction

GCG and type I SUSY conditions $T \oplus T^*$ bundle

Twiet

Dual solutions

Heterotic

Conclusions

The generalized tangent bundle

GCG considers the fibration:

 $\begin{array}{rrrrr} T^* & \hookrightarrow & E \\ & \downarrow & & E : \mbox{ the generalized tangent bundle.} \\ & & T \end{array}$

Locally: $T \oplus T^*$. Sections: generalized vectors:

$$X = v + \xi = \begin{pmatrix} v \\ \xi \end{pmatrix}$$
 , $v \in T$, $\xi \in T^*$

Transition functions between two patches U_{α} and U_{β} are

$$\begin{pmatrix} v \\ \xi \end{pmatrix}_{(\alpha)} = \begin{pmatrix} a & 0 \\ \omega a & a^{-T} \end{pmatrix}_{(\alpha\beta)} \begin{pmatrix} v \\ \xi \end{pmatrix}_{(\beta)} = \begin{pmatrix} av \\ a^{-T}\xi - i_{av}\omega \end{pmatrix}$$

 $a \in GL(d, \mathbb{R})$: a, a^{-T} usual patching of vectors and 1-forms. Additional shift of the 1-form, given by the 2-form $\omega_{(\alpha\beta)} = d\Lambda_{(\alpha\beta)}$: due to the non-trivial fibration of T^* over T.

Introduction

GCG and type I SUSY conditions $T \oplus T^*$ bundle

Traint

Dual solutions

Heterotic

Conclusions

The generalized tangent bundle

GCG considers the fibration:

 $\begin{array}{rrrrr} T^* & \hookrightarrow & E \\ & \downarrow & & E : \mbox{ the generalized tangent bundle.} \\ & & T \end{array}$

Locally: $T \oplus T^*$. Sections: generalized vectors:

$$X = v + \xi = \begin{pmatrix} v \\ \xi \end{pmatrix}$$
 , $v \in T$, $\xi \in T^*$

Transition functions between two patches U_{α} and U_{β} are

$$\begin{pmatrix} v \\ \xi \end{pmatrix}_{(\alpha)} = \begin{pmatrix} a & 0 \\ \omega a & a^{-T} \end{pmatrix}_{(\alpha\beta)} \begin{pmatrix} v \\ \xi \end{pmatrix}_{(\beta)} = \begin{pmatrix} av \\ a^{-T}\xi - i_{av}\omega \end{pmatrix}$$

 $a \in GL(d, \mathbb{R})$: a, a^{-T} usual patching of vectors and 1-forms. Additional shift of the 1-form, given by the 2-form $\omega_{(\alpha\beta)} = d\Lambda_{(\alpha\beta)}$: due to the non-trivial fibration of T^* over T.

This non-trivial fibration: given by the 2-form B.

Introduction

GCG and type I SUSY conditions $T \oplus T^*$ bundle

Twiet

Dual solutions

Heterotic

Conclusions

The generalized tangent bundle

GCG considers the fibration:

 $\begin{array}{rrrrr} T^* & \hookrightarrow & E \\ & \downarrow & & E : \mbox{ the generalized tangent bundle.} \\ & & T \end{array}$

Locally: $T \oplus T^*$. Sections: generalized vectors:

$$X = v + \xi = \begin{pmatrix} v \\ \xi \end{pmatrix}$$
 , $v \in T$, $\xi \in T^*$

Transition functions between two patches U_{α} and U_{β} are

$$\begin{pmatrix} v \\ \xi \end{pmatrix}_{(\alpha)} = \begin{pmatrix} a & 0 \\ \omega a & a^{-T} \end{pmatrix}_{(\alpha\beta)} \begin{pmatrix} v \\ \xi \end{pmatrix}_{(\beta)} = \begin{pmatrix} av \\ a^{-T}\xi - i_{av}\omega \end{pmatrix}$$

 $a \in GL(d, \mathbb{R})$: a, a^{-T} usual patching of vectors and 1-forms. Additional shift of the 1-form, given by the 2-form $\omega_{(\alpha\beta)} = d\Lambda_{(\alpha\beta)}$: due to the non-trivial fibration of T^* over T.

This non-trivial fibration: given by the 2-form B. Geometrical interpretation of B: "connective structure" of a gerbe.

Introduction

GCG and type I SUSY conditions $T \oplus T^*$ bundle

Traint

Dual solutions

Heterotic

Conclusions

The generalized tangent bundle

GCG considers the fibration:

 $\begin{array}{rrrr} T^* & \hookrightarrow & E \\ & \downarrow & & E : \mbox{ the generalized tangent bundle.} \\ & & T \end{array}$

Locally: $T \oplus T^*$. Sections: generalized vectors:

$$X = v + \xi = \begin{pmatrix} v \\ \xi \end{pmatrix}$$
 , $v \in T$, $\xi \in T^*$

Transition functions between two patches U_{α} and U_{β} are

$$\begin{pmatrix} v \\ \xi \end{pmatrix}_{(\alpha)} = \begin{pmatrix} a & 0 \\ \omega a & a^{-T} \end{pmatrix}_{(\alpha\beta)} \begin{pmatrix} v \\ \xi \end{pmatrix}_{(\beta)} = \begin{pmatrix} av \\ a^{-T}\xi - i_{av}\omega \end{pmatrix}$$

 $a \in GL(d, \mathbb{R})$: a, a^{-T} usual patching of vectors and 1-forms. Additional shift of the 1-form, given by the 2-form $\omega_{(\alpha\beta)} = d\Lambda_{(\alpha\beta)}$: due to the non-trivial fibration of T^* over T.

This non-trivial fibration: given by the 2-form B. Geometrical interpretation of B: "connective structure" of a gerbe.

 $\hookrightarrow \omega = d\Lambda$ is "a gauge transformation" from U_{α} to U_{β} .

Introduction

GCG and type I SUSY conditions

Twist

Dual solutions

Heterotic

Conclusions

• E is equipped with a natural metric η :

$$\eta(X,X) = i_v \xi = v^{\mu} \xi_{\mu} \quad \Leftrightarrow \quad X^T \eta X = \frac{1}{2} \begin{pmatrix} v & \xi \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} v \\ \xi \end{pmatrix}$$

Introduction

GCG and type I SUSY conditions

Twist

Dual solutions

Heterotic

Conclusions

• E is equipped with a natural metric η :

$$\eta(X,X) = i_v \xi = v^\mu \xi_\mu \quad \Leftrightarrow \quad X^T \eta X = \frac{1}{2} \begin{pmatrix} v & \xi \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} v \\ \xi \end{pmatrix}$$

O(d, d) action on $T \oplus T^*$ leaves η invariant.

Introduction

GCG and type I SUSY conditions $T \oplus T^*$ bundle

Twist

Dual solutions

Heterotic

Conclusions

• E is equipped with a natural metric η :

$$\eta(X,X) = i_v \xi = v^{\mu} \xi_{\mu} \quad \Leftrightarrow \quad X^T \eta X = \frac{1}{2} \begin{pmatrix} v & \xi \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} v \\ \xi \end{pmatrix}$$

O(d, d) action on $T \oplus T^*$ leaves η invariant. Twist duality is an O(d, d) transformation.

Introduction

GCG and type I SUSY conditions $T \oplus T^*$ bundle

-

Dual solution

Heterotic

Conclusions

• E is equipped with a natural metric η :

$$\eta(X,X) = i_v \xi = v^{\mu} \xi_{\mu} \quad \Leftrightarrow \quad X^T \eta X = \frac{1}{2} \begin{pmatrix} v & \xi \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} v \\ \xi \end{pmatrix}$$

O(d, d) action on $T \oplus T^*$ leaves η invariant. Twist duality is an O(d, d) transformation. Structure group of E reduced by patching conditions

Introduction

GCG and type I SUSY conditions $T \oplus T^*$ bundle

Twist

Dual solutions

Heterotic

Conclusions

• E is equipped with a natural metric η :

$$\eta(X,X) = i_v \xi = v^{\mu} \xi_{\mu} \quad \Leftrightarrow \quad X^T \eta X = \frac{1}{2} \begin{pmatrix} v & \xi \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} v \\ \xi \end{pmatrix}$$

O(d, d) action on $T \oplus T^*$ leaves η invariant. Twist duality is an O(d, d) transformation. Structure group of E reduced by patching conditions to $G_{\text{geom}} = G_B \rtimes GL(d) \subset O(d, d)$

$$P = e^B \begin{pmatrix} a & 0 \\ 0 & a^{-T} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ B & 1 \end{pmatrix} \begin{pmatrix} a & 0 \\ 0 & a^{-T} \end{pmatrix} = \begin{pmatrix} a & 0 \\ Ba & a^{-T} \end{pmatrix}$$

Introduction

GCG and type I SUSY conditions $T \oplus T^*$ bundle

Twist

Dual solutions

Heterotic

Conclusions

• E is equipped with a natural metric η :

$$\eta(X,X) = i_v \xi = v^{\mu} \xi_{\mu} \quad \Leftrightarrow \quad X^T \eta X = \frac{1}{2} \begin{pmatrix} v & \xi \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} v \\ \xi \end{pmatrix}$$

O(d, d) action on $T \oplus T^*$ leaves η invariant. Twist duality is an O(d, d) transformation. Structure group of E reduced by patching conditions to $G_{\text{geom}} = G_B \rtimes GL(d) \subset O(d, d)$

$$P = e^B \begin{pmatrix} a & 0 \\ 0 & a^{-T} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ B & 1 \end{pmatrix} \begin{pmatrix} a & 0 \\ 0 & a^{-T} \end{pmatrix} = \begin{pmatrix} a & 0 \\ Ba & a^{-T} \end{pmatrix}$$

Twist duality $\subset G_{\text{geom}}$.

Introduction

GCG and type I SUSY conditions $T \oplus T^*$ bundle

Twist

Dual solutions

Heterotic

Conclusions

• E is equipped with a natural metric η :

$$\eta(X,X) = i_v \xi = v^{\mu} \xi_{\mu} \quad \Leftrightarrow \quad X^T \eta X = \frac{1}{2} \begin{pmatrix} v & \xi \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} v \\ \xi \end{pmatrix}$$

O(d, d) action on $T \oplus T^*$ leaves η invariant. Twist duality is an O(d, d) transformation. Structure group of E reduced by patching conditions to $G_{\text{geom}} = G_B \rtimes GL(d) \subset O(d, d)$

$$P = e^{B} \begin{pmatrix} a & 0 \\ 0 & a^{-T} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ B & 1 \end{pmatrix} \begin{pmatrix} a & 0 \\ 0 & a^{-T} \end{pmatrix} = \begin{pmatrix} a & 0 \\ Ba & a^{-T} \end{pmatrix}$$

Twist duality $\subset C$

Twist duality $\subset G_{\text{geom}}$.

• $\mathcal{M}_{\text{internal}}$: a bundle with base \mathcal{B} along dx^{μ} , fiber \mathcal{F} along dy^{m} , and connection A_{μ}^{m} :

Introduction

GCG and type I SUSY conditions $T \oplus T^*$ bundle

Twist

Dual solutions

Heterotic

Conclusions

• E is equipped with a natural metric η :

$$\eta(X,X) = i_v \xi = v^{\mu} \xi_{\mu} \quad \Leftrightarrow \quad X^T \eta X = \frac{1}{2} \begin{pmatrix} v & \xi \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} v \\ \xi \end{pmatrix}$$

O(d, d) action on $T \oplus T^*$ leaves η invariant. Twist duality is an O(d, d) transformation. Structure group of E reduced by patching conditions to $G_{\text{geom}} = G_B \rtimes GL(d) \subset O(d, d)$

$$P = e^{B} \begin{pmatrix} a & 0 \\ 0 & a^{-T} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ B & 1 \end{pmatrix} \begin{pmatrix} a & 0 \\ 0 & a^{-T} \end{pmatrix} = \begin{pmatrix} a & 0 \\ Ba & a^{-T} \end{pmatrix}$$

Twist duality \subset Groom

• $\mathcal{M}_{\text{internal}}$: a bundle with base \mathcal{B} along dx^{μ} , fiber \mathcal{F} along dy^{m} , and connection A^{m}_{μ} :

 $ds^{2} = g_{\mu\nu} dx^{\mu} dx^{\nu} + g_{mn} (dy^{m} + A^{m}_{\ \rho} dx^{\rho}) (dy^{n} + A^{n}_{\ \sigma} dx^{\sigma}) .$

Introduction

GCG and type I SUSY conditions $T \oplus T^*$ bundle

Twist

Dual solutions

Heterotic

Conclusions

• E is equipped with a natural metric η :

$$\eta(X,X) = i_v \xi = v^{\mu} \xi_{\mu} \quad \Leftrightarrow \quad X^T \eta X = \frac{1}{2} \begin{pmatrix} v & \xi \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} v \\ \xi \end{pmatrix}$$

O(d, d) action on $T \oplus T^*$ leaves η invariant. Twist duality is an O(d, d) transformation. Structure group of E reduced by patching conditions to $G_{\text{geom}} = G_B \rtimes GL(d) \subset O(d, d)$

$$P = e^{B} \begin{pmatrix} a & 0 \\ 0 & a^{-T} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ B & 1 \end{pmatrix} \begin{pmatrix} a & 0 \\ 0 & a^{-T} \end{pmatrix} = \begin{pmatrix} a & 0 \\ Ba & a^{-T} \end{pmatrix}$$

Twist duality \subset Grown

• $\mathcal{M}_{\text{internal}}$: a bundle with base \mathcal{B} along dx^{μ} , fiber \mathcal{F} along dy^{m} , and connection A^{m}_{μ} :

 $ds^{2} = g_{\mu\nu} dx^{\mu} dx^{\nu} + g_{mn} (dy^{m} + A^{m}_{\ \rho} dx^{\rho}) (dy^{n} + A^{n}_{\ \sigma} dx^{\sigma}) .$

In the (dx^{μ}, dy^{m}) basis: vielbeins and metric:

$$e = \begin{pmatrix} e_{\mathcal{B}} & 0\\ e_{\mathcal{F}}A & e_{\mathcal{F}} \end{pmatrix} \qquad g = e^{T}e = \begin{pmatrix} g_{\mathcal{B}} + A^{T}g_{\mathcal{F}}A & A^{T}g_{\mathcal{F}}\\ g_{\mathcal{F}}A & g_{\mathcal{F}} \end{pmatrix}$$
$$g_{\mathcal{B}} = e_{\mathcal{B}}^{T}e_{\mathcal{B}} , \qquad g_{\mathcal{F}} = e_{\mathcal{F}}^{T}e_{\mathcal{F}} .$$

Introduction

GCG and type l SUSY conditions

 $T \oplus T^*$ bundle

Twist

Dual solutions

Heterotic

Conclusions

• On E, B plays the role of a connection

Introduction

GCG and type SUSY conditions

 $T \oplus T^*$ bundle

Twist

Dual solutions

Heterotic

Conclusions

On E, B plays the role of a connection

 → in GCG, we introduce generalized vielbeins/metric:

$$\mathcal{E} = \begin{pmatrix} e & 0 \\ -e^{-T}B & e^{-T} \end{pmatrix}$$
, $\mathcal{H} = \mathcal{E}^T \mathcal{E} = \begin{pmatrix} g - Bg^{-1}B & Bg^{-1} \end{pmatrix}$

E

Introduction

GCG and type l SUSY conditions

 $T \oplus T^*$ bundle

Twist

Dual solutions

Heterotic

Conclusions

On E, B plays the role of a connection

 → in GCG, we introduce generalized vielbeins/metric:

$$= \begin{pmatrix} e & 0 \\ -e^{-T}B & e^{-T} \end{pmatrix} , \qquad \mathcal{H} = \mathcal{E}^{T}\mathcal{E} = \begin{pmatrix} g - Bg^{-1}B & Bg^{-1}Y \\ -g^{-1}B & g^{-1} \end{pmatrix}$$
$$\eta = \mathcal{E}^{T} \begin{pmatrix} 0 & \mathbb{I} \\ \mathbb{I} & 0 \end{pmatrix} \mathcal{E} , \qquad \mathcal{H} = \mathcal{E}^{T} \begin{pmatrix} \mathbb{I} & 0 \\ 0 & \mathbb{I} \end{pmatrix} \mathcal{E} .$$
Introduction

GCG and type I SUSY conditions \mathcal{E}

 $T \oplus T^*$ bundle

Twist

Dual solutions

Heterotic

Conclusions

• On E, B plays the role of a connection \hookrightarrow in GCG, we introduce generalized vielbeins/metric:

$$= \begin{pmatrix} e & 0 \\ -e^{-T}B & e^{-T} \end{pmatrix} , \qquad \mathcal{H} = \mathcal{E}^{T}\mathcal{E} = \begin{pmatrix} g - Bg^{-1}B & Bg^{-1} \\ -g^{-1}B & g^{-1} \end{pmatrix}$$
$$\eta = \mathcal{E}^{T} \begin{pmatrix} 0 & \mathbb{I} \\ \mathbb{I} & 0 \end{pmatrix} \mathcal{E} , \qquad \mathcal{H} = \mathcal{E}^{T} \begin{pmatrix} \mathbb{I} & 0 \\ 0 & \mathbb{I} \end{pmatrix} \mathcal{E} .$$

Transformation under O(d, d):

Introduction

GCG and type I SUSY conditions $T \oplus T^*$ bundle \mathcal{E}

Twist

Dual solutions

Heterotic

Conclusions

• On *E*, *B* plays the role of a connection → in GCG, we introduce generalized vielbeins/metric:

$$= \begin{pmatrix} e & 0 \\ -e^{-T}B & e^{-T} \end{pmatrix} , \qquad \mathcal{H} = \mathcal{E}^{T}\mathcal{E} = \begin{pmatrix} g - Bg^{-1}B & Bg^{-1} \\ -g^{-1}B & g^{-1} \end{pmatrix}$$
$$\eta = \mathcal{E}^{T} \begin{pmatrix} 0 & \mathbb{I} \\ \mathbb{I} & 0 \end{pmatrix} \mathcal{E} , \qquad \mathcal{H} = \mathcal{E}^{T} \begin{pmatrix} \mathbb{I} & 0 \\ 0 & \mathbb{I} \end{pmatrix} \mathcal{E} .$$

Transformation under O(d, d):

$$\mathcal{E} \mapsto \mathcal{E}' = \mathcal{E}O , \ \mathcal{H} \mapsto \mathcal{H}' = O^T \mathcal{H}O , \ e^{\phi} \mapsto e^{\phi'} = e^{\phi} \left(\frac{\det(g')}{\det(g)} \right)^T$$

Introduction

GCG and type I SUSY conditions $T \oplus T^*$ bundle E

Twist

Dual solutions

Heterotic

Conclusions

• On E, B plays the role of a connection \hookrightarrow in GCG, we introduce generalized vielbeins/metric:

$$= \begin{pmatrix} e & 0 \\ -e^{-T}B & e^{-T} \end{pmatrix} , \qquad \mathcal{H} = \mathcal{E}^{T}\mathcal{E} = \begin{pmatrix} g - Bg^{-1}B & Bg^{-1} \\ -g^{-1}B & g^{-1} \end{pmatrix}$$
$$\eta = \mathcal{E}^{T} \begin{pmatrix} 0 & \mathbb{I} \\ \mathbb{I} & 0 \end{pmatrix} \mathcal{E} , \qquad \mathcal{H} = \mathcal{E}^{T} \begin{pmatrix} \mathbb{I} & 0 \\ 0 & \mathbb{I} \end{pmatrix} \mathcal{E} .$$

Transformation under O(d, d):

 $\mathcal{E} \mapsto \mathcal{E}' = \mathcal{E}O , \ \mathcal{H} \mapsto \mathcal{H}' = O^T \mathcal{H}O , \ e^{\phi} \mapsto e^{\phi'} = e^{\phi} \left(\frac{\det(g')}{\det(g)} \right)^{\frac{1}{4}} .$

 \mathcal{H} looks like an object in T-duality on torus.

Introduction

GCG and type I SUSY conditions $T \oplus T^*$ bundle E

- - - - ----

Twist

Dual solutions

Heterotic

Conclusions

• On E, B plays the role of a connection \hookrightarrow in GCG, we introduce generalized vielbeins/metric:

$$= \begin{pmatrix} e & 0 \\ -e^{-T}B & e^{-T} \end{pmatrix} , \qquad \mathcal{H} = \mathcal{E}^{T}\mathcal{E} = \begin{pmatrix} g - Bg^{-1}B & Bg^{-1} \\ -g^{-1}B & g^{-1} \end{pmatrix}$$
$$\eta = \mathcal{E}^{T} \begin{pmatrix} 0 & \mathbb{I} \\ \mathbb{I} & 0 \end{pmatrix} \mathcal{E} , \qquad \mathcal{H} = \mathcal{E}^{T} \begin{pmatrix} \mathbb{I} & 0 \\ 0 & \mathbb{I} \end{pmatrix} \mathcal{E} .$$

Transformation under O(d, d):

 $\mathcal{E} \mapsto \mathcal{E}' = \mathcal{E}O, \ \mathcal{H} \mapsto \mathcal{H}' = O^T \mathcal{H}O, \ e^{\phi} \mapsto e^{\phi'} = e^{\phi} \left(\frac{\det(g')}{\det(g)}\right)^{\frac{1}{4}}.$

 \mathcal{H} looks like an object in T-duality on torus. Same transformation under T-duality group $O(d_{\mathcal{F}}, d_{\mathcal{F}})$.

Introduction

GCG and type I SUSY conditions $T \oplus T^*$ bundle E

Twist

Dual solutions

Heterotic

Conclusions

• On E, B plays the role of a connection \hookrightarrow in GCG, we introduce generalized vielbeins/metric:

$$= \begin{pmatrix} e & 0 \\ -e^{-T}B & e^{-T} \end{pmatrix} , \qquad \mathcal{H} = \mathcal{E}^{T}\mathcal{E} = \begin{pmatrix} g - Bg^{-1}B & Bg^{-1} \\ -g^{-1}B & g^{-1} \end{pmatrix}$$
$$\eta = \mathcal{E}^{T} \begin{pmatrix} 0 & \mathbb{I} \\ \mathbb{I} & 0 \end{pmatrix} \mathcal{E} , \qquad \mathcal{H} = \mathcal{E}^{T} \begin{pmatrix} \mathbb{I} & 0 \\ 0 & \mathbb{I} \end{pmatrix} \mathcal{E} .$$

Transformation under O(d, d):

 $\mathcal{E} \mapsto \mathcal{E}' = \mathcal{E}O , \ \mathcal{H} \mapsto \mathcal{H}' = O^T \mathcal{H}O , \ e^{\phi} \mapsto e^{\phi'} = e^{\phi} \left(\frac{\det(g')}{\det(g)} \right)^{\frac{1}{4}} .$

 \mathcal{H} looks like an object in T-duality on torus. Same transformation under T-duality group $O(d_{\mathcal{F}}, d_{\mathcal{F}})$. Here $d = d_{\mathcal{M}} > d_{\mathcal{F}} \Rightarrow$ T-duality natural in GCG; we will consider a "generalization of T-duality".

Introduction

GCG and type I SUSY conditions $T \oplus T^*$ bundle 8

- 1⊕1 bunc
- Twist
- Dual solutions
- Heterotic
- Conclusions

• On E, B plays the role of a connection \hookrightarrow in GCG, we introduce generalized vielbeins/metric:

$$= \begin{pmatrix} e & 0 \\ -e^{-T}B & e^{-T} \end{pmatrix} , \qquad \mathcal{H} = \mathcal{E}^{T}\mathcal{E} = \begin{pmatrix} g - Bg^{-1}B & Bg^{-1} \\ -g^{-1}B & g^{-1} \end{pmatrix}$$
$$\eta = \mathcal{E}^{T} \begin{pmatrix} 0 & \mathbb{I} \\ \mathbb{I} & 0 \end{pmatrix} \mathcal{E} , \qquad \mathcal{H} = \mathcal{E}^{T} \begin{pmatrix} \mathbb{I} & 0 \\ 0 & \mathbb{I} \end{pmatrix} \mathcal{E} .$$

Transformation under O(d, d):

 $\mathcal{E} \mapsto \mathcal{E}' = \mathcal{E}O , \ \mathcal{H} \mapsto \mathcal{H}' = O^T \mathcal{H}O , \ e^{\phi} \mapsto e^{\phi'} = e^{\phi} \left(\frac{\det(g')}{\det(g)} \right)^{\frac{1}{4}} .$

 \mathcal{H} looks like an object in T-duality on torus. Same transformation under T-duality group $O(d_{\mathcal{F}}, d_{\mathcal{F}})$. Here $d = d_{\mathcal{M}} > d_{\mathcal{F}} \Rightarrow$ T-duality natural in GCG; we will consider a "generalization of T-duality".

• Pure spinors:
$$\Psi_{\pm} = \frac{1}{N_{\pm}} e^{-\phi} e^{-B} \eta_{\pm}^{1} \otimes \eta_{\pm}^{2\dagger}$$

Introduction

GCG and type I SUSY conditions $T \oplus T^*$ bundle E

- 1⊕1 bund
- Twist
- Dual solutions
- Heterotic
- Conclusions

• On E, B plays the role of a connection \hookrightarrow in GCG, we introduce generalized vielbeins/metric:

$$= \begin{pmatrix} e & 0 \\ -e^{-T}B & e^{-T} \end{pmatrix} , \qquad \mathcal{H} = \mathcal{E}^{T}\mathcal{E} = \begin{pmatrix} g - Bg^{-1}B & Bg^{-1} \\ -g^{-1}B & g^{-1} \end{pmatrix}$$
$$\eta = \mathcal{E}^{T} \begin{pmatrix} 0 & \mathbb{I} \\ \mathbb{I} & 0 \end{pmatrix} \mathcal{E} , \qquad \mathcal{H} = \mathcal{E}^{T} \begin{pmatrix} \mathbb{I} & 0 \\ 0 & \mathbb{I} \end{pmatrix} \mathcal{E} .$$

Transformation under O(d, d):

 $\mathcal{E} \mapsto \mathcal{E}' = \mathcal{E}O, \ \mathcal{H} \mapsto \mathcal{H}' = O^T \mathcal{H}O, \ e^{\phi} \mapsto e^{\phi'} = e^{\phi} \left(\frac{\det(g')}{\det(g)}\right)^{\frac{1}{4}}.$

 \mathcal{H} looks like an object in T-duality on torus. Same transformation under T-duality group $O(d_{\mathcal{F}}, d_{\mathcal{F}})$. Here $d = d_{\mathcal{M}} > d_{\mathcal{F}} \Rightarrow$ T-duality natural in GCG; we will consider a "generalization of T-duality".

• Pure spinors:
$$\Psi_{\pm} = \frac{1}{N_{\pm}} e^{-\phi} e^{-B} \eta_{\pm}^1 \otimes \eta_{\pm}^{2\dagger} .$$

Majorana-Weyl Spin(d, d) spinors on E (locally $T \oplus T^*$)

Introduction

- GCG and type I SUSY conditions $T \oplus T^*$ bundle
- 1⊕1 bune
- Twist
- Dual solutions
- Heterotic
- Conclusions

• On E, B plays the role of a connection \hookrightarrow in GCG, we introduce generalized vielbeins/metric:

$$= \begin{pmatrix} e & 0 \\ -e^{-T}B & e^{-T} \end{pmatrix} , \qquad \mathcal{H} = \mathcal{E}^{T}\mathcal{E} = \begin{pmatrix} g - Bg^{-1}B & Bg^{-1} \\ -g^{-1}B & g^{-1} \end{pmatrix}$$
$$\eta = \mathcal{E}^{T} \begin{pmatrix} 0 & \mathbb{I} \\ \mathbb{I} & 0 \end{pmatrix} \mathcal{E} , \qquad \mathcal{H} = \mathcal{E}^{T} \begin{pmatrix} \mathbb{I} & 0 \\ 0 & \mathbb{I} \end{pmatrix} \mathcal{E} .$$

Transformation under O(d, d):

 $\mathcal{E} \mapsto \mathcal{E}' = \mathcal{E}O, \ \mathcal{H} \mapsto \mathcal{H}' = O^T \mathcal{H}O, \ e^{\phi} \mapsto e^{\phi'} = e^{\phi} \left(\frac{\det(g')}{\det(g)}\right)^{\frac{1}{4}}.$

 \mathcal{H} looks like an object in T-duality on torus. Same transformation under T-duality group $O(d_{\mathcal{F}}, d_{\mathcal{F}})$. Here $d = d_{\mathcal{M}} > d_{\mathcal{F}} \Rightarrow$ T-duality natural in GCG; we will consider a "generalization of T-duality".

• Pure spinors:
$$\Psi_{\pm} = \frac{1}{N_{\pm}} e^{-\phi} e^{-B} \eta_{\pm}^1 \otimes \eta_{\pm}^{2\dagger} .$$

Majorana-Weyl Spin(d, d) spinors on E (locally $T \oplus T^*$) \hookrightarrow should transform under the spinorial rep. of O(d, d):

$$\Psi \mapsto \Psi' = O \Psi \; .$$

Introduction

- GCG and type I SUSY conditions $T \oplus T^*$ bundle
- 1⊕1 bune
- Twist
- Dual solutions
- Heterotic
- Conclusions

• On *E*, *B* plays the role of a connection → in GCG, we introduce generalized vielbeins/metric:

$$= \begin{pmatrix} e & 0 \\ -e^{-T}B & e^{-T} \end{pmatrix} , \qquad \mathcal{H} = \mathcal{E}^{T}\mathcal{E} = \begin{pmatrix} g - Bg^{-1}B & Bg^{-1} \\ -g^{-1}B & g^{-1} \end{pmatrix}$$
$$\eta = \mathcal{E}^{T} \begin{pmatrix} 0 & \mathbb{I} \\ \mathbb{I} & 0 \end{pmatrix} \mathcal{E} , \qquad \mathcal{H} = \mathcal{E}^{T} \begin{pmatrix} \mathbb{I} & 0 \\ 0 & \mathbb{I} \end{pmatrix} \mathcal{E} .$$

Transformation under O(d, d):

 $\mathcal{E} \mapsto \mathcal{E}' = \mathcal{E}O , \ \mathcal{H} \mapsto \mathcal{H}' = O^T \mathcal{H}O , \ e^{\phi} \mapsto e^{\phi'} = e^{\phi} \left(\frac{\det(g')}{\det(g)}\right)^{\frac{1}{4}} .$

 \mathcal{H} looks like an object in T-duality on torus. Same transformation under T-duality group $O(d_{\mathcal{F}}, d_{\mathcal{F}})$. Here $d = d_{\mathcal{M}} > d_{\mathcal{F}} \Rightarrow$ T-duality natural in GCG; we will consider a "generalization of T-duality".

• Pure spinors:
$$\Psi_{\pm} = \frac{1}{N_{\pm}} e^{-\phi} e^{-B} \eta_{\pm}^1 \otimes \eta_{\pm}^{2\dagger} .$$

Majorana-Weyl Spin(d, d) spinors on E (locally $T \oplus T^*$) \hookrightarrow should transform under the spinorial rep. of O(d, d):

$$\Psi \mapsto \Psi' = O \Psi .$$

Geometrical info. contained in J, Ω_3 , (B, ϕ) (SU(3)).

Introduction

GCG and type II

Twist

On generalized vielbeins

On pure spinors

Dual solutions

Heterotic

Conclusions

The Twist transformation

On generalized vielbeins ${\mathcal E}$

Introduction

GCG and type II

Twist

On generalized vielbeins

On pure spinors

Dual solutions

Heteroti

Conclusions

The Twist transformation

On generalized vielbeins ${\mathcal E}$

• We consider
$$O \in G_{geom} \subset O(d, d)$$
:
 $A^T C + C^T A = 0$,

$$O = \begin{pmatrix} A & 0 \\ C & A^{-T} \end{pmatrix}$$

Introduction

GCG and type II

0

Twist

On generalized vielbeins

On pure spinors

Dual solutions

Heteroti

Conclusions

The Twist transformation

On generalized vielbeins \mathcal{E}

We consider
$$O \in G_{geom} \subset O(d, d)$$
:

$$A^{T}C + C^{T}A = 0,$$

$$O = \begin{pmatrix} A & 0 \\ C & A^{-T} \end{pmatrix} = \begin{pmatrix} A_{\mathcal{B}} & 0 & 0 & 0 \\ A_{\mathcal{C}} & A_{\mathcal{F}} & 0 & 0 \\ \hline C_{\mathcal{B}} & C_{\mathcal{C}} & A_{\mathcal{B}}^{-T} & -A_{\mathcal{B}}^{-T}A_{\mathcal{C}}^{T}A_{\mathcal{F}}^{-T} \\ C_{\mathcal{C}'} & C_{\mathcal{F}} & 0 & A_{\mathcal{F}}^{-T} \end{pmatrix}$$

with separation of \mathcal{B} and \mathcal{F} .

Introduction

GCG and type II

Twist

On generalized vielbeins

On pure spinors

Dual solutions

Heteroti

Conclusions

The Twist transformation

On generalized vielbeins \mathcal{E}

• We consider $O \in G_{geom} \subset O(d, d)$: $A^{T}C + C^{T}A = 0,$ $O = \begin{pmatrix} A & 0 \\ C & A^{-T} \end{pmatrix} = \begin{pmatrix} A_{\mathcal{B}} & 0 & 0 & 0 \\ A_{\mathcal{C}} & A_{\mathcal{F}} & 0 & 0 \\ \hline C_{\mathcal{B}} & C_{\mathcal{C}} & A_{\mathcal{B}}^{-T} & -A_{\mathcal{B}}^{-T}A_{\mathcal{C}}^{T}A_{\mathcal{F}}^{-T} \\ C_{\mathcal{C}'} & C_{\mathcal{F}} & 0 & A_{\mathcal{F}}^{-T} \end{pmatrix},$

with separation of \mathcal{B} and \mathcal{F} . The O(d, d) constraint parameterizes C as $C = \begin{pmatrix} A_{\mathcal{B}}^{-T} (\tilde{C}_{\mathcal{B}} - A_{\mathcal{C}}^{T} A_{\mathcal{F}}^{-T} \tilde{C}_{\mathcal{C}}) & -A_{\mathcal{B}}^{-T} (\tilde{C}_{\mathcal{C}}^{-T} + A_{\mathcal{C}}^{T} A_{\mathcal{F}}^{-T} \tilde{C}_{\mathcal{F}}) \\ A_{\mathcal{T}}^{-T} \tilde{C}_{\mathcal{C}} & A_{\mathcal{T}}^{-T} \tilde{C}_{\mathcal{T}} \end{pmatrix},$

Introduction

GCG and type II

Twist

On generalized vielbeins

On pure spinors

Dual solutions

Heterotic

Conclusions

The Twist transformation

On generalized vielbeins \mathcal{E}

• We consider $O \in G_{geom} \subset O(d, d)$: $A^{T}C + C^{T}A = 0,$ $O = \begin{pmatrix} A & 0 \\ C & A^{-T} \end{pmatrix} = \begin{pmatrix} A_{\mathcal{B}} & 0 & 0 & 0 \\ A_{\mathcal{C}} & A_{\mathcal{F}} & 0 & 0 \\ \hline C_{\mathcal{B}} & C_{\mathcal{C}} & A_{\mathcal{B}}^{-T} & -A_{\mathcal{B}}^{-T}A_{\mathcal{C}}^{T}A_{\mathcal{F}}^{-T} \\ C_{\mathcal{C}'} & C_{\mathcal{F}} & 0 & A_{\mathcal{F}}^{-T} \end{pmatrix},$

with separation of \mathcal{B} and \mathcal{F} . The O(d, d) constraint parameterizes C as $C = \begin{pmatrix} A_{\mathcal{B}}^{-T} (\tilde{C}_{\mathcal{B}} - A_{\mathcal{C}}^{T} A_{\mathcal{F}}^{-T} \tilde{C}_{\mathcal{C}}) & -A_{\mathcal{B}}^{-T} (\tilde{C}_{\mathcal{C}}^{-T} + A_{\mathcal{C}}^{T} A_{\mathcal{F}}^{-T} \tilde{C}_{\mathcal{F}}) \\ A_{\mathcal{T}}^{-T} \tilde{C}_{\mathcal{C}} & A_{\mathcal{T}}^{-T} \tilde{C}_{\mathcal{T}} \end{pmatrix},$

with $\tilde{C}_{\mathcal{B}}$ and $\tilde{C}_{\mathcal{F}}$ anti-symmetric, $\tilde{C}_{\mathcal{C}}$ unconstrained.

Introduction

GCG and type II

0

Twist

On generalized vielbeins

On pure spinors

Dual solutions

Heteroti

Conclusions

The Twist transformation

On generalized vielbeins \mathcal{E}

We consider
$$O \in G_{geom} \subset O(d, d)$$
:
 $A^T C + C^T A = 0$,
 $O = \begin{pmatrix} A & 0 \\ C & A^{-T} \end{pmatrix} = \begin{pmatrix} A_{\mathcal{B}} & 0 & 0 & 0 \\ A_{\mathcal{C}} & A_{\mathcal{F}} & 0 & 0 \\ \hline C_{\mathcal{B}} & C_{\mathcal{C}} & A_{\mathcal{B}}^{-T} & -A_{\mathcal{B}}^{-T} A_{\mathcal{C}}^{T} A_{\mathcal{F}}^{-T} \\ C_{\mathcal{C}'} & C_{\mathcal{F}} & 0 & A_{\mathcal{F}}^{-T} \end{pmatrix}$

with separation of \mathcal{B} and \mathcal{F} . The O(d, d) constraint parameterizes C as $C = \begin{pmatrix} A_{\mathcal{B}}^{-T}(\tilde{C}_{\mathcal{B}} - A_{\mathcal{C}}^{T}A_{\mathcal{F}}^{-T}\tilde{C}_{\mathcal{C}}) & -A_{\mathcal{B}}^{-T}(\tilde{C}_{\mathcal{C}}^{-T} + A_{\mathcal{C}}^{T}A_{\mathcal{F}}^{-T}\tilde{C}_{\mathcal{F}}) \\ A_{\mathcal{T}}^{-T}\tilde{C}_{\mathcal{C}} & A_{\mathcal{T}}^{-T}\tilde{C}_{\mathcal{F}} \end{pmatrix} ,$

with $\tilde{C}_{\mathcal{B}}$ and $\tilde{C}_{\mathcal{F}}$ anti-symmetric, $\tilde{C}_{\mathcal{C}}$ unconstrained.

We perform the transformation:

$$\phi \ , \ \mathcal{E} = \begin{pmatrix} e & 0 \\ -e^{-T}B & e^{-T} \end{pmatrix} \ \mapsto \ \phi' \ , \ \mathcal{E}' = \mathcal{E}O \ .$$

Introduction

GCG and type II

Twist

On generalized vielbeins

On pure spinors

Dual solutions

Heterotic

Conclusions

The Twist transformation

On generalized vielbeins \mathcal{E}

• We consider $O \in G_{geom} \subset O(d, d)$: $A^{T}C + C^{T}A = 0,$ $O = \begin{pmatrix} A & 0 \\ C & A^{-T} \end{pmatrix} = \begin{pmatrix} A_{\mathcal{B}} & 0 & 0 & 0 \\ A_{\mathcal{C}} & A_{\mathcal{F}} & 0 & 0 \\ \hline C_{\mathcal{B}} & C_{\mathcal{C}} & A_{\mathcal{B}}^{-T} & -A_{\mathcal{B}}^{-T}A_{\mathcal{C}}^{T}A_{\mathcal{F}}^{-T} \\ C_{\mathcal{C}'} & C_{\mathcal{F}} & 0 & A_{\mathcal{F}}^{-T} \end{pmatrix},$

with separation of \mathcal{B} and \mathcal{F} . The O(d, d) constraint parameterizes C as $C = \begin{pmatrix} A_{\mathcal{B}}^{-T} (\tilde{C}_{\mathcal{B}} - A_{\mathcal{C}}^{T} A_{\mathcal{F}}^{-T} \tilde{C}_{\mathcal{C}}) & -A_{\mathcal{B}}^{-T} (\tilde{C}_{\mathcal{C}}^{-T} + A_{\mathcal{C}}^{T} A_{\mathcal{F}}^{-T} \tilde{C}_{\mathcal{F}}) \\ A_{\mathcal{T}}^{-T} \tilde{C}_{\mathcal{C}} & A_{\mathcal{T}}^{-T} \tilde{C}_{\mathcal{F}} \end{pmatrix},$

with $\tilde{C}_{\mathcal{B}}$ and $\tilde{C}_{\mathcal{F}}$ anti-symmetric, $\tilde{C}_{\mathcal{C}}$ unconstrained.

We perform the transformation:

$$\phi \ , \ \mathcal{E} = \begin{pmatrix} e & 0 \\ -e^{-T}B & e^{-T} \end{pmatrix} \ \mapsto \ \phi' \ , \ \mathcal{E}' = \mathcal{E}O \ .$$

$$\hookrightarrow e' = eA , B' = A^T B A - A^T C , e^{\phi'} = e^{\phi} |\det(A)|^{\frac{1}{2}} .$$

Concrete example:

David ANDRIOT

Introduction

GCG and type II

Twist

On generalized vielbeins

On pure spinors

Dual solutions

Heterotic

David ANDRIOT

$$e = \begin{pmatrix} e_{\mathcal{B}} & 0\\ 0 & e_{\mathcal{F}} \end{pmatrix} , \ \mathrm{d}s^2 = g_{\mu\nu} \mathrm{d}x^{\mu} \mathrm{d}x^{\nu} + g_{mn} (\mathrm{d}y^m + 0) (\mathrm{d}y^n + 0) ,$$

Introduction

GCG and type II

Twist

On generalized vielbeins

On pure spinors

Dual solutions

Heterotic

David ANDRIOT

Introduction

GCG and type Il

Twist

On generalized vielbeins

On pure spinors

Dual solutions

Heterotic

$$e = \begin{pmatrix} e_{\mathcal{B}} & 0\\ 0 & e_{\mathcal{F}} \end{pmatrix} , \ \mathrm{d}s^2 = g_{\mu\nu}\mathrm{d}x^{\mu}\mathrm{d}x^{\nu} + g_{mn}(\mathrm{d}y^m + 0)(\mathrm{d}y^n + 0) ,$$
$$B = 0 , \ e^{\phi} .$$

David ANDRIOT

Introduction

GCG and type Il

Twist

On generalized vielbeins

On pure spinors

Dual solutions

Heteroti

Conclusions

$$e = \begin{pmatrix} e_{\mathcal{B}} & 0\\ 0 & e_{\mathcal{F}} \end{pmatrix} , \ \mathrm{d}s^2 = g_{\mu\nu} \mathrm{d}x^{\mu} \mathrm{d}x^{\nu} + g_{mn} (\mathrm{d}y^m + 0) (\mathrm{d}y^n + 0) ,$$
$$B = 0 , \ e^{\phi} .$$

The twist transformation gives:

$$\begin{aligned} e' &= \begin{pmatrix} e_{\mathcal{B}}A_{\mathcal{B}} & 0\\ (e_{\mathcal{F}}A_{\mathcal{F}})(A_{\mathcal{F}}^{-1}A_{\mathcal{C}}) & e_{\mathcal{F}}A_{\mathcal{F}} \end{pmatrix}\\ \mathrm{d}s^2 &= g'_{\mu\nu}\mathrm{d}x^{\mu}\mathrm{d}x^{\nu} + g'_{mn}(\mathrm{d}y^m + A'^m_{\rho}\mathrm{d}x^{\rho})(\mathrm{d}y^n + A'^n_{\sigma}\mathrm{d}x^{\sigma}) \ ,\\ A' &= A_{\mathcal{F}}^{-1}A_{\mathcal{C}} \ , \ g'_{\mu\nu} = (A_{\mathcal{B}}^T g_{\mathcal{B}} A_{\mathcal{B}})_{\mu\nu} \ , \ g'_{mn} = (A_{\mathcal{F}}^T g_{\mathcal{F}} A_{\mathcal{F}})_{mn} \ . \end{aligned}$$

David ANDRIOT

Introduction

GCG and type II

Twist

On generalized vielbeins

On pure spinors

Dual solutions

Heteroti

Conclusions

$$e = \begin{pmatrix} e_{\mathcal{B}} & 0\\ 0 & e_{\mathcal{F}} \end{pmatrix} , \ \mathrm{d}s^2 = g_{\mu\nu}\mathrm{d}x^{\mu}\mathrm{d}x^{\nu} + g_{mn}(\mathrm{d}y^m + 0)(\mathrm{d}y^n + 0) ,$$
$$B = 0 , \ e^{\phi} .$$

The twist transformation gives:

$$\begin{split} e' &= \begin{pmatrix} e_{\mathcal{B}}A_{\mathcal{B}} & 0\\ (e_{\mathcal{F}}A_{\mathcal{F}})(A_{\mathcal{F}}^{-1}A_{\mathcal{C}}) & e_{\mathcal{F}}A_{\mathcal{F}} \end{pmatrix}\\ \mathrm{d}s^2 &= g'_{\mu\nu}\mathrm{d}x^{\mu}\mathrm{d}x^{\nu} + g'_{mn}(\mathrm{d}y^m + A'_{\rho}{}^m\mathrm{d}x^{\rho})(\mathrm{d}y^n + A'_{\sigma}{}^n\mathrm{d}x^{\sigma}) \ ,\\ A' &= A_{\mathcal{F}}^{-1}A_{\mathcal{C}} \ , \ g'_{\mu\nu} = (A_{\mathcal{B}}^T g_{\mathcal{B}} A_{\mathcal{B}})_{\mu\nu} \ , \ g'_{mn} = (A_{\mathcal{F}}^T g_{\mathcal{F}} A_{\mathcal{F}})_{mn} \ . \end{split}$$

 $\hookrightarrow A_{\mathcal{C}}$ generates a connection A'

David ANDRIOT

Introduction

GCG and type II

Twist

On generalized vielbeins

On pure spinors

Dual solutions

Heteroti

Conclusions

$$e = \begin{pmatrix} e_{\mathcal{B}} & 0\\ 0 & e_{\mathcal{F}} \end{pmatrix} , \ \mathrm{d}s^2 = g_{\mu\nu}\mathrm{d}x^{\mu}\mathrm{d}x^{\nu} + g_{mn}(\mathrm{d}y^m + 0)(\mathrm{d}y^n + 0) ,$$
$$B = 0 , \ e^{\phi} .$$

The twist transformation gives:

$$\begin{split} e' &= \begin{pmatrix} e_{\mathcal{B}}A_{\mathcal{B}} & 0\\ (e_{\mathcal{F}}A_{\mathcal{F}})(A_{\mathcal{F}}^{-1}A_{\mathcal{C}}) & e_{\mathcal{F}}A_{\mathcal{F}} \end{pmatrix}\\ \mathrm{d}s^2 &= g'_{\mu\nu}\mathrm{d}x^{\mu}\mathrm{d}x^{\nu} + g'_{mn}(\mathrm{d}y^m + A'^m_{\rho}\mathrm{d}x^{\rho})(\mathrm{d}y^n + A'^n_{\sigma}\mathrm{d}x^{\sigma}) \ ,\\ A' &= A_{\mathcal{F}}^{-1}A_{\mathcal{C}} \ , \ g'_{\mu\nu} = (A_{\mathcal{B}}^T g_{\mathcal{B}} A_{\mathcal{B}})_{\mu\nu} \ , \ g'_{mn} = (A_{\mathcal{F}}^T g_{\mathcal{F}} A_{\mathcal{F}})_{mn} \ . \end{split}$$

 $\hookrightarrow A_{\mathcal{C}}$ generates a connection A' ($A_{\mathcal{C}}$ has to be coordinate dependent... Important difference with T-duality),

David ANDRIOT

Introduction

GCG and type II

Twist

On generalized vielbeins

On pure spinors

Dual solutions

Heteroti

Conclusions

$$e = \begin{pmatrix} e_{\mathcal{B}} & 0\\ 0 & e_{\mathcal{F}} \end{pmatrix} , \ \mathrm{d}s^2 = g_{\mu\nu} \mathrm{d}x^{\mu} \mathrm{d}x^{\nu} + g_{mn} (\mathrm{d}y^m + 0) (\mathrm{d}y^n + 0) ,$$
$$B = 0 , \ e^{\phi} .$$

The twist transformation gives:

$$\begin{split} e' &= \begin{pmatrix} e_{\mathcal{B}}A_{\mathcal{B}} & 0\\ (e_{\mathcal{F}}A_{\mathcal{F}})(A_{\mathcal{F}}^{-1}A_{\mathcal{C}}) & e_{\mathcal{F}}A_{\mathcal{F}} \end{pmatrix}\\ \mathrm{d}s^2 &= g'_{\mu\nu}\mathrm{d}x^{\mu}\mathrm{d}x^{\nu} + g'_{mn}(\mathrm{d}y^m + A'^m_{\rho}\mathrm{d}x^{\rho})(\mathrm{d}y^n + A'^n_{\sigma}\mathrm{d}x^{\sigma}) \ ,\\ A' &= A_{\mathcal{F}}^{-1}A_{\mathcal{C}} \ , \ g'_{\mu\nu} = (A_{\mathcal{B}}^T g_{\mathcal{B}} A_{\mathcal{B}})_{\mu\nu} \ , \ g'_{mn} = (A_{\mathcal{F}}^T g_{\mathcal{F}} A_{\mathcal{F}})_{mn} \ . \end{split}$$

 $\hookrightarrow A_{\mathcal{C}}$ generates a connection A' ($A_{\mathcal{C}}$ has to be coordinate dependent... Important difference with T-duality), $\hookrightarrow A_{\mathcal{B}}, A_{\mathcal{F}}$ transform the metric .

David ANDRIOT

Introduction

GCG and type II

Twist

On generalized vielbeins

On pure spinors

Dual solutions

Heteroti

Conclusions

$$e = \begin{pmatrix} e_{\mathcal{B}} & 0\\ 0 & e_{\mathcal{F}} \end{pmatrix} , \ \mathrm{d}s^2 = g_{\mu\nu}\mathrm{d}x^{\mu}\mathrm{d}x^{\nu} + g_{mn}(\mathrm{d}y^m + 0)(\mathrm{d}y^n + 0) ,$$
$$B = 0 , \ e^{\phi} .$$

The twist transformation gives:

$$\begin{split} e' &= \begin{pmatrix} e_{\mathcal{B}}A_{\mathcal{B}} & 0\\ (e_{\mathcal{F}}A_{\mathcal{F}})(A_{\mathcal{F}}^{-1}A_{\mathcal{C}}) & e_{\mathcal{F}}A_{\mathcal{F}} \end{pmatrix}\\ \mathrm{d}s^2 &= g'_{\mu\nu}\mathrm{d}x^{\mu}\mathrm{d}x^{\nu} + g'_{mn}(\mathrm{d}y^m + A'^m_{\rho}\mathrm{d}x^{\rho})(\mathrm{d}y^n + A'^n_{\sigma}\mathrm{d}x^{\sigma}) \ ,\\ A' &= A_{\mathcal{F}}^{-1}A_{\mathcal{C}} \ , \ g'_{\mu\nu} = (A_{\mathcal{B}}^T g_{\mathcal{B}} A_{\mathcal{B}})_{\mu\nu} \ , \ g'_{mn} = (A_{\mathcal{F}}^T g_{\mathcal{F}} A_{\mathcal{F}})_{mn} \ . \end{split}$$

 $\hookrightarrow A_{\mathcal{C}}$ generates a connection A' ($A_{\mathcal{C}}$ has to be coordinate dependent... Important difference with T-duality), $\hookrightarrow A_{\mathcal{B}}, A_{\mathcal{F}}$ transform the metric .

 \hookrightarrow The dilaton transforms accordingly:

$$e^{\phi'} = e^{\phi} |\det(A_{\mathcal{B}}) \det(A_{\mathcal{F}})|^{\frac{1}{2}}$$

David ANDRIOT

Introduction

GCG and type II

Twist

On generalized vielbeins

On pure spinors

Dual solutions

Heterotic

Conclusions

$$e = \begin{pmatrix} e_{\mathcal{B}} & 0\\ 0 & e_{\mathcal{F}} \end{pmatrix} , \ \mathrm{d}s^2 = g_{\mu\nu}\mathrm{d}x^{\mu}\mathrm{d}x^{\nu} + g_{mn}(\mathrm{d}y^m + 0)(\mathrm{d}y^n + 0) ,$$
$$B = 0 , \ e^{\phi} .$$

The twist transformation gives:

$$\begin{split} e' &= \begin{pmatrix} e_{\mathcal{B}}A_{\mathcal{B}} & 0\\ (e_{\mathcal{F}}A_{\mathcal{F}})(A_{\mathcal{F}}^{-1}A_{\mathcal{C}}) & e_{\mathcal{F}}A_{\mathcal{F}} \end{pmatrix}\\ \mathrm{d}s^2 &= g'_{\mu\nu}\mathrm{d}x^{\mu}\mathrm{d}x^{\nu} + g'_{mn}(\mathrm{d}y^m + A'^m_{\rho}\mathrm{d}x^{\rho})(\mathrm{d}y^n + A'^n_{\sigma}\mathrm{d}x^{\sigma}) \ ,\\ A' &= A_{\mathcal{F}}^{-1}A_{\mathcal{C}} \ , \ g'_{\mu\nu} = (A_{\mathcal{B}}^T g_{\mathcal{B}} A_{\mathcal{B}})_{\mu\nu} \ , \ g'_{mn} = (A_{\mathcal{F}}^T g_{\mathcal{F}} A_{\mathcal{F}})_{mn} \ . \end{split}$$

 $\hookrightarrow A_{\mathcal{C}}$ generates a connection A' ($A_{\mathcal{C}}$ has to be coordinate dependent... Important difference with T-duality), $\hookrightarrow A_{\mathcal{B}}, A_{\mathcal{F}}$ transform the metric .

 \hookrightarrow The dilaton transforms accordingly:

$$e^{\phi'} = e^{\phi} |\det(A_{\mathcal{B}}) \det(A_{\mathcal{F}})|^{\frac{1}{2}}$$
.

 \hookrightarrow The free parameters in C generate a new B-field:

$$B' = -\begin{pmatrix} \tilde{C}_{\mathcal{B}} & -\tilde{C}_{\mathcal{C}}^T \\ \tilde{C}_{\mathcal{C}} & \tilde{C}_{\mathcal{F}} \end{pmatrix}$$

David ANDRIOT

Introduction

GCG and type II

Twist

On generalized vielbeins

On pure spinors

Dual solutions

Heterotic

Conclusions

$$e = \begin{pmatrix} e_{\mathcal{B}} & 0\\ 0 & e_{\mathcal{F}} \end{pmatrix} , \ \mathrm{d}s^2 = g_{\mu\nu}\mathrm{d}x^{\mu}\mathrm{d}x^{\nu} + g_{mn}(\mathrm{d}y^m + 0)(\mathrm{d}y^n + 0) ,$$
$$B = 0 , \ e^{\phi} .$$

The twist transformation gives:

$$\begin{split} e' &= \begin{pmatrix} e_{\mathcal{B}}A_{\mathcal{B}} & 0\\ (e_{\mathcal{F}}A_{\mathcal{F}})(A_{\mathcal{F}}^{-1}A_{\mathcal{C}}) & e_{\mathcal{F}}A_{\mathcal{F}} \end{pmatrix}\\ \mathrm{d}s^2 &= g'_{\mu\nu}\mathrm{d}x^{\mu}\mathrm{d}x^{\nu} + g'_{mn}(\mathrm{d}y^m + A'^m_{\rho}\mathrm{d}x^{\rho})(\mathrm{d}y^n + A'^n_{\sigma}\mathrm{d}x^{\sigma}) \ ,\\ A' &= A_{\mathcal{F}}^{-1}A_{\mathcal{C}} \ , \ g'_{\mu\nu} = (A_{\mathcal{B}}^T g_{\mathcal{B}} A_{\mathcal{B}})_{\mu\nu} \ , \ g'_{mn} = (A_{\mathcal{F}}^T g_{\mathcal{F}} A_{\mathcal{F}})_{mn} \ . \end{split}$$

 $\hookrightarrow A_{\mathcal{C}}$ generates a connection A' ($A_{\mathcal{C}}$ has to be coordinate dependent... Important difference with T-duality), $\hookrightarrow A_{\mathcal{B}}, A_{\mathcal{F}}$ transform the metric .

 \hookrightarrow The dilaton transforms accordingly:

$$e^{\phi'} = e^{\phi} |\det(A_{\mathcal{B}}) \det(A_{\mathcal{F}})|^{\frac{1}{2}} .$$

 \hookrightarrow The free parameters in C generate a new B-field:

$$B' = -\begin{pmatrix} \tilde{C}_{\mathcal{B}} & -\tilde{C}_{\mathcal{C}}^T \\ \tilde{C}_{\mathcal{C}} & \tilde{C}_{\mathcal{F}} \end{pmatrix}$$

On pure spinors Ψ_\pm

David ANDRIOT

Introduction

GCG and type II

Twist

On generalized vielbeins

On pure spinors

Dual solutions

Heterotic

Introduction

GCG and type II

Twist

On generalized vielbeins

On pure spinors

Dual solutions

Heterotic

Conclusions

On pure spinors Ψ_{\pm}

Metric $\eta \Rightarrow$ Clifford algebra Cliff(d, d) on E: $\{\Gamma^m, \Gamma^n\} = \{\Gamma_m, \Gamma_n\} = 0$, $\{\Gamma^m, \Gamma_n\} = \delta_n^m \quad m, \ n = 1 \dots d$.

Introduction

GCG and type II

Twist

On generalized vielbeins

On pure spinors

Dual solutions

Heterotic

Conclusions

On pure spinors Ψ_{\pm}

Metric $\eta \Rightarrow$ Clifford algebra Cliff(d, d) on E: $\{\Gamma^m, \Gamma^n\} = \{\Gamma_m, \Gamma_n\} = 0$, $\{\Gamma^m, \Gamma_n\} = \delta_n^m \quad m, \ n = 1 \dots d$.

Action on Ψ_{\pm} : wedges, contractions: $\Gamma^n = dx^n \wedge , \ \Gamma_m = \iota_{\partial_m}$.

Introduction

GCG and type II

Twist

On generalized vielbeins

On pure spinors

Dual solutions

Heterotic

Conclusions

On pure spinors Ψ_{\pm}

Metric $\eta \Rightarrow$ Clifford algebra Cliff(d, d) on E: $\{\Gamma^m, \Gamma^n\} = \{\Gamma_m, \Gamma_n\} = 0$, $\{\Gamma^m, \Gamma_n\} = \delta_n^m \quad m, \ n = 1 \dots d$.

Action on Ψ_{\pm} : wedges, contractions: $\Gamma^n = dx^n \wedge , \ \Gamma_m = \iota_{\partial_m}$. $\hookrightarrow O(d, d)$ in the spinorial representation:

 $O = e^{-\frac{1}{4}\Theta_{MN}\sigma^{MN}}$, $M, N = 1 \dots d + d$.

Introduction

GCG and type II

Twist

On generalized vielbeins

On pure spinors

Dual solutions

Heterotic

Conclusions

On pure spinors Ψ_{\pm}

Metric $\eta \Rightarrow$ Clifford algebra Cliff(d, d) on E: $\{\Gamma^m, \Gamma^n\} = \{\Gamma_m, \Gamma_n\} = 0$, $\{\Gamma^m, \Gamma_n\} = \delta_n^m \quad m, \ n = 1 \dots d$.

Action on Ψ_{\pm} : wedges, contractions: $\Gamma^n = dx^n \wedge , \ \Gamma_m = \iota_{\partial_m}$. $\hookrightarrow O(d, d)$ in the spinorial representation: $O = e^{-\frac{1}{4}\Theta_{MN}\sigma^{MN}} , \quad M, N = 1 \dots d + d .$

$$\sigma^{MN} = [\Gamma^M, \Gamma^N] \quad ,$$

Introduction

GCG and type II

Twist

On generalized vielbeins

On pure spinors

Dual solutions

Heterotic

Conclusions

On pure spinors Ψ_{\pm}

Metric $\eta \Rightarrow$ Clifford algebra Cliff(d, d) on E: $\{\Gamma^m, \Gamma^n\} = \{\Gamma_m, \Gamma_n\} = 0$, $\{\Gamma^m, \Gamma_n\} = \delta_n^m \quad m, \ n = 1 \dots d$.

Action on Ψ_{\pm} : wedges, contractions: $\Gamma^n = dx^n \wedge , \ \Gamma_m = \iota_{\partial_m}$. $\hookrightarrow O(d, d)$ in the spinorial representation:

$$O = e^{-\frac{1}{4}\Theta_{MN}\sigma^{MN}} , \quad M, N = 1 \dots d + d .$$

$$\sigma^{MN} = [\Gamma^M, \Gamma^N] , \quad \Theta_{MN} = \begin{pmatrix} a^m_n & \beta^{mn} \\ B_{mn} & -a_m^n \end{pmatrix}$$

Introduction

GCG and type II

Twist

On generalized vielbeins

On pure spinors

Dual solutions

Heterotic

Conclusions

On pure spinors Ψ_{\pm}

Metric $\eta \Rightarrow$ Clifford algebra Cliff(d, d) on E: $\{\Gamma^m, \Gamma^n\} = \{\Gamma_m, \Gamma_n\} = 0$, $\{\Gamma^m, \Gamma_n\} = \delta_n^m \quad m, \ n = 1 \dots d$.

Action on Ψ_{\pm} : wedges, contractions: $\Gamma^n = dx^n \wedge , \ \Gamma_m = \iota_{\partial_m}$. $\hookrightarrow O(d, d)$ in the spinorial representation:

$$O = e^{-\frac{1}{4}\Theta_{MN}\sigma^{MN}} , \quad M, N = 1\dots d + d .$$

$$\sigma^{MN} = [\Gamma^M, \Gamma^N] , \quad \Theta_{MN} = \begin{pmatrix} a^m_n & \beta^{mn} \\ B_{mn} & -a_m^n \end{pmatrix}$$

GL(d) transformation (previous A):

$$O_a = e^{-\frac{1}{4}(a^m{}_n[\Gamma_m,\Gamma^n] - a_m{}^n[\Gamma^m,\Gamma_n])} = \dots = \frac{1}{\sqrt{\det A}} e^{a^m{}_n \mathrm{d}x^n \wedge \iota_{\partial_m}}$$

Introduction

GCG and type II

Twist

On generalized vielbeins

On pure spinors

Dual solutions

Heterotic

Conclusions

On pure spinors Ψ_{\pm}

Metric $\eta \Rightarrow$ Clifford algebra Cliff(d, d) on E: $\{\Gamma^m, \Gamma^n\} = \{\Gamma_m, \Gamma_n\} = 0$, $\{\Gamma^m, \Gamma_n\} = \delta_n^m \quad m, \ n = 1 \dots d$.

Action on Ψ_{\pm} : wedges, contractions: $\Gamma^n = dx^n \wedge , \ \Gamma_m = \iota_{\partial_m}$. $\hookrightarrow O(d, d)$ in the spinorial representation:

$$O = e^{-\frac{1}{4}\Theta_{MN}\sigma^{MN}} , \quad M, N = 1\dots d + d .$$

$$\sigma^{MN} = [\Gamma^M, \Gamma^N] , \quad \Theta_{MN} = \begin{pmatrix} a^m_n & \beta^{mn} \\ B_{mn} & -a_m^n \end{pmatrix}$$

GL(d) transformation (previous A):

$$O_a = e^{-\frac{1}{4}(a^m{}_n[\Gamma_m,\Gamma^n] - a_m{}^n[\Gamma^m,\Gamma_n])} = \dots = \frac{1}{\sqrt{\det A}} e^{a^m{}_n \mathrm{d}x^n \wedge \iota_{\partial_m}}$$

B-transform (previous C):

$$O_B = e^{-\frac{1}{2}B_{mn}\Gamma^{mn}} = e^{-\frac{1}{2}B_{mn}\mathrm{d}x^m \wedge \mathrm{d}x^n}$$

Previous twist transformation:

David ANDRIOT $\mathcal{E} \mapsto \mathcal{E}' = \mathcal{E}O \ , \ O = \begin{pmatrix} A & 0 \\ C & A^{-T} \end{pmatrix}$

Introduction

GCG and type II

Twist

On generalized vielbeins

On pure spinors

Dual solutions

Heterotic

Previous twist transformation:

David ANDRIOT

$$\mathcal{E} \mapsto \mathcal{E}' = \mathcal{E}O \ , \ O = \begin{pmatrix} A & 0 \\ C & A^{-T} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ B & 1 \end{pmatrix} \begin{pmatrix} A & 0 \\ 0 & A^{-T} \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -B' & 1 \end{pmatrix}$$

Introduction

GCG and type II

Twist

On generalized vielbeins

On pure spinors

Dual solutions

Heterotic
David ANDRIOT

Introduction

GCG and type II

Twist

On generalized vielbeins

On pure spinors

Dual solutions

Heterotic

Conclusions

$$\mathcal{E} \mapsto \mathcal{E}' = \mathcal{E}O , \ O = \begin{pmatrix} A & 0 \\ C & A^{-T} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ B & 1 \end{pmatrix} \begin{pmatrix} A & 0 \\ 0 & A^{-T} \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -B' & 1 \end{pmatrix}$$

becomes:

 $\Psi \mapsto O_f \Psi' \ , \ O_f = \frac{1}{\sqrt{\det A}} e^{-B'} e^{a^m{}_n \mathrm{d} x^n \wedge \iota_{\partial_m}} e^B \ .$

$$\mathcal{E} \mapsto \mathcal{E}' = \mathcal{E}O , \ O = \begin{pmatrix} A & 0 \\ C & A^{-T} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ B & 1 \end{pmatrix} \begin{pmatrix} A & 0 \\ 0 & A^{-T} \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -B' & 1 \end{pmatrix}$$

becomes:

 $\Psi \mapsto O_f \Psi'$, $O_f = \frac{1}{\sqrt{\det A}} e^{-B'} e^{a^m {}_n \mathrm{d} x^n \wedge \iota_{\partial m}} e^B$.

We consider a further phase transformation:

$$O_c^{\pm} = e^{i\theta_c^{\pm}} O_f \; .$$

 $\mathcal{E} \mapsto \overline{\mathcal{E}'} = \mathcal{E}O \ , \ O = \begin{pmatrix} A & 0 \\ C & A^{-T} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ B & 1 \end{pmatrix} \begin{pmatrix} A & 0 \\ 0 & A^{-T} \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -B' & 1 \end{pmatrix}$ becomes:

 $\Psi \mapsto O_f \Psi'$, $O_f = \frac{1}{\sqrt{\det A}} e^{-B'} e^{a^m} e^{Ax^n \wedge \iota_{\partial_m}} e^B$.

We consider a further phase transformation:

$$O_c^{\pm} = e^{i\theta_c^{\pm}} O_f$$
 .

Check the twist on Ψ_+ : do we have:

$$\Psi_{+} = e^{i\theta} e^{-\phi} e^{-B} e^{-iJ} \longrightarrow \Psi'_{+} = e^{i(\theta+\theta_{c}^{+})} e^{-\phi'} e^{-B'} e^{-iJ'} ,$$

$$\Psi_{-} = -ie^{-\phi} e^{-B} \Omega_{3} \longrightarrow \Psi'_{-} = -ie^{i\theta_{c}^{-}} e^{-\phi'} e^{-B'} \Omega'_{3} .$$

On pure spinors

 $\mathcal{E} \mapsto \mathcal{E}' = \mathcal{E}O \ , \ O = \begin{pmatrix} A & 0 \\ C & A^{-T} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ B & 1 \end{pmatrix} \begin{pmatrix} A & 0 \\ 0 & A^{-T} \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -B' & 1 \end{pmatrix}$ becomes:

On pure spinors

$$\Psi \mapsto O_f \ \Psi' \ , \ O_f = rac{1}{\sqrt{\det A}} e^{-B'} \ e^{a^m{}_n \mathrm{d} x^n \wedge \, \iota_{\partial_m}} \ e^B \ .$$

We consider a further phase transformation:

$$O_c^{\pm} = e^{i\theta_c^{\pm}} O_f \; .$$

Check the twist on Ψ_{\pm} : do we have:

$$\begin{split} \Psi_{+} &= e^{i\theta} e^{-\phi} e^{-B} e^{-iJ} \quad \longrightarrow \quad \Psi'_{+} = e^{i(\theta+\theta_{c}^{+})} e^{-\phi'} e^{-B'} e^{-iJ'} ,\\ \Psi_{-} &= -i e^{-\phi} e^{-B} \Omega_{3} \quad \longrightarrow \quad \Psi'_{-} = -i e^{i\theta_{c}^{-}} e^{-\phi'} e^{-B'} \Omega'_{3} .\\ \text{ransform: } \checkmark, \end{split}$$

David

 $\mathcal{E} \mapsto \mathcal{E}' = \mathcal{E}O, \quad O = \begin{pmatrix} A & 0 \\ C & A^{-T} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ B & 1 \end{pmatrix} \begin{pmatrix} A & 0 \\ 0 & A^{-T} \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -B' & 1 \end{pmatrix}$ becomes:

 $\Psi \mapsto O_f \Psi'$, $O_f = \frac{1}{\sqrt{\det A}} e^{-B'} e^{a^m {}_n \mathrm{d} x^n \wedge \iota_{\partial m}} e^B$.

We consider a further phase transformation:

$$O_c^{\pm} = e^{i\theta_c^{\pm}} O_f \; .$$

Check the twist on Ψ_+ : do we have:

 $\Psi_{+} = e^{i\theta} e^{-\phi} e^{-B} e^{-iJ} \longrightarrow \Psi'_{+} = e^{i(\theta + \theta_{c}^{+})} e^{-\phi'} e^{-B'} e^{-iJ'} ,$ $\Psi_{-} = -ie^{-\phi}e^{-B}\Omega_{3} \quad \longrightarrow \quad \Psi' = -ie^{i\theta_{c}^{-}}e^{-\phi'}e^{-B'}\Omega'_{2} \; .$ *B*-transform: \checkmark , dilaton transform: \checkmark ,

On pure spinors

David ANDRIOT $\mathcal{E} \mapsto \mathcal{E}' = \mathcal{E}O , \ O = \begin{pmatrix} A & 0 \\ C & A^{-T} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ B & 1 \end{pmatrix} \begin{pmatrix} A & 0 \\ 0 & A^{-T} \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -B' & 1 \end{pmatrix}$ becomes:

 $\Psi \mapsto O_f \Psi'$, $O_f = \frac{1}{\sqrt{\det A}} e^{-B'} e^{a^m{}_n \mathrm{d} x^n \wedge \iota_{\partial_m}} e^B$.

We consider a further phase transformation:

$$O_c^{\pm} = e^{i\theta_c^{\pm}} O_f \; .$$

Check the twist on Ψ_{\pm} : do we have:

$$\begin{split} \Psi_{+} &= e^{i\theta} e^{-\phi} e^{-B} e^{-iJ} \longrightarrow \Psi'_{+} = e^{i(\theta+\theta_{c}^{+})} e^{-\phi'} e^{-B'} e^{-iJ'} ,\\ \Psi_{-} &= -i e^{-\phi} e^{-B} \Omega_{3} \longrightarrow \Psi'_{-} = -i e^{i\theta_{c}^{-}} e^{-\phi'} e^{-B'} \Omega'_{3} .\\ B\text{-transform: } \checkmark, \text{ dilaton transform: } \checkmark, \text{ phases: } \checkmark. \end{split}$$

andrio'i

Introduction

GCG and type I

Twist

On generalized vielbeins

On pure spinors

Dual solutions

Heterotic

Conclusions

David ANDRIOT $\mathcal{E} \mapsto \mathcal{E}' = \mathcal{E}O , \quad O = \begin{pmatrix} A & 0 \\ C & A^{-T} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ B & 1 \end{pmatrix} \begin{pmatrix} A & 0 \\ 0 & A^{-T} \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -B' & 1 \end{pmatrix}$ becomes:

GCG and type II

Twist

On generalized vielbeins

On pure spinors

Dual solutions

Heterotic

Conclusions

B-

$$\Psi \mapsto O_f \ \Psi' \ , \ O_f = \frac{1}{\sqrt{\det A}} e^{-B'} \ e^{a^m \, {}_n \mathrm{d} x^n \wedge \, \iota_{\partial_m}} \ e^B \ .$$

We consider a further phase transformation:

$$O_c^{\pm} = e^{i\theta_c^{\pm}} O_f \; .$$

Check the twist on Ψ_{\pm} : do we have:

$$\begin{split} \Psi_{+} &= e^{i\theta} e^{-\phi} e^{-B} e^{-iJ} \longrightarrow \Psi'_{+} = e^{i(\theta+\theta_{c}^{+})} e^{-\phi'} e^{-B'} e^{-iJ'} ,\\ \Psi_{-} &= -i e^{-\phi} e^{-B} \Omega_{3} \longrightarrow \Psi'_{-} = -i e^{i\theta_{c}^{-}} e^{-\phi'} e^{-B'} \Omega'_{3} ,\\ \text{transform: } \checkmark, \text{ dilaton transform: } \checkmark, \text{ phases: } \checkmark. \\ \text{left with the "A-transform"} O_{a} : \text{ action on } J, \Omega_{3}. \end{split}$$

David ANDRIOT $\mathcal{E} \mapsto \mathcal{E}' = \mathcal{E}O, \quad O = \begin{pmatrix} A & 0 \\ C & A^{-T} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ B & 1 \end{pmatrix} \begin{pmatrix} A & 0 \\ 0 & A^{-T} \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -B' & 1 \end{pmatrix}$ becomes:

 $\Psi \mapsto O_f \Psi'$, $O_f = \frac{1}{\sqrt{\det A}} e^{-B'} e^{a^m} dx^n \wedge \iota_{\partial_m} e^B$.

We consider a further phase transformation:

$$O_c^{\pm} = e^{i\theta_c^{\pm}} O_f \; .$$

Check the twist on Ψ_{\pm} : do we have:

$$\Psi_{+} = e^{i\theta} e^{-\phi} e^{-B} e^{-iJ} \longrightarrow \Psi'_{+} = e^{i(\theta+\theta_{c}^{+})} e^{-\phi'} e^{-B'} e^{-iJ'} ,$$

$$\Psi_{-} = -ie^{-\phi} e^{-B} \Omega_{3} \longrightarrow \Psi'_{-} = -ie^{i\theta_{c}^{-}} e^{-\phi'} e^{-B'} \Omega'_{3} .$$

transform: \checkmark , dilaton transform: \checkmark , phases: \checkmark .
left with the "A-transform" O_{a} : action on J, Ω_{3} .
should transform the metric and provide a connection

Introduction

GCG and type I

Twist

On generalized vielbeins

On pure spinors

Dual solutions

Heterotic

Conclusions

B

David ANDRIOT

On pure spinors

 $\mathcal{E} \mapsto \mathcal{E}' = \mathcal{E}O, \quad O = \begin{pmatrix} A & 0 \\ C & A^{-T} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ B & 1 \end{pmatrix} \begin{pmatrix} A & 0 \\ 0 & A^{-T} \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -B' & 1 \end{pmatrix}$ becomes:

 $\Psi \mapsto O_f \Psi' , \ O_f = \frac{1}{\sqrt{\det A}} e^{-B'} e^{a^m} dx^n \wedge \iota_{\partial_m} e^B .$

We consider a further phase transformation:

$$O_c^{\pm} = e^{i\theta_c^{\pm}} O_f \; .$$

Check the twist on Ψ_{\pm} : do we have:

$$\begin{split} \Psi_{+} &= e^{i\theta} \, e^{-\phi} e^{-B} \, e^{-iJ} \quad \longrightarrow \quad \Psi'_{+} = e^{i(\theta+\theta_{c}^{+})} \, e^{-\phi'} \, e^{-B'} \, e^{-iJ'} \ , \\ \Psi_{-} &= -i e^{-\phi} e^{-B} \Omega_{3} \quad \longrightarrow \quad \Psi'_{-} = -i e^{i\theta_{c}^{-}} \, e^{-\phi'} \, e^{-B'} \Omega'_{3} \ . \\ B\text{-transform: } \checkmark, \text{ dilaton transform: } \checkmark, \text{ phases: } \checkmark. \\ &\hookrightarrow \text{ left with the "A-transform"} \, O_{a} : \text{ action on } J, \, \Omega_{3}. \\ \text{It should transform the metric and provide a connection.} \\ \text{Particular case: } \mathcal{F} = T^{2}, \text{ only } g_{\mathcal{F}} \text{ transformation, and provide} \\ \text{a holomorphic connection } \alpha: \end{split}$$

David

 $\mathcal{E} \mapsto \mathcal{E}' = \mathcal{E}O, \quad O = \begin{pmatrix} A & 0 \\ C & A^{-T} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ B & 1 \end{pmatrix} \begin{pmatrix} A & 0 \\ 0 & A^{-T} \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -B' & 1 \end{pmatrix}$ becomes:

 $\Psi \mapsto O_f \Psi', \ O_f = \frac{1}{\sqrt{\det A}} e^{-B'} e^{a^m} e^{a^m \wedge \iota_{\partial_m}} e^B.$

We consider a further phase transformation:

$$O_c^{\pm} = e^{i\theta_c^{\pm}} O_f \; .$$

Check the twist on Ψ_+ : do we have:

$$\begin{split} \Psi_{+} &= e^{i\theta} e^{-\phi} e^{-B} e^{-iJ} \longrightarrow \Psi'_{+} = e^{i(\theta+\theta_{c}^{+})} e^{-\phi'} e^{-B'} e^{-iJ'} \\ \Psi_{-} &= -ie^{-\phi} e^{-B} \Omega_{3} \longrightarrow \Psi'_{-} = -ie^{i\theta_{c}^{-}} e^{-\phi'} e^{-B'} \Omega'_{3} . \\ \text{B-transform: } \checkmark, \text{ dilaton transform: } \checkmark, \text{ phases: } \checkmark. \\ \rightarrow \text{ left with the "A-transform"} O_{a} : \text{ action on } J, \Omega_{3}. \\ \text{t should transform the metric and provide a connection.} \\ \text{Particular case: } \mathcal{F} = T^{2}, \text{ only } g_{\mathcal{F}} \text{ transformation, and provide a bolomorphic connection } \alpha: \end{split}$$

$$J = J_{\mathcal{B}} + \frac{i}{2} g_{z\overline{z}} \, dz \wedge d\overline{z} \, \mapsto \, J' = J_{\mathcal{B}} + \frac{i}{2} g'_{z\overline{z}} \, (dz + \alpha) \wedge (d\overline{z} + \overline{\alpha})$$

$$\Omega_3 = \sqrt{g_{z\overline{z}}} \, \omega_{\mathcal{B}} \wedge dz \, \mapsto \, \Omega'_3 = \sqrt{g'_{z\overline{z}}} \, \omega_{\mathcal{B}} \wedge (dz + \alpha) \, .$$

On pure spinors

a

David ANDRIOT $\mathcal{E} \mapsto \mathcal{E}' = \mathcal{E}O, \quad O = \begin{pmatrix} A & 0 \\ C & A^{-T} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ B & 1 \end{pmatrix} \begin{pmatrix} A & 0 \\ 0 & A^{-T} \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -B' & 1 \end{pmatrix}$ becomes:

 $\Psi \mapsto O_f \ \Psi' \ , \ O_f = rac{1}{\sqrt{\det A}} e^{-B'} \ e^{a^m \, {}_n \mathrm{d} x^n \wedge \iota_{\partial_m}} \ e^B \ .$

We consider a further phase transformation:

$$O_c^{\pm} = e^{i\theta_c^{\pm}} O_f \; .$$

Check the twist on Ψ_{\pm} : do we have:

$$\begin{split} \Psi_{+} &= e^{i\theta} e^{-\phi} e^{-B} e^{-iJ} \longrightarrow \Psi'_{+} = e^{i(\theta+\theta_{c}^{+})} e^{-\phi'} e^{-B'} e^{-iJ'} \\ \Psi_{-} &= -ie^{-\phi} e^{-B} \Omega_{3} \longrightarrow \Psi'_{-} = -ie^{i\theta_{c}^{-}} e^{-\phi'} e^{-B'} \Omega'_{3} \\ \exists \text{-transform: } \checkmark, \text{ dilaton transform: } \checkmark, \text{ phases: } \checkmark. \\ \Rightarrow \text{ left with the "A-transform"} O_{a} : \text{ action on } J, \Omega_{3}. \\ t \text{ should transform the metric and provide a connection.} \\ Particular case: $\mathcal{F} = T^{2}, \text{ only } g_{\mathcal{F}} \text{ transformation, and provide a bolomorphic connection } \alpha: \end{split}$$$

$$J = J_{\mathcal{B}} + \frac{i}{2}g_{z\overline{z}} \, dz \wedge d\overline{z} \, \mapsto \, J' = J_{\mathcal{B}} + \frac{i}{2}g'_{z\overline{z}} \, (dz + \alpha) \wedge (d\overline{z} + \overline{\alpha})$$
$$\Omega_{3} = \sqrt{g_{z\overline{z}}} \, \omega_{\mathcal{B}} \wedge dz \, \mapsto \, \Omega'_{3} = \sqrt{g'_{z\overline{z}}} \, \omega_{\mathcal{B}} \wedge (dz + \alpha) \, . \, \checkmark$$

ntroduction

GCG and type I

Twist

On generalized vielbeins

On pure spinors

Dual solutions

Heterotic

Conclusions

a

David ANDRIOT $\mathcal{E} \mapsto \mathcal{E}' = \mathcal{E}O, \quad O = \begin{pmatrix} A & 0 \\ C & A^{-T} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ B & 1 \end{pmatrix} \begin{pmatrix} A & 0 \\ 0 & A^{-T} \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -B' & 1 \end{pmatrix}$ becomes:

GCG and type I

Twist

On generalized vielbeins

On pure spinors

Dual solutions

Heterotic

Conclusions

ے It P

a

$$\Psi \mapsto O_f \ \Psi' \ , \ O_f = rac{1}{\sqrt{\det A}} e^{-B'} \ e^{a^m{}_n \mathrm{d} x^n \wedge \, \iota_{\partial_m}} \ e^B \ .$$

We consider a further phase transformation:

$$O_c^{\pm} = e^{i\theta_c^{\pm}} O_f \; .$$

Check the twist on Ψ_{\pm} : do we have:

$$\begin{split} \Psi_{+} &= e^{i\theta} e^{-\phi} e^{-B} e^{-iJ} \quad \longrightarrow \quad \Psi'_{+} = e^{i(\theta+\theta_{c}^{+})} e^{-\phi'} e^{-B'} e^{-iJ'} \\ \Psi_{-} &= -i e^{-\phi} e^{-B} \Omega_{3} \quad \longrightarrow \quad \Psi'_{-} = -i e^{i\theta_{c}^{-}} e^{-\phi'} e^{-B'} \Omega'_{3} \\ P-\text{transform: } \checkmark, \text{ dilaton transform: } \checkmark, \text{ phases: } \checkmark. \\ \Rightarrow \text{ left with the "A-transform"} O_{a} : \text{ action on } J, \Omega_{3}. \\ \Rightarrow \text{ should transform the metric and provide a connection.} \\ \text{articular case: } \mathcal{F} = T^{2}, \text{ only } g_{\mathcal{F}} \text{ transformation, and provide holomorphic connection } \alpha: \end{split}$$

$$J = J_{\mathcal{B}} + \frac{i}{2}g_{z\overline{z}} \, dz \wedge d\overline{z} \, \mapsto \, J' = J_{\mathcal{B}} + \frac{i}{2}g'_{z\overline{z}} \, (dz+\alpha) \wedge (d\overline{z}+\overline{\alpha}) \, ,$$

$$\Omega_3 = \sqrt{g_{z\overline{z}}} \, \omega_{\mathcal{B}} \wedge dz \, \mapsto \, \Omega'_3 = \sqrt{g'_{z\overline{z}}} \, \omega_{\mathcal{B}} \wedge (dz+\alpha) \, . \, \checkmark$$

Introduction

GCG and type II

Twist

On generalized vielbeins

On pure spinors

Dual solutions

Heterotic

Conclusions

Remarks (work in progress):

Introduction

GCG and type II

Twist

On generalized vielbeins

On pure spinors

Dual solutions

Heterotic

Conclusions

Remarks (work in progress):

• Twist does not change $T\mathcal{M}_{internal}$ structure group (SU(3))

Introduction

GCG and type II

Twist

On generalized vielbeins

On pure spinors

Dual solutions

Heterotic

Conclusions

Remarks (work in progress):

• Twist does not change $T\mathcal{M}_{internal}$ structure group (SU(3))T-duality can change it...

Introduction

GCG and type II

Twist

On generalized vielbeins

On pure spinors

Dual solutions

Heterotic

Conclusions

Remarks (work in progress):

• Twist does not change $T\mathcal{M}_{internal}$ structure group (SU(3))T-duality can change it...

• RR flux transform?

Introduction

GCG and type II

Twist

On generalized vielbeins

On pure spinors

Dual solutions

Heterotic

Conclusions

Remarks (work in progress):

- Twist does not change $T\mathcal{M}_{\text{internal}}$ structure group (SU(3))T-duality can change it...
- RR flux transform? In GCG, defined through SUSY from $\Psi_{\pm}...$

Introduction

GCG and type II

Twist

On generalized vielbeins

On pure spinors

Dual solutions

Heterotic

Conclusions

Remarks (work in progress):

- Twist does not change $T\mathcal{M}_{internal}$ structure group (SU(3))T-duality can change it...
- RR flux transform? In GCG, defined through SUSY from Ψ_±...
 Definition of the transformed RR as new solutions of SUSY.

Introduction

GCG and type II

Twist

Dual solutions

Constraints

Examples

Heterotic

Conclusions

Mapping type IIB solutions

Constraints to generate solutions

Introduction GCG and type Twist

Dual solution Constraints

Examples

Heterotic

Conclusions

Mapping type IIB solutions

Constraints to generate solutions

Consider a solution of the SUSY conditions.

 $\begin{array}{l} {\rm d}(e^{3A}\Psi_1)=0\\ {\rm d}(e^{2A}\operatorname{Re}\Psi_2)=0\\ {\rm d}(e^{4A}\operatorname{Im}\Psi_2)=e^{4A}e^{-B}*\lambda(F)=R \;. \end{array}$

Introduction GCG and type Twist Dual solutions

Constraints

Untorotio

Conclusions

Mapping type IIB solutions

Constraints to generate solutions

Consider a solution of the SUSY conditions. Perform a twist: $\Psi'_{\pm} = e^{i\theta_c^{\pm}} O_f \Psi_{\pm}$

```
\begin{split} & \mathrm{d}(e^{3A}\Psi_1) = 0 \\ & \mathrm{d}(e^{2A}\operatorname{Re}\Psi_2) = 0 \\ & \mathrm{d}(e^{4A}\operatorname{Im}\Psi_2) = e^{4A}e^{-B}*\lambda(F) = R \; . \end{split}
```

- Introduction GCG and type Twist
- Constraints
- Conclusions

Mapping type IIB solutions

Constraints to generate solutions

Consider a solution of the SUSY conditions. Perform a twist: $\Psi'_{\pm} = e^{i\theta_c^{\pm}} O_f \Psi_{\pm} \Rightarrow \text{Get a new solution}?$

$$\begin{array}{ll} \mathrm{d}(e^{3A}\Psi_1) = 0 & \qquad \mathrm{d}(e^{3A}\Psi_1') = 0 \\ \mathrm{d}(e^{2A}\operatorname{Re}\Psi_2) = 0 & \Rightarrow & \mathrm{d}(e^{2A}\operatorname{Re}\Psi_2') = 0 \\ \mathrm{d}(e^{4A}\operatorname{Im}\Psi_2) = e^{4A}e^{-B}*\lambda(F) = R \ . & \qquad \mathrm{d}(e^{4A}\operatorname{Im}\Psi_2') = R' \end{array}$$

- Introduction GCG and type Twist Dual solutions
- Constraints
- Examples
- Heterotic
- Conclusions

Mapping type IIB solutions

Constraints to generate solutions

Consider a solution of the SUSY conditions. Perform a twist: $\Psi'_{\pm} = e^{i\theta_c^{\pm}} O_f \Psi_{\pm} \Rightarrow \text{Get a new solution}$?

 $\begin{array}{ll} {\rm d}(e^{3A}\Psi_1) = 0 & {\rm d}(e^{3A}\Psi_1') = 0 \\ {\rm d}(e^{2A}\operatorname{Re}\Psi_2) = 0 & \Rightarrow & {\rm d}(e^{2A}\operatorname{Re}\Psi_2') = 0 \\ {\rm d}(e^{4A}\operatorname{Im}\Psi_2) = e^{4A}e^{-B} * \lambda(F) = R \ . & {\rm d}(e^{4A}\operatorname{Im}\Psi_2') = R' \ . \end{array}$

Develop in terms of $\Psi_{1,2}, R, O_f, \theta_c^{\pm}$

- Introduction GCG and type I Twist Dual solutions Constraints
- Examples

Heterotic

Conclusions

Mapping type IIB solutions

Constraints to generate solutions

Consider a solution of the SUSY conditions. Perform a twist: $\Psi'_{\pm} = e^{i\theta_c^{\pm}} O_f \Psi_{\pm} \Rightarrow \text{Get a new solution}$?

 $\begin{array}{ll} {\rm d}(e^{3A}\Psi_1) = 0 & {\rm d}(e^{3A}\Psi_1') = 0 \\ {\rm d}(e^{2A}\operatorname{Re}\Psi_2) = 0 & \Rightarrow & {\rm d}(e^{2A}\operatorname{Re}\Psi_2') = 0 \\ {\rm d}(e^{4A}\operatorname{Im}\Psi_2) = e^{4A}e^{-B}*\lambda(F) = R \ . & {\rm d}(e^{4A}\operatorname{Im}\Psi_2') = R' \ . \end{array}$

Develop in terms of $\Psi_{1,2}, R, O_f, \theta_c^{\pm} \Rightarrow \text{constraints on the twist:}$ $d(O_f) \Psi_1 = 0$ $c_{\theta_c^{\pm}} d(O_f) e^{2A} \operatorname{Re} \Psi_2 - s_{\theta_c^{\pm}} d(e^{-2A}O_f) e^{4A} \operatorname{Im} \Psi_2 = e^{-2A} s_{\theta_c^{\pm}} O_f R$ $s_{\theta_c^{\pm}} d(e^{2A}O_f) e^{2A} \operatorname{Re} \Psi_2 + c_{\theta_c^{\pm}} d(O_f) e^{4A} \operatorname{Im} \Psi_2 = R' - c_{\theta_c^{\pm}} O_f R$.

- Introduction GCG and type : Twist Dual solutions Constraints
- Examples

Heterotic

Conclusions

Mapping type IIB solutions

Constraints to generate solutions

Consider a solution of the SUSY conditions. Perform a twist: $\Psi'_{\pm} = e^{i\theta_c^{\pm}} O_f \Psi_{\pm} \Rightarrow \text{Get a new solution}$?

$$\begin{aligned} \mathbf{d}(e^{3A}\Psi_1) &= 0 & \mathbf{d}(e^{3A}\Psi_1') = 0 \\ \mathbf{d}(e^{2A}\operatorname{Re}\Psi_2) &= 0 & \Rightarrow & \mathbf{d}(e^{2A}\operatorname{Re}\Psi_2') = 0 \\ \mathbf{d}(e^{4A}\operatorname{Im}\Psi_2) &= e^{4A}e^{-B}*\lambda(F) = R & \mathbf{d}(e^{4A}\operatorname{Im}\Psi_2') = R' & \mathbf{d$$

Develop in terms of $\Psi_{1,2}$, R, O_f , $\theta_c^{\pm} \Rightarrow$ constraints on the twist: $d(O_f) \Psi_1 = 0$ $c_{\theta_c^+} d(O_f) e^{2A} \operatorname{Re} \Psi_2 - s_{\theta_c^+} d(e^{-2A}O_f) e^{4A} \operatorname{Im} \Psi_2 = e^{-2A} s_{\theta_c^+} O_f R$

$$e_{\theta_c^+} d(e^{2A} O_f) e^{2A} \operatorname{Re} \Psi_2 + c_{\theta_c^+} d(O_f) e^{4A} \operatorname{Im} \Psi_2 = R' - c_{\theta_c^+} O_f R.$$

 O_f, θ_c^+ constrained with respect to the first solution $\Psi_{1,2}, R$.

- Introduction GCG and type : Twist Dual solutions Constraints
- Examples

~ • •

Mapping type IIB solutions

Constraints to generate solutions

Consider a solution of the SUSY conditions. Perform a twist: $\Psi'_{\pm} = e^{i\theta_c^{\pm}} O_f \Psi_{\pm} \Rightarrow \text{Get a new solution}$?

 $\begin{array}{ll} {\rm d}(e^{3A}\Psi_1) = 0 & {\rm d}(e^{3A}\Psi_1') = 0 \\ {\rm d}(e^{2A}\operatorname{Re}\Psi_2) = 0 & \Rightarrow & {\rm d}(e^{2A}\operatorname{Re}\Psi_2') = 0 \\ {\rm d}(e^{4A}\operatorname{Im}\Psi_2) = e^{4A}e^{-B}*\lambda(F) = R \ . & {\rm d}(e^{4A}\operatorname{Im}\Psi_2') = R' \ . \end{array}$

Develop in terms of $\Psi_{1,2}$, R, O_f , $\theta_c^{\pm} \Rightarrow$ constraints on the twist: $d(O_f) \Psi_1 = 0$ $c_{\theta_c^+} d(O_f) e^{2A} \operatorname{Re} \Psi_2 - s_{\theta_c^+} d(e^{-2A}O_f) e^{4A} \operatorname{Im} \Psi_2 = e^{-2A} s_{\theta_c^+} O_f R$ $= 1(2A O_f) e^{2A} \operatorname{Re} \Psi_2 - s_{\theta_c^+} d(e^{-2A}O_f) e^{4A} \operatorname{Im} \Psi_2 = e^{-2A} s_{\theta_c^+} O_f R$

 $s_{\theta_c^+} d(e^{2A}O_f) e^{2A} \operatorname{Re} \Psi_2 + c_{\theta_c^+} d(O_f) e^{4A} \operatorname{Im} \Psi_2 = R' - c_{\theta_c^+} O_f R.$

 O_f , θ_c^+ constrained with respect to the first solution $\Psi_{1,2}$, R. Note that automatically satisfied for ordinary T-duality.

- Introduction GCG and type : Twist Dual solutions Constraints
- Examples

Mapping type IIB solutions

Constraints to generate solutions

Consider a solution of the SUSY conditions. Perform a twist: $\Psi'_{\pm} = e^{i\theta_c^{\pm}} O_f \Psi_{\pm} \Rightarrow \text{Get a new solution}$?

$$\begin{array}{ll} \mathrm{d}(e^{3A}\Psi_1) = 0 & \mathrm{d}(e^{3A}\Psi_1') = 0 \\ \mathrm{d}(e^{2A}\operatorname{Re}\Psi_2) = 0 & \Rightarrow & \mathrm{d}(e^{2A}\operatorname{Re}\Psi_2') = 0 \\ \mathrm{d}(e^{4A}\operatorname{Im}\Psi_2) = e^{4A}e^{-B} * \lambda(F) = R \ . & \mathrm{d}(e^{4A}\operatorname{Im}\Psi_2') = R' \ . \end{array}$$

Develop in terms of $\Psi_{1,2}$, R, O_f , $\theta_c^{\pm} \Rightarrow$ constraints on the twist: $d(O_f) \Psi_1 = 0$ $c_{e^+} d(O_f) e^{2A} \operatorname{Re} \Psi_2 - s_{e^+} d(e^{-2A}O_f) e^{4A} \operatorname{Im} \Psi_2 = e^{-2A} s_{e^+} O_f R$

$$s_{\theta_c^+} d(e^{2A} O_f) \ e^{2A} \operatorname{Re} \Psi_2 + c_{\theta_c^+} d(O_f) \ e^{4A} \operatorname{Im} \Psi_2 = R' - c_{\theta_c^+} O_f \ R \ .$$

 O_f , θ_c^+ constrained with respect to the first solution $\Psi_{1,2}$, R. Note that automatically satisfied for ordinary T-duality. Last equation: only definition of R':

$$R' = c_{\theta_c^+} O_f R + s_{\theta_c^+} d(e^{2A} O_f) e^{2A} \operatorname{Re} \Psi_2 + c_{\theta_c^+} d(O_f) e^{4A} \operatorname{Im} \Psi_2 .$$

- Introduction GCG and type : Twist Dual solutions Constraints
- Examples

Heterotic

Conclusions

Mapping type IIB solutions

Constraints to generate solutions

Consider a solution of the SUSY conditions. Perform a twist: $\Psi'_{\pm} = e^{i\theta_c^{\pm}} O_f \Psi_{\pm} \Rightarrow \text{Get a new solution}$?

 $\begin{array}{ll} {\rm d}(e^{3A}\Psi_1) = 0 & {\rm d}(e^{3A}\Psi_1') = 0 \\ {\rm d}(e^{2A}\operatorname{Re}\Psi_2) = 0 & \Rightarrow & {\rm d}(e^{2A}\operatorname{Re}\Psi_2') = 0 \\ {\rm d}(e^{4A}\operatorname{Im}\Psi_2) = e^{4A}e^{-B}*\lambda(F) = R \ . & {\rm d}(e^{4A}\operatorname{Im}\Psi_2') = R' \ . \end{array}$

Develop in terms of $\Psi_{1,2}$, R, O_f , $\theta_c^{\pm} \Rightarrow$ constraints on the twist: $d(O_f) \Psi_1 = 0$ $c_{\theta_c^+} d(O_f) e^{2A} \operatorname{Re} \Psi_2 - s_{\theta_c^+} d(e^{-2A}O_f) e^{4A} \operatorname{Im} \Psi_2 = e^{-2A} s_{\theta_c^+} O_f R$

 $s_{\theta_c^+} d(e^{2A} O_f) \ e^{2A} \operatorname{Re} \Psi_2 + c_{\theta_c^+} \ d(O_f) \ e^{4A} \operatorname{Im} \Psi_2 = R' - c_{\theta_c^+} \ O_f \ R \ .$

 O_f , θ_c^+ constrained with respect to the first solution $\Psi_{1,2}$, R. Note that automatically satisfied for ordinary T-duality. Last equation: only definition of R':

$$\begin{split} R' &= c_{\theta_c^+} O_f R + s_{\theta_c^+} \mathrm{d}(e^{2A} O_f) e^{2A} \operatorname{Re} \Psi_2 + c_{\theta_c^+} \mathrm{d}(O_f) e^{4A} \operatorname{Im} \Psi_2 \ . \\ \theta_c^+ &\neq 0, \text{ coordinate dependent } O_f \end{split}$$

- Introduction GCG and type : Twist Dual solutions Constraints
- Examples

Heterotic

Conclusions

Mapping type IIB solutions

Constraints to generate solutions

Consider a solution of the SUSY conditions. Perform a twist: $\Psi'_{\pm} = e^{i\theta_c^{\pm}} O_f \Psi_{\pm} \Rightarrow \text{Get a new solution}$?

$$\begin{array}{ll} \mathrm{d}(e^{3A}\Psi_1) = 0 & \mathrm{d}(e^{3A}\Psi_1') = 0 \\ \mathrm{d}(e^{2A}\operatorname{Re}\Psi_2) = 0 & \Rightarrow & \mathrm{d}(e^{2A}\operatorname{Re}\Psi_2') = 0 \\ \mathrm{d}(e^{4A}\operatorname{Im}\Psi_2) = e^{4A}e^{-B} * \lambda(F) = R \ . & \mathrm{d}(e^{4A}\operatorname{Im}\Psi_2') = R' \end{array}$$

Develop in terms of $\Psi_{1,2}$, R, O_f , $\theta_c^{\pm} \Rightarrow$ constraints on the twist: $d(O_f) \Psi_1 = 0$ $c_{a^{\pm}} d(O_f) e^{2A} \operatorname{Re} \Psi_2 - s_{a^{\pm}} d(e^{-2A}O_f) e^{4A} \operatorname{Im} \Psi_2 = e^{-2A} s_{a^{\pm}} O_f R$

$$s_{\theta_c^+} d(e^{2A} O_f) e^{2A} \operatorname{Re} \Psi_2 + c_{\theta_c^+} d(O_f) e^{4A} \operatorname{Im} \Psi_2 = R' - c_{\theta_c^+} O_f R .$$

 O_f , θ_c^+ constrained with respect to the first solution $\Psi_{1,2}$, R. Note that automatically satisfied for ordinary T-duality. Last equation: only definition of R':

$$\begin{aligned} R' &= c_{\theta_c^+} O_f R + s_{\theta_c^+} \mathrm{d}(e^{2A} O_f) e^{2A} \operatorname{Re} \Psi_2 + c_{\theta_c^+} \mathrm{d}(O_f) e^{4A} \operatorname{Im} \Psi_2 \\ \theta_c^+ &\neq 0, \text{ coordinate dependent } O_f \Rightarrow \min \text{NSNS and RR sectors} \end{aligned}$$

Introduction GCG and type

Twist

Dual solutions Constraints Examples

Heterotic

Conclusions

Examples of type IIB dual solutions

$\mathcal{M}_{ ext{internal}}$	$T^6 = T^2 \times T^4$	

Introduction

GCG and type II

Twist

Dual solutions Constraints Examples

Heterotic

Conclusions

Examples of type IIB dual solutions

$\mathcal{M}_{ ext{internal}}$	$T^6 = T^2 \times T^4$	
ds_6^2	$e^{-2A}\mathrm{d}x_{\mathcal{B}}^2 + e^{-2A}\mathrm{d}x_{\mathcal{F}}^2$	

Introduction

GCG and type II

Twist

Dual solutions Constraints

Heterotic

Conclusions

Examples of type IIB dual solutions

$\mathcal{M}_{ ext{internal}}$	$T^6 = T^2 \times T^4$	
ds_6^2	$e^{-2A}\mathrm{d}x_{\mathcal{B}}^2 + e^{-2A}\mathrm{d}x_{\mathcal{F}}^2$	
Sources, θ	$O3$, $\theta = \frac{\pi}{2}$	

Introduction

GCG and type II

Twist

Dual solutions Constraints

Heterotic

Conclusions

Examples of type IIB dual solutions

$\mathcal{M}_{ ext{internal}}$	$T^6 = T^2 \times T^4$	
ds_6^2	$e^{-2A}\mathrm{d}x_{\mathcal{B}}^2 + e^{-2A}\mathrm{d}x_{\mathcal{F}}^2$	
Sources, θ	$O3$, $\theta = \frac{\pi}{2}$	
RR	$g_s F_5 = e^{4A} * d(e^{-4A}) , \ (F_3)$	

Introduction

GCG and type II

Twist

Dual solutions Constraints

Heterotic

Conclusions

Examples of type IIB dual solutions

$\mathcal{M}_{ ext{internal}}$	$T^6 = T^2 \times T^4$	
ds_6^2	$e^{-2A}\mathrm{d}x_{\mathcal{B}}^2 + e^{-2A}\mathrm{d}x_{\mathcal{F}}^2$	
Sources, θ	$O3$, $\theta = \frac{\pi}{2}$	
RR	$g_s F_5 = e^{4A} * d(e^{-4A}) , \ (F_3)$	
NSNS	$(H = g_s * F_3)$	

Introduction

GCG and type II

Twist

Dual solutions Constraints

Heterotic

Conclusions

Examples of type IIB dual solutions

$\mathcal{M}_{ ext{internal}}$	$T^6 = T^2 \times T^4$	
ds_6^2	$e^{-2A}\mathrm{d}x_{\mathcal{B}}^2 + e^{-2A}\mathrm{d}x_{\mathcal{F}}^2$	
Sources, θ	$O3$, $\theta = \frac{\pi}{2}$	
RR	$g_s F_5 = e^{4A} * d(e^{-4A}) , (F_3)$	
NSNS	$(H = g_s * F_3)$	
e^{ϕ}	g_s	

Introduction

GCG and type II

Twist

Dual solutions Constraints

Heterotic

Conclusions

Examples of type IIB dual solutions

$\mathcal{M}_{ ext{internal}}$	$T^6 = T^2 \times T^4$	$\begin{array}{cccc} T^2 & \hookrightarrow & \mathcal{M} \\ & \downarrow \\ & T^4 \end{array}$
ds_6^2	$e^{-2A}\mathrm{d}x_{\mathcal{B}}^2 + e^{-2A}\mathrm{d}x_{\mathcal{F}}^2$	
Sources, θ	$O3$, $\theta = \frac{\pi}{2}$	
RR	$g_s F_5 = e^{4A} * d(e^{-4A}) , \ (F_3)$	
NSNS	$(H = g_s * F_3)$	
e^{ϕ}	g_s	
Introduction

GCG and type II

Twist

Dual solutions Constraints

Heterotic

Conclusions

Examples of type IIB dual solutions

$\mathcal{M}_{ ext{internal}}$	$T^6 = T^2 \times T^4$	$\begin{array}{cccc} T^2 & \hookrightarrow & \mathcal{M} \\ & \downarrow \\ & T^4 \end{array}$
ds_6^2	$e^{-2A}\mathrm{d}x_{\mathcal{B}}^2 + e^{-2A}\mathrm{d}x_{\mathcal{F}}^2$	$e^{-2A}\mathrm{d}x_{\mathcal{B}}^2 + e^{2A}(\mathrm{d}x_{\mathcal{F}} + A)^2$
Sources, θ	$O3$, $\theta = \frac{\pi}{2}$	
RR	$g_s F_5 = e^{4A} * d(e^{-4A}) , \ (F_3)$	
NSNS	$(H = g_s * F_3)$	
e^{ϕ}	g_s	

Introduction

GCG and type II

Twist

Dual solutions Constraints

Heterotic

Conclusions

Examples of type IIB dual solutions

$\mathcal{M}_{ ext{internal}}$	$T^6 = T^2 \times T^4$	$\begin{array}{cccc} T^2 & \hookrightarrow & \mathcal{M} \\ & \downarrow \\ & T^4 \end{array}$
ds_6^2	$e^{-2A}\mathrm{d}x_{\mathcal{B}}^2 + e^{-2A}\mathrm{d}x_{\mathcal{F}}^2$	$e^{-2A}\mathrm{d}x_{\mathcal{B}}^2 + e^{2A}(\mathrm{d}x_{\mathcal{F}} + A)^2$
Sources, θ	$O3$, $\theta = \frac{\pi}{2}$	$O5 \ // \ \mathcal{F} \ , \ \theta = 0$
RR	$g_s F_5 = e^{4A} * d(e^{-4A}) , \ (F_3)$	
NSNS	$(H = g_s * F_3)$	
e^{ϕ}	g_s	

Introduction

GCG and type II

Twist

Dual solutions Constraints

Heterotic

Conclusions

Examples of type IIB dual solutions

$\mathcal{M}_{ ext{internal}}$	$T^6 = T^2 \times T^4$	$\begin{array}{cccc} T^2 & \hookrightarrow & \mathcal{M} \\ & \downarrow \\ & T^4 \end{array}$
ds_6^2	$e^{-2A}\mathrm{d}x_{\mathcal{B}}^2 + e^{-2A}\mathrm{d}x_{\mathcal{F}}^2$	$e^{-2A}\mathrm{d}x_{\mathcal{B}}^2 + e^{2A}(\mathrm{d}x_{\mathcal{F}} + A)^2$
Sources, θ	$O3$, $\theta = \frac{\pi}{2}$	$O5 \ // \ \mathcal{F} \ , \ \theta = 0$
RR	$g_s F_5 = e^{4A} * d(e^{-4A}) , \ (F_3)$	$g_s F_3 = -e^{-4A} * \mathrm{d}(e^{2A}J)$
NSNS	$(H = g_s * F_3)$	
e^{ϕ}	g_s	

Introduction

GCG and type II

Twist

Dual solutions Constraints

Heterotic

Conclusions

Examples of type IIB dual solutions

$\mathcal{M}_{ ext{internal}}$	$T^6 = T^2 \times T^4$	$\begin{array}{cccc} T^2 & \hookrightarrow & \mathcal{M} \\ & \downarrow \\ & T^4 \end{array}$
ds_6^2	$e^{-2A}\mathrm{d}x_{\mathcal{B}}^2 + e^{-2A}\mathrm{d}x_{\mathcal{F}}^2$	$e^{-2A}\mathrm{d}x_{\mathcal{B}}^2 + e^{2A}(\mathrm{d}x_{\mathcal{F}} + A)^2$
Sources, θ	$O3$, $\theta = \frac{\pi}{2}$	$O5 \ // \ \mathcal{F} \ , \ \theta = 0$
RR	$g_s F_5 = e^{4A} * d(e^{-4A}) , \ (F_3)$	$g_s F_3 = -e^{-4A} * \mathbf{d}(e^{2A}J)$
NSNS	$(H = g_s * F_3)$	0
e^{ϕ}	g_s	

Introduction

GCG and type II

Twist

Dual solutions Constraints

Heterotic

Conclusions

Examples of type IIB dual solutions

$\mathcal{M}_{ ext{internal}}$	$T^6 = T^2 \times T^4$	$\begin{array}{cccc} T^2 & \hookrightarrow & \mathcal{M} \\ & \downarrow \\ & T^4 \end{array}$
ds_6^2	$e^{-2A}\mathrm{d}x_{\mathcal{B}}^2 + e^{-2A}\mathrm{d}x_{\mathcal{F}}^2$	$e^{-2A}\mathrm{d}x_{\mathcal{B}}^2 + e^{2A}(\mathrm{d}x_{\mathcal{F}} + A)^2$
Sources, θ	$O3$, $\theta = \frac{\pi}{2}$	$O5 \ // \ \mathcal{F} \ , \ \theta = 0$
RR	$g_s F_5 = e^{4A} * d(e^{-4A}) , \ (F_3)$	$g_s F_3 = -e^{-4A} * \mathbf{d}(e^{2A}J)$
NSNS	$(H = g_s * F_3)$	0
e^{ϕ}	g_s	$g_s e^{2A}$

Introduction

Twist

Dual solutions Constraints Examples

Heterotic

Conclusions

Examples of type IIB dual solutions

Solutions:

$\mathcal{M}_{ ext{internal}}$	$T^6 = T^2 \times T^4$	$\begin{array}{cccc} T^2 & \hookrightarrow & \mathcal{M} \\ & \downarrow \\ & T^4 \end{array}$
ds_6^2	$e^{-2A}\mathrm{d}x_{\mathcal{B}}^2 + e^{-2A}\mathrm{d}x_{\mathcal{F}}^2$	$e^{-2A}\mathrm{d}x_{\mathcal{B}}^2 + e^{2A}(\mathrm{d}x_{\mathcal{F}} + A)^2$
Sources, θ	$O3$, $\theta = \frac{\pi}{2}$	$O5 \ // \ \mathcal{F} \ , \ \theta = 0$
RR	$g_s F_5 = e^{4A} * d(e^{-4A}) , \ (F_3)$	$g_s F_3 = -e^{-4A} * \mathbf{d}(e^{2A}J)$
NSNS	$(H = g_s * F_3)$	0
e^{ϕ}	g_s	$g_s e^{2A}$

Twist duality map?

Introduction

Twist

Dual solutions Constraints Examples

Heterotic

Conclusions

Examples of type IIB dual solutions

Solutions:

$\mathcal{M}_{ ext{internal}}$	$T^6 = T^2 \times T^4$	$\begin{array}{cccc} T^2 & \hookrightarrow & \mathcal{M} \\ & & \downarrow \\ & & T^4 \end{array}$
ds_6^2	$e^{-2A}\mathrm{d}x_{\mathcal{B}}^2 + e^{-2A}\mathrm{d}x_{\mathcal{F}}^2$	$e^{-2A}\mathrm{d}x_{\mathcal{B}}^2 + e^{2A}(\mathrm{d}x_{\mathcal{F}} + A)^2$
Sources, θ	$O3$, $\theta = \frac{\pi}{2}$	$O5 \; // \; \mathcal{F} \;, \; \theta = 0$
RR	$g_s F_5 = e^{4A} * d(e^{-4A}) , \ (F_3)$	$g_s F_3 = -e^{-4A} * \mathbf{d}(e^{2A}J)$
NSNS	$(H = g_s * F_3)$	0
e^{ϕ}	g_s	$g_s e^{2A}$

Twist duality map?

 $A_{\mathcal{B}} = 1_4$

Introduction

Twist

Dual solutions Constraints Examples

Heterotic

Conclusions

Examples of type IIB dual solutions

Solutions:

$\mathcal{M}_{ ext{internal}}$	$T^6 = T^2 \times T^4$	$\begin{array}{cccc} T^2 & \hookrightarrow & \mathcal{M} \\ & \downarrow \\ & T^4 \end{array}$
ds_6^2	$e^{-2A}\mathrm{d}x_{\mathcal{B}}^2 + e^{-2A}\mathrm{d}x_{\mathcal{F}}^2$	$e^{-2A}\mathrm{d}x_{\mathcal{B}}^2 + e^{2A}(\mathrm{d}x_{\mathcal{F}} + A)^2$
Sources, θ	$O3$, $\theta = \frac{\pi}{2}$	$O5 \; // \; \mathcal{F} \;, \; \theta = 0$
RR	$g_s F_5 = e^{4A} * d(e^{-4A}) , \ (F_3)$	$g_s F_3 = -e^{-4A} * \mathbf{d}(e^{2A}J)$
NSNS	$(H = g_s * F_3)$	0
e^{ϕ}	g_s	$g_s e^{2A}$

Twist duality map?

 $A_{\mathcal{B}} = 1_4 , \ A_{\mathcal{F}} = 1_2 \times e^{2A}$

Introduction

Twist

Dual solutions Constraints Examples

Heterotic

Conclusions

Examples of type $\overline{\text{IIB dual solutions}}$

Solutions:

$\mathcal{M}_{ ext{internal}}$	$T^6 = T^2 \times T^4$	$\begin{array}{cccc} T^2 & \hookrightarrow & \mathcal{M} \\ & & \downarrow \\ & & T^4 \end{array}$
ds_6^2	$e^{-2A}\mathrm{d}x_{\mathcal{B}}^2 + e^{-2A}\mathrm{d}x_{\mathcal{F}}^2$	$e^{-2A}\mathrm{d}x_{\mathcal{B}}^2 + e^{2A}(\mathrm{d}x_{\mathcal{F}} + A)^2$
Sources, θ	$O3$, $\theta = \frac{\pi}{2}$	$O5 \; // \; \mathcal{F} \;, \; \theta = 0$
RR	$g_s F_5 = e^{4A} * d(e^{-4A}) , \ (F_3)$	$g_s F_3 = -e^{-4A} * \mathbf{d}(e^{2A}J)$
NSNS	$(H = g_s * F_3)$	0
e^{ϕ}	g_s	$g_s e^{2A}$

Twist duality map?

$$A_{\mathcal{B}} = 1_4 \ , \ A_{\mathcal{F}} = 1_2 \times e^{2A} \ , \ A_{\mathcal{C}}{}^{I}{}_{\mu} = e^{2A} A^{I}_{\mu}$$

Introduction

Twist

Dual solutions Constraints Examples

Heterotic

Conclusions

Examples of type IIB dual solutions

Solutions:

$\mathcal{M}_{ ext{internal}}$	$T^6 = T^2 \times T^4$	$\begin{array}{cccc} T^2 & \hookrightarrow & \mathcal{M} \\ & \downarrow \\ & T^4 \end{array}$
ds_6^2	$e^{-2A}\mathrm{d}x_{\mathcal{B}}^2 + e^{-2A}\mathrm{d}x_{\mathcal{F}}^2$	$e^{-2A}\mathrm{d}x_{\mathcal{B}}^2 + e^{2A}(\mathrm{d}x_{\mathcal{F}} + A)^2$
Sources, θ	$O3$, $ heta=rac{\pi}{2}$	$O5 \; // \; \mathcal{F} \;, \; heta = 0$
RR	$g_s F_5 = e^{4A} * d(e^{-4A}) , \ (F_3)$	$g_s F_3 = -e^{-4A} * \mathbf{d}(e^{2A}J)$
NSNS	$(H = g_s * F_3)$	0
e^{ϕ}	g_s	$g_s e^{2A}$

Twist duality map?

$$A_{\mathcal{B}} = 1_4 , \ A_{\mathcal{F}} = 1_2 \times e^{2A} , \ A_{\mathcal{C}}{}^{I}{}_{\mu} = e^{2A} A^{I}_{\mu} , \ \theta^+_c = -\frac{\pi}{2}$$

Introduction GCG and typ

Twist

Dual solutions Constraints Examples

Heterotic

Conclusions

Examples of type IIB dual solutions

Solutions:

$\mathcal{M}_{ ext{internal}}$	$T^6 = T^2 \times T^4$	$\begin{array}{cccc} T^2 & \hookrightarrow & \mathcal{M} \\ & \downarrow \\ & T^4 \end{array}$
ds_6^2	$e^{-2A}\mathrm{d}x_{\mathcal{B}}^2 + e^{-2A}\mathrm{d}x_{\mathcal{F}}^2$	$e^{-2A}\mathrm{d}x_{\mathcal{B}}^2 + e^{2A}(\mathrm{d}x_{\mathcal{F}} + A)^2$
Sources, θ	$O3$, $\theta = \frac{\pi}{2}$	$O5 \; // \; \mathcal{F} \;, \; \theta = 0$
RR	$g_s F_5 = e^{4A} * d(e^{-4A}) , \ (F_3)$	$g_s F_3 = -e^{-4A} * \mathbf{d}(e^{2A}J)$
NSNS	$(H = g_s * F_3)$	0
e^{ϕ}	g_s	$g_s e^{2A}$

Twist duality map?

$$A_{\mathcal{B}} = 1_4 , \ A_{\mathcal{F}} = 1_2 \times e^{2A} , \ A_{\mathcal{C}}{}^{I}{}_{\mu} = e^{2A}A^{I}_{\mu} , \ \theta^+_c = -\frac{\pi}{2}$$

B-transform if needed...

Introduction GCG and type

Twist

Dual solutions Constraints Examples

Heterotic

Conclusions

Examples of type IIB dual solutions

Solutions:

$\mathcal{M}_{ ext{internal}}$	$T^6 = T^2 \times T^4$	$\begin{array}{cccc} T^2 & \hookrightarrow & \mathcal{M} \\ & \downarrow \\ & T^4 \end{array}$
ds_6^2	$e^{-2A}\mathrm{d}x_{\mathcal{B}}^2 + e^{-2A}\mathrm{d}x_{\mathcal{F}}^2$	$e^{-2A}\mathrm{d}x_{\mathcal{B}}^2 + e^{2A}(\mathrm{d}x_{\mathcal{F}} + A)^2$
Sources, θ	$O3$, $\theta = \frac{\pi}{2}$	$O5 \; // \; \mathcal{F} \;, \; \theta = 0$
RR	$g_s F_5 = e^{4A} * d(e^{-4A}) , \ (F_3)$	$g_s F_3 = -e^{-4A} * \mathbf{d}(e^{2A}J)$
NSNS	$(H = g_s * F_3)$	0
e^{ϕ}	g_s	$g_s e^{2A}$

Twist duality map?

$$A_{\mathcal{B}} = 1_4 , \ A_{\mathcal{F}} = 1_2 \times e^{2A} , \ A_{\mathcal{C}}{}^{I}{}_{\mu} = e^{2A} A^{I}_{\mu} , \ \theta^+_c = -\frac{\pi}{2}$$

 $B\operatorname{-transform}$ if needed...

 $\hookrightarrow \mathrm{Twist}\ \mathrm{duals}\ \checkmark$

Introduction GCG and type

Twist

Dual solutions Constraints Examples

Heterotic

Conclusions

Examples of type IIB dual solutions

Solutions:

$\mathcal{M}_{ ext{internal}}$	$T^6 = T^2 \times T^4$	$\begin{array}{cccc} T^2 & \hookrightarrow & \mathcal{M} \\ & \downarrow \\ & T^4 \end{array}$
ds_6^2	$e^{-2A}\mathrm{d}x_{\mathcal{B}}^2 + e^{-2A}\mathrm{d}x_{\mathcal{F}}^2$	$e^{-2A}\mathrm{d}x_{\mathcal{B}}^2 + e^{2A}(\mathrm{d}x_{\mathcal{F}} + A)^2$
Sources, θ	$O3$, $\theta = \frac{\pi}{2}$	$O5 \; // \; \mathcal{F} \;, \; \theta = 0$
RR	$g_s F_5 = e^{4A} * d(e^{-4A}) , \ (F_3)$	$g_s F_3 = -e^{-4A} * \mathbf{d}(e^{2A}J)$
NSNS	$(H = g_s * F_3)$	0
e^{ϕ}	g_s	$g_s e^{2A}$

Twist duality map?

$$A_{\mathcal{B}} = 1_4 , \ A_{\mathcal{F}} = 1_2 \times e^{2A} , \ A_{\mathcal{C}}{}^I{}_{\mu} = e^{2A} A^I_{\mu} , \ \theta^+_c = -\frac{\pi}{2}$$

B-transform if needed... \hookrightarrow Twist duals \checkmark T-duals only for very specific $H \neq 0$.

Introduction GCG and type

Twist

Dual solutions Constraints Examples

Heterotic

Conclusions

Examples of type IIB dual solutions

Solutions:

$\mathcal{M}_{ ext{internal}}$	$T^6 = T^2 \times T^4$	$egin{array}{ccc} T^2 & \hookrightarrow & \mathcal{M} & \ & \downarrow & \ & T^4 \end{array}$
ds_6^2	$e^{-2A}\mathrm{d}x_{\mathcal{B}}^2 + e^{-2A}\mathrm{d}x_{\mathcal{F}}^2$	$e^{-2A}\mathrm{d}x_{\mathcal{B}}^2 + e^{2A}(\mathrm{d}x_{\mathcal{F}} + A)^2$
Sources, θ	$O3$, $\theta = \frac{\pi}{2}$	$O5 \; // \; \mathcal{F} \;, \; heta = 0$
RR	$g_s F_5 = e^{4A} * d(e^{-4A}) , \ (F_3)$	$g_s F_3 = -e^{-4A} * \mathrm{d}(e^{2A}J)$
NSNS	$(H = g_s * F_3)$	0
e^{ϕ}	g_s	$g_s e^{2A}$

Twist duality map?

$$A_{\mathcal{B}} = 1_4 , \ A_{\mathcal{F}} = 1_2 \times e^{2A} , \ A_{\mathcal{C}}{}^{I}{}_{\mu} = e^{2A} A^{I}_{\mu} , \ \theta^+_c = -\frac{\pi}{2}$$

B-transform if needed... \hookrightarrow Twist duals \checkmark T-duals only for very specific $H \neq 0$.

Explicit non-trivial fibration solutions?

Introduction GCG and type

Twist

Dual solutions Constraints Examples

Heterotic

Conclusions

Examples of type IIB dual solutions

Solutions:

$\mathcal{M}_{ ext{internal}}$	$T^6 = T^2 \times T^4$	$egin{array}{ccc} T^2 & \hookrightarrow & \mathcal{M} & \ & \downarrow & \ & T^4 \end{array}$
ds_6^2	$e^{-2A}\mathrm{d}x_{\mathcal{B}}^2 + e^{-2A}\mathrm{d}x_{\mathcal{F}}^2$	$e^{-2A}\mathrm{d}x_{\mathcal{B}}^2 + e^{2A}(\mathrm{d}x_{\mathcal{F}} + A)^2$
Sources, θ	$O3$, $\theta = \frac{\pi}{2}$	$O5 \; // \; \mathcal{F} \;, \; \theta = 0$
RR	$g_s F_5 = e^{4A} * d(e^{-4A}) , \ (F_3)$	$g_s F_3 = -e^{-4A} * \mathbf{d}(e^{2A}J)$
NSNS	$(H = g_s * F_3)$	0
e^{ϕ}	g_s	$g_s e^{2A}$

Twist duality map?

$$A_{\mathcal{B}} = 1_4 , \ A_{\mathcal{F}} = 1_2 \times e^{2A} , \ A_{\mathcal{C}}{}^I{}_{\mu} = e^{2A} A^I_{\mu} , \ \theta^+_c = -\frac{\pi}{2}$$

B-transform if needed... \hookrightarrow Twist duals \checkmark T-duals only for very specific $H \neq 0$.

Explicit non-trivial fibration solutions? Among nilmanifolds: twisted tori, GCY...

Among 34 nilmanifolds, only 5 non-trivial T^2 bundles.

David		
ANDRIOT		
Introduction		
GCG and type II		
Dual solutions		
Examples		

	Among 54 minimannoids, only 5 non-trivial 1^- bundles.
David	They have different topologies:
ANDRIOT	
$\rm GCG$ and type $\rm II$	
Examples	

	Among 34 nilm	anifolds, only	5 non	-trivia	TT bi	indles.	
David	They have diffe	rent topologie	es:				
ANDRIOT			T^2	\hookrightarrow	\mathcal{M}		
Introduction	$n \ 4.4 \ , \ n \ 4.7$				\downarrow		
GCG and type II					T^4		
Twist							
Dual solutions							
Constraints Examples							
Heterotic							
Conclusions							

$n \ 4.4 \ , \ n \ 4.7$			T^2	\hookrightarrow	$\mathcal{M} \ \downarrow \ T^4$		
n 4.5	S^1	\hookrightarrow	$\mathcal{M}_1 \ \downarrow \ T^2$	×	S^1	\hookrightarrow	$\mathcal{M}_2 \ \downarrow \ T^2$

David ANDRIOT

Introduction

GCG and type II

Twist

Dual solution Constraints

Examples

Heterotic

Conclusions

			T^2	\hookrightarrow	\mathcal{M}		
$n \ 4.4 \ , \ n \ 4.7$					$\downarrow \\ T^4$		
	S^1	\hookrightarrow	\mathcal{M}_1		$\frac{1}{S^1}$	\hookrightarrow	\mathcal{M}_2
$n \ 4.5$			\downarrow	×			\downarrow
		T^2	T^2	11			12
$n \ 4.6$		T	,	\downarrow T^3	×	S^1	
				1			

$n \ 4.4 \ , \ n \ 4.7$			T^2	\hookrightarrow	$\mathcal{M} \ \downarrow \ T^4$		
n 4.5	S^1	\hookrightarrow	$\mathcal{M}_1 \\ \downarrow \\ T^2$	×	S^1	\hookrightarrow	$\mathcal{M}_2 \\ \downarrow \\ T^2$
$n \ 4.6$		T^2	\hookrightarrow	$\mathcal{M}_1 \ \downarrow \ T^3$	×	S^1	
n 5.1		S^1	\hookrightarrow	$\begin{array}{c} \mathcal{M}_1 \\ \downarrow \\ T^4 \end{array}$	×	S^1	

David ANDRIOT

Introduction

Twist

Dual solutio: Constraints

Conclusions

$n \ 4.4 \ , \ n \ 4.7$			T^2	\hookrightarrow	$\mathcal{M} \downarrow \mathcal{T}^4$		
	S^1	\hookrightarrow	\mathcal{M}_1		$\frac{T^{4}}{S^{1}}$	\hookrightarrow	\mathcal{M}_2
n 4.5			$\downarrow \\ T^2$	×			$\stackrel{\downarrow}{T^2}$
n 4.6		T^2	\hookrightarrow	\mathcal{M}_1	×	S^1	
		~1		T^3		~	
n 5.1		S^{1}	\hookrightarrow	\mathcal{M}_1	×	S^1	
1 1				T^4			

They have precise curvatures $F = d\alpha$.

Examples

n 4	.4 , n 4.7			T^2	\hookrightarrow	$\mathcal{M} \ \downarrow \ T^4$		
	n 4.5	S^1	\hookrightarrow	$\mathcal{M}_1 \\ \downarrow \\ T^2$	×	S^1	\hookrightarrow	$\mathcal{M}_2 \\ \downarrow \\ T^2$
	n 4.6		T^2	\hookrightarrow	$\mathcal{M}_1 \ \downarrow \ T^3$	×	S^1	
	n 5.1		S^1	\hookrightarrow	$\begin{array}{c} \overline{\mathcal{M}}_1 \\ \downarrow \\ T^4 \end{array}$	×	S^1	

They have precise curvatures $F = d\alpha$.

Examples

Possible to get solutions on these \mathcal{M} by twist from some T^6 solutions?

n 4.4 , n 4.7			T^2	\hookrightarrow	$\mathcal{M} \ \downarrow \ T^4$		
n 4.5	S^1	\hookrightarrow	$\mathcal{M}_1 \ \downarrow \ T^2$	×	S^1	\hookrightarrow	$\mathcal{M}_2 \ \downarrow \ T^2$
n 4.6		T^2		$\mathcal{M}_1 \ \downarrow \ T^3$	×	S^1	1
n 5.1		S^1	\hookrightarrow	$\begin{array}{c} \mathcal{M}_1 \\ \downarrow \\ T^4 \end{array}$	×	S^1	

They have precise curvatures $F = d\alpha$.

Examples

Possible to get solutions on these \mathcal{M} by twist from some T^6 solutions? \Rightarrow constraints on twist parameter α :

$n \ 4.4 \ , \ n \ 4.7$			T^2	\hookrightarrow	$\mathcal{M} \ \downarrow \ T^4$		
n 4.5	S^1	\hookrightarrow	$\mathcal{M}_1 \ \downarrow \ T^2$	×	S^1	\hookrightarrow	$\mathcal{M}_2 \ \downarrow \ T^2$
n 4.6		T^2	\hookrightarrow	$\mathcal{M}_1 \ \downarrow \ T^3$	×	S^1	
n 5.1		S^1	\hookrightarrow	$\begin{array}{c} \mathcal{M}_1 \\ \downarrow \\ T^4 \end{array}$	×	S^1	

They have precise curvatures $F = d\alpha$.

David

Examples

Possible to get solutions on these \mathcal{M} by twist from some T^6 solutions? \Rightarrow constraints on twist parameter α :

 $d\alpha \wedge J_{\mathcal{B}} = 0$, $d\alpha \wedge \omega_{\mathcal{B}} = 0$.

$n \ 4.4 \ , \ n \ 4.7$			T^2	\hookrightarrow	$\mathcal{M} \ \downarrow \ T^4$		
n 4.5	S^1	\hookrightarrow	$\mathcal{M}_1 \\ \downarrow \\ T^2$	×	S^1	\hookrightarrow	$\mathcal{M}_2 \\ \downarrow \\ T^2$
n 4.6		T^2	\hookrightarrow	$\mathcal{M}_1 \\ \downarrow \\ T^3$	×	S^1	
n 5.1		S^1	\hookrightarrow	$\begin{array}{c} \mathcal{M}_1 \\ \downarrow \\ T^4 \end{array}$	×	S^1	

They have precise curvatures $F = d\alpha$.

David

Examples

Possible to get solutions on these \mathcal{M} by twist from some T^6 solutions? \Rightarrow constraints on twist parameter α :

 $d\alpha \wedge J_{\mathcal{B}} = 0$, $d\alpha \wedge \omega_{\mathcal{B}} = 0$.

They can be satisfied on all these \mathcal{M}

$n \ 4.4 \ , \ n \ 4.7$			T^2	\hookrightarrow	$\mathcal{M} \ \downarrow \ T^4$		
n 4.5	S^1	\hookrightarrow	$\mathcal{M}_1 \\ \downarrow \\ T^2$	×	S^1	\hookrightarrow	$\mathcal{M}_2 \\ \downarrow \\ T^2$
n 4.6		T^2	\hookrightarrow	$\mathcal{M}_1 \ \downarrow \ T^3$	×	S^1	
n 5.1		S^1	\hookrightarrow	$\mathcal{M}_1 \\ \downarrow \\ T^4$	×	S^1	

They have precise curvatures $F = d\alpha$.

David

Examples

Possible to get solutions on these \mathcal{M} by twist from some T^6 solutions? \Rightarrow constraints on twist parameter α :

 $d\alpha \wedge J_{\mathcal{B}} = 0$, $d\alpha \wedge \omega_{\mathcal{B}} = 0$.

They can be satisfied on all these $\mathcal{M} \Rightarrow$ solutions found !

$n \ 4.4 \ , \ n \ 4.7$			T^2	\hookrightarrow	$\mathcal{M} \ \downarrow \ T^4$		
n 4.5	S^1	\hookrightarrow	$\mathcal{M}_1 \ \downarrow \ T^2$	×	S^1	\hookrightarrow	$\mathcal{M}_2 \ \downarrow \ T^2$
n 4.6		T^2	\hookrightarrow	$\mathcal{M}_1 \ \downarrow \ T^3$	×	S^1	
n 5.1		S^1	\hookrightarrow	$\mathcal{M}_1 \\ \downarrow \\ T^4$	×	S^1	

They have precise curvatures $F = d\alpha$.

Possible to get solutions on these \mathcal{M} by twist from some T^6 solutions? \Rightarrow constraints on twist parameter α :

$$d\alpha \wedge J_{\mathcal{B}} = 0$$
, $d\alpha \wedge \omega_{\mathcal{B}} = 0$.

They can be satisfied on all these $\mathcal{M} \Rightarrow$ solutions found !

Another solution on $n \ 3.14 : S^1 \hookrightarrow \mathcal{M} \to \mathcal{M}_1$.

David ANDRIOT

Introduction

GCG and type II

Twist

Dual solution Constraints Examples

Heterotic

Conclusions

$n \ 4.4 \ , \ n \ 4.7$			T^2	\hookrightarrow	$\begin{array}{c} \mathcal{M} \\ \downarrow \\ T^4 \end{array}$		
n 4.5	S^1	\hookrightarrow	$\mathcal{M}_1 \ \downarrow \ T^2$	×	S^1	\hookrightarrow	$\mathcal{M}_2 \ \downarrow \ T^2$
n 4.6		T^2	\hookrightarrow	$\mathcal{M}_1 \ \downarrow \ T^3$	×	S^1	
n 5.1		S^1	\hookrightarrow	$\begin{array}{c} \mathcal{M}_1 \\ \downarrow \\ T^4 \end{array}$	×	S^1	

They have precise curvatures $F = d\alpha$.

David

Examples

Possible to get solutions on these \mathcal{M} by twist from some T^6 solutions? \Rightarrow constraints on twist parameter α :

$$d\alpha \wedge J_{\mathcal{B}} = 0$$
, $d\alpha \wedge \omega_{\mathcal{B}} = 0$.

They can be satisfied on all these $\mathcal{M} \Rightarrow$ solutions found !

Another solution on $n \ 3.14 : S^1 \hookrightarrow \mathcal{M} \to \mathcal{M}_1$. No T^6 T-dual.

$n \ 4.4 \ , \ n \ 4.7$			T^2	\hookrightarrow	$\begin{array}{c} \mathcal{M} \\ \downarrow \\ T^4 \end{array}$		
n 4.5	S^1	\hookrightarrow	$\mathcal{M}_1 \ \downarrow \ T^2$	×	S^1	\hookrightarrow	$\mathcal{M}_2 \ \downarrow \ T^2$
n 4.6		T^2	\hookrightarrow	$\mathcal{M}_1 \ \downarrow \ T^3$	×	S^1	
n 5.1		S^1	\hookrightarrow	$\begin{array}{c} \mathcal{M}_1 \\ \downarrow \\ T^4 \end{array}$	×	S^1	

They have precise curvatures $F = d\alpha$.

David

Examples

Possible to get solutions on these \mathcal{M} by twist from some T^6 solutions? \Rightarrow constraints on twist parameter α :

$$d\alpha \wedge J_{\mathcal{B}} = 0$$
, $d\alpha \wedge \omega_{\mathcal{B}} = 0$.

They can be satisfied on all these $\mathcal{M} \Rightarrow$ solutions found !

Another solution on n 3.14 : $S^1 \hookrightarrow \mathcal{M} \to \mathcal{M}_1$. No T^6 T-dual. Obtained by a twist from n 4.6 !

Introduction

GCG and type II

Twist

Dual solutions

Heterotic

Solutions

Pure spinors, SUSY

Conclusions

Twisting heterotic flux backgrounds Mapping two solutions

Introduction

GCG and type II

Twist

Dual solutions

Heterotic

Solutions

Pure spinors, SUSY

Conclusions

Twisting heterotic flux backgrounds Mapping two solutions

SUSY conditions in the presence of $H \neq 0$ and Bianchi id.: Nucl. Phys. B 274 (1986) 253 by A. Strominger

- Introduction
- GCG and type II
- Twist
- Dual solutions
- Heterotic
- Solutions
- Pure spinors, SUSY
- Conclusions

Twisting heterotic flux backgrounds Mapping two solutions

SUSY conditions in the presence of $H \neq 0$ and Bianchi id.: Nucl. Phys. B 274 (1986) 253 by A. Strominger $H = dB + \frac{\alpha'}{4} [\omega_3(M) - tr\left(\mathcal{A} \wedge d\mathcal{A} - i\frac{2}{3}\mathcal{A}^3\right)],$

- Introduction
- GCG and type I
- Twist
- Dual solution
- Heterotic
- Solutions
- Pure spinors, SUSY
- Conclusions

Twisting heterotic flux backgrounds Mapping two solutions

SUSY conditions in the presence of $H \neq 0$ and Bianchi id.: Nucl. Phys. B 274 (1986) 253 by A. Strominger $H = \mathrm{d}B + \frac{\alpha'}{4} [\omega_3(M) - tr\left(\mathcal{A} \wedge d\mathcal{A} - i\frac{2}{3}\mathcal{A}^3\right)], \ \mathrm{d}H = \frac{\alpha'}{4} [tr(\mathcal{R} \wedge \mathcal{R}) - tr(\mathcal{F} \wedge \mathcal{F})].$

- Introduction GCG and type Twist
- Dual solution:
- Heterotic
- Solutions
- Pure spinors, SUSY
- Conclusions

Twisting heterotic flux backgrounds Mapping two solutions

SUSY conditions in the presence of $H \neq 0$ and Bianchi id.: $\begin{array}{c} \text{Nucl. Phys. B 274 (1986) 253 by A. Strominger} \\ H = \mathrm{d}B + \frac{\alpha'}{4} [\omega_3(M) - tr\left(\mathcal{A} \wedge d\mathcal{A} - i\frac{2}{3}\mathcal{A}^3\right)], \ \mathrm{d}H = \frac{\alpha'}{4} [tr(\mathcal{R} \wedge \mathcal{R}) - tr(\mathcal{F} \wedge \mathcal{F})]. \end{array}$

Non-trivial solutions were found later : hep-th/9908088 by K. Dasgupta, G. Rajesh, S. Sethi

- Introduction GCG and type Twist
- -- . . .
- Solutions
- Pure spinors, SUSY
- Conclusions

Twisting heterotic flux backgrounds Mapping two solutions

SUSY conditions in the presence of $H \neq 0$ and Bianchi id.: Nucl. Phys. B 274 (1986) 253 by A. Strominger $H = dB + \frac{\alpha'}{4} [\omega_3(M) - tr\left(\mathcal{A} \wedge d\mathcal{A} - i\frac{2}{3}\mathcal{A}^3\right)], dH = \frac{\alpha'}{4} [tr(\mathcal{R} \wedge \mathcal{R}) - tr(\mathcal{F} \wedge \mathcal{F})].$

Non-trivial solutions were found later : hep-th/9908088 by K. Dasgupta, G. Rajesh, S. Sethi Two $\mathcal{N} = 2$ solutions: (non)-Kähler transition via dualities.
- Introduction GCG and type Twist Dual solutions
- Heterotic
- Solutions
- Pure spinors, SUSY
- Conclusions

Twisting heterotic flux backgrounds Mapping two solutions

SUSY conditions in the presence of $H \neq 0$ and Bianchi id.: Nucl. Phys. B 274 (1986) 253 by A. Strominger $H = dB + \frac{\alpha'}{4} [\omega_3(M) - tr\left(\mathcal{A} \wedge d\mathcal{A} - i\frac{2}{3}\mathcal{A}^3\right)], dH = \frac{\alpha'}{4} [tr(\mathcal{R} \wedge \mathcal{R}) - tr(\mathcal{F} \wedge \mathcal{F})].$

$\mathcal{M}_{ ext{internal}}$	$T^2 \times K3$	

- Introduction GCG and type Twist
- Untorotio
- Solutions
- Pure spinors, SUSY
- Conclusions

Twisting heterotic flux backgrounds Mapping two solutions

SUSY conditions in the presence of $H \neq 0$ and Bianchi id.: Nucl. Phys. B 274 (1986) 253 by A. Strominger $H = dB + \frac{\alpha'}{4} [\omega_3(M) - tr\left(\mathcal{A} \wedge d\mathcal{A} - i\frac{2}{3}\mathcal{A}^3\right)], dH = \frac{\alpha'}{4} [tr(\mathcal{R} \wedge \mathcal{R}) - tr(\mathcal{F} \wedge \mathcal{F})].$

$\mathcal{M}_{ ext{internal}}$	$T^2 \times K3$	
ds_6^2	$e^{2\phi}\mathrm{d}s^2_{\mathcal{B}} + \mathrm{d}z ^2$	

- Introduction GCG and type Twist
- Untorotio
- Solutions
- Pure spinors, SUSY
- Conclusions

Twisting heterotic flux backgrounds Mapping two solutions

SUSY conditions in the presence of $H \neq 0$ and Bianchi id.: Nucl. Phys. B 274 (1986) 253 by A. Strominger $H = dB + \frac{\alpha'}{4} [\omega_3(M) - tr\left(\mathcal{A} \wedge d\mathcal{A} - i\frac{2}{3}\mathcal{A}^3\right)], dH = \frac{\alpha'}{4} [tr(\mathcal{R} \wedge \mathcal{R}) - tr(\mathcal{F} \wedge \mathcal{F})].$

$\mathcal{M}_{ ext{internal}}$	$T^2 \times K3$	
ds_6^2	$e^{2\phi}\mathrm{d}s^2_{\mathcal{B}} + \mathrm{d}z ^2$	
e^{ϕ}	e^{ϕ}	

- Introduction GCG and type Twist
- Untorotio
- Solutions
- Pure spinors, SUSY
- Conclusions

Twisting heterotic flux backgrounds Mapping two solutions

SUSY conditions in the presence of $H \neq 0$ and Bianchi id.: Nucl. Phys. B 274 (1986) 253 by A. Strominger $H = dB + \frac{\alpha'}{4} [\omega_3(M) - tr\left(\mathcal{A} \wedge d\mathcal{A} - i\frac{2}{3}\mathcal{A}^3\right)], dH = \frac{\alpha'}{4} [tr(\mathcal{R} \wedge \mathcal{R}) - tr(\mathcal{F} \wedge \mathcal{F})].$

$\mathcal{M}_{ ext{internal}}$	$T^2 \times K3$	
ds_6^2	$e^{2\phi}\mathrm{d}s^2_{\mathcal{B}} + \mathrm{d}z ^2$	
e^{ϕ}	e^{ϕ}	
B-field	0	

- Introduction GCG and type Twist
- Heterotic
- Solutions
- Pure spinors, SUSY
- Conclusions

Twisting heterotic flux backgrounds Mapping two solutions

SUSY conditions in the presence of $H \neq 0$ and Bianchi id.: Nucl. Phys. B 274 (1986) 253 by A. Strominger $H = dB + \frac{\alpha'}{4} [\omega_3(M) - tr\left(\mathcal{A} \wedge d\mathcal{A} - i\frac{2}{3}\mathcal{A}^3\right)], dH = \frac{\alpha'}{4} [tr(\mathcal{R} \wedge \mathcal{R}) - tr(\mathcal{F} \wedge \mathcal{F})].$

$\mathcal{M}_{ ext{internal}}$	$T^2 \times K3$	
ds_6^2	$e^{2\phi}\mathrm{d}s^2_{\mathcal{B}} + \mathrm{d}z ^2$	
e^{ϕ}	e^{ϕ}	
B-field	0	
Gauge field \mathcal{F}	$\mathcal{F} \neq 0$ on \mathcal{B}	

- Introduction GCG and type Twist
- TT-t---ti-
- Solutions
- Pure spinors, SUSY
- Conclusions

Twisting heterotic flux backgrounds Mapping two solutions

SUSY conditions in the presence of $H \neq 0$ and Bianchi id.: Nucl. Phys. B 274 (1986) 253 by A. Strominger $H = dB + \frac{\alpha'}{4} [\omega_3(M) - tr\left(\mathcal{A} \wedge d\mathcal{A} - i\frac{2}{3}\mathcal{A}^3\right)], dH = \frac{\alpha'}{4} [tr(\mathcal{R} \wedge \mathcal{R}) - tr(\mathcal{F} \wedge \mathcal{F})].$

$\mathcal{M}_{ ext{internal}}$	$T^2 \times K3$	T^2	\hookrightarrow	$\mathcal{M} \ \downarrow \ K3$
ds_6^2	$e^{2\phi}\mathrm{d}s^2_\mathcal{B} + \mathrm{d}z ^2$			
e^{ϕ}	e^{ϕ}			
B-field	0			
Gauge field \mathcal{F}	$\mathcal{F} \neq 0$ on \mathcal{B}			

- Introduction GCG and type Twist
-
- Solutions
- Pure spinors, SUSY
- Conclusions

Twisting heterotic flux backgrounds Mapping two solutions

SUSY conditions in the presence of $H \neq 0$ and Bianchi id.: Nucl. Phys. B 274 (1986) 253 by A. Strominger $H = dB + \frac{\alpha'}{4} [\omega_3(M) - tr\left(\mathcal{A} \wedge d\mathcal{A} - i\frac{2}{3}\mathcal{A}^3\right)], dH = \frac{\alpha'}{4} [tr(\mathcal{R} \wedge \mathcal{R}) - tr(\mathcal{F} \wedge \mathcal{F})].$

$\mathcal{M}_{ ext{internal}}$	$T^2 \times K3$	$\begin{array}{cccc} T^2 & \hookrightarrow & \mathcal{M} \\ & \downarrow \\ & K3 \end{array}$
ds_6^2	$e^{2\phi}\mathrm{d}s^2_{\mathcal{B}} + \mathrm{d}z ^2$	$e^{2\phi} \mathrm{d}s^2_{\mathcal{B}} + \mathrm{d}z + \alpha ^2$
e^{ϕ}	e^{ϕ}	
B-field	0	
Gauge field \mathcal{F}	$\mathcal{F} \neq 0$ on \mathcal{B}	

- Introduction GCG and type Twist
- TT-t---ti-
- Solutions
- Pure spinors, SUSY
- Conclusions

Twisting heterotic flux backgrounds Mapping two solutions

SUSY conditions in the presence of $H \neq 0$ and Bianchi id.: Nucl. Phys. B 274 (1986) 253 by A. Strominger $H = dB + \frac{\alpha'}{4} [\omega_3(M) - tr\left(\mathcal{A} \wedge d\mathcal{A} - i\frac{2}{3}\mathcal{A}^3\right)], dH = \frac{\alpha'}{4} [tr(\mathcal{R} \wedge \mathcal{R}) - tr(\mathcal{F} \wedge \mathcal{F})].$

$\mathcal{M}_{ ext{internal}}$	$T^2 \times K3$	$egin{array}{ccc} T^2 & \hookrightarrow & \mathcal{M} & \ & \downarrow & \ & K3 & \end{array}$
ds_6^2	$e^{2\phi}\mathrm{d}s^2_{\mathcal{B}} + \mathrm{d}z ^2$	$e^{2\phi}\mathrm{d}s^2_{\mathcal{B}} + \mathrm{d}z + \alpha ^2$
e^{ϕ}	e^{ϕ}	e^{ϕ}
B-field	0	
Gauge field \mathcal{F}	$\mathcal{F} \neq 0$ on \mathcal{B}	

- Introduction GCG and type Twist
- Solutions
- Pure spinors, SUS
- Conclusions

Twisting heterotic flux backgrounds Mapping two solutions

SUSY conditions in the presence of $H \neq 0$ and Bianchi id.: Nucl. Phys. B 274 (1986) 253 by A. Strominger $H = dB + \frac{\alpha'}{4} [\omega_3(M) - tr\left(\mathcal{A} \wedge d\mathcal{A} - i\frac{2}{3}\mathcal{A}^3\right)], dH = \frac{\alpha'}{4} [tr(\mathcal{R} \wedge \mathcal{R}) - tr(\mathcal{F} \wedge \mathcal{F})].$

$\mathcal{M}_{ ext{internal}}$	$T^2 \times K3$	$\begin{array}{cccc} T^2 & \hookrightarrow & \mathcal{M} \\ & \downarrow \\ & K3 \end{array}$
ds_6^2	$e^{2\phi}\mathrm{d}s^2_{\mathcal{B}} + \mathrm{d}z ^2$	$e^{2\phi} \mathrm{d}s^2_{\mathcal{B}} + \mathrm{d}z + \alpha ^2$
e^{ϕ}	e^{ϕ}	e^{ϕ}
B-field	0	$B = \operatorname{Re}(\alpha \wedge d\overline{z})$
Gauge field \mathcal{F}	$\mathcal{F} \neq 0$ on \mathcal{B}	

- Introduction GCG and type Twist
- TT-t---ti-
- Solutions
- Pure spinors, SUSY
- Conclusions

Twisting heterotic flux backgrounds Mapping two solutions

SUSY conditions in the presence of $H \neq 0$ and Bianchi id.: Nucl. Phys. B 274 (1986) 253 by A. Strominger $H = dB + \frac{\alpha'}{4} [\omega_3(M) - tr\left(\mathcal{A} \wedge d\mathcal{A} - i\frac{2}{3}\mathcal{A}^3\right)], dH = \frac{\alpha'}{4} [tr(\mathcal{R} \wedge \mathcal{R}) - tr(\mathcal{F} \wedge \mathcal{F})].$

$\mathcal{M}_{ ext{internal}}$	$T^2 \times K3$	$egin{array}{ccc} T^2 & \hookrightarrow & \mathcal{M} & \ & \downarrow & \ & K3 & \end{array}$
ds_6^2	$e^{2\phi}\mathrm{d}s^2_\mathcal{B} + \mathrm{d}z ^2$	$e^{2\phi}\mathrm{d}s^2_{\mathcal{B}} + \mathrm{d}z + \alpha ^2$
e^{ϕ}	e^{ϕ}	e^{ϕ}
B-field	0	$B = \operatorname{Re}(\alpha \wedge d\overline{z})$
Gauge field \mathcal{F}	$\mathcal{F} \neq 0$ on \mathcal{B}	$\mathcal{F} = 0$

- Introduction GCG and type Twist
- Heterotic
- Solutions
- Pure spinors, SUSY

Conclusions

Twisting heterotic flux backgrounds Mapping two solutions

SUSY conditions in the presence of $H \neq 0$ and Bianchi id.: Nucl. Phys. B 274 (1986) 253 by A. Strominger $H = dB + \frac{\alpha'}{4} [\omega_3(M) - tr\left(\mathcal{A} \wedge d\mathcal{A} - i\frac{2}{3}\mathcal{A}^3\right)], dH = \frac{\alpha'}{4} [tr(\mathcal{R} \wedge \mathcal{R}) - tr(\mathcal{F} \wedge \mathcal{F})].$

Non-trivial solutions were found later : hep-th/9908088 by K. Dasgupta, G. Rajesh, S. Sethi Two $\mathcal{N} = 2$ solutions: (non)-Kähler transition via dualities.

$\mathcal{M}_{ ext{internal}}$	$T^2 \times K3$	$egin{array}{ccc} T^2 & \hookrightarrow & \mathcal{M} & \ & \downarrow & \ & K3 & \end{array}$
ds_6^2	$e^{2\phi}\mathrm{d}s^2_{\mathcal{B}} + \mathrm{d}z ^2$	$e^{2\phi}\mathrm{d}s^2_{\mathcal{B}} + \mathrm{d}z + \alpha ^2$
e^{ϕ}	e^{ϕ}	e^{ϕ}
B-field	0	$B = \operatorname{Re}(\alpha \wedge d\overline{z})$
Gauge field \mathcal{F}	$\mathcal{F} \neq 0$ on \mathcal{B}	$\mathcal{F} = 0$

Twist map? Only needs connection !

- Introduction GCG and type Twist Dual solutions
- Heterotic
- Solutions
- Pure spinors, SUSY

Conclusions

Twisting heterotic flux backgrounds Mapping two solutions

SUSY conditions in the presence of $H \neq 0$ and Bianchi id.: Nucl. Phys. B 274 (1986) 253 by A. Strominger $H = dB + \frac{\alpha'}{4} [\omega_3(M) - tr\left(\mathcal{A} \wedge d\mathcal{A} - i\frac{2}{3}\mathcal{A}^3\right)], dH = \frac{\alpha'}{4} [tr(\mathcal{R} \wedge \mathcal{R}) - tr(\mathcal{F} \wedge \mathcal{F})].$

Non-trivial solutions were found later : hep-th/9908088 by K. Dasgupta, G. Rajesh, S. Sethi Two $\mathcal{N} = 2$ solutions: (non)-Kähler transition via dualities.

$\mathcal{M}_{ ext{internal}}$	$T^2 \times K3$	$egin{array}{ccc} T^2 & \hookrightarrow & \mathcal{M} & \ & \downarrow & \ & K3 & \end{array}$
ds_6^2	$e^{2\phi}\mathrm{d}s^2_\mathcal{B} + \mathrm{d}z ^2$	$e^{2\phi}\mathrm{d}s^2_\mathcal{B} + \mathrm{d}z + \alpha ^2$
e^{ϕ}	e^{ϕ}	e^{ϕ}
B-field	0	$B = \operatorname{Re}(\alpha \wedge d\overline{z})$
Gauge field \mathcal{F}	$\mathcal{F} \neq 0 \text{ on } \mathcal{B}$	$\mathcal{F} = 0$

Twist map? Only needs connection !

- Introduction GCG and type Twist
- Heterotic
- Solutions
- Pure spinors, SUSY

Conclusions

Twisting heterotic flux backgrounds Mapping two solutions

SUSY conditions in the presence of $H \neq 0$ and Bianchi id.: Nucl. Phys. B 274 (1986) 253 by A. Strominger $H = dB + \frac{\alpha'}{4} [\omega_3(M) - tr\left(\mathcal{A} \wedge d\mathcal{A} - i\frac{2}{3}\mathcal{A}^3\right)], dH = \frac{\alpha'}{4} [tr(\mathcal{R} \wedge \mathcal{R}) - tr(\mathcal{F} \wedge \mathcal{F})].$

Non-trivial solutions were found later : hep-th/9908088 by K. Dasgupta, G. Rajesh, S. Sethi Two $\mathcal{N} = 2$ solutions: (non)-Kähler transition via dualities.

$\mathcal{M}_{ ext{internal}}$	$T^2 \times K3$	$egin{array}{ccc} T^2 & \hookrightarrow & \mathcal{M} & \ & \downarrow & \ & K3 & \end{array}$
ds_6^2	$e^{2\phi}\mathrm{d}s^2_\mathcal{B} + \mathrm{d}z ^2$	$e^{2\phi}\mathrm{d}s^2_{\mathcal{B}} + \mathrm{d}z + \alpha ^2$
e^{ϕ}	e^{ϕ}	e^{ϕ}
B-field	0	$B = \operatorname{Re}(\alpha \wedge d\overline{z})$
Gauge field \mathcal{F}	$\mathcal{F} \neq 0$ on \mathcal{B}	$\mathcal{F} = 0$

Twist map? Only needs connection !

- Introduction GCG and type Twist Dual solutions
- Heterotic
- Solutions
- Pure spinors, SUSY

Conclusions

Twisting heterotic flux backgrounds Mapping two solutions

SUSY conditions in the presence of $H \neq 0$ and Bianchi id.: Nucl. Phys. B 274 (1986) 253 by A. Strominger $H = dB + \frac{\alpha'}{4} [\omega_3(M) - tr\left(\mathcal{A} \wedge d\mathcal{A} - i\frac{2}{3}\mathcal{A}^3\right)], dH = \frac{\alpha'}{4} [tr(\mathcal{R} \wedge \mathcal{R}) - tr(\mathcal{F} \wedge \mathcal{F})].$

Non-trivial solutions were found later : hep-th/9908088 by K. Dasgupta, G. Rajesh, S. Sethi Two $\mathcal{N} = 2$ solutions: (non)-Kähler transition via dualities.

$\mathcal{M}_{ ext{internal}}$	$T^2 \times K3$	$egin{array}{ccc} T^2 & \hookrightarrow & \mathcal{M} & \ & \downarrow & \ & K3 & \end{array}$
ds_6^2	$e^{2\phi}\mathrm{d}s^2_{\mathcal{B}} + \mathrm{d}z ^2$	$e^{2\phi} \mathrm{d}s^2_{\mathcal{B}} + \mathrm{d}z + \alpha ^2$
e^{ϕ}	e^{ϕ}	e^{ϕ}
B-field	0	$B = \operatorname{Re}(\alpha \wedge d\overline{z})$
Gauge field \mathcal{F}	$\mathcal{F} \neq 0$ on \mathcal{B}	$\mathcal{F} = 0$

Twist map? Only needs connection ! No need of B-transform !

- Introduction GCG and type Twist Dual solutions
- Heterotic
- Solutions
- Pure spinors, SUSY

Conclusions

Twisting heterotic flux backgrounds Mapping two solutions

SUSY conditions in the presence of $H \neq 0$ and Bianchi id.: Nucl. Phys. B 274 (1986) 253 by A. Strominger $H = \mathrm{d}B + \frac{\alpha'}{4} [\omega_3(M) - tr\left(\mathcal{A} \wedge d\mathcal{A} - i\frac{2}{3}\mathcal{A}^3\right)], \ \mathrm{d}H = \frac{\alpha'}{4} [tr(\mathcal{R} \wedge \mathcal{R}) - tr(\mathcal{F} \wedge \mathcal{F})].$

Non-trivial solutions were found later : hep-th/9908088 by K. Dasgupta, G. Rajesh, S. Sethi Two $\mathcal{N} = 2$ solutions: (non)-Kähler transition via dualities.

$\mathcal{M}_{ ext{internal}}$	$T^2 \times K3$	$egin{array}{ccc} T^2 & \hookrightarrow & \mathcal{M} & \ & \downarrow & \ & K3 & \end{array}$
ds_6^2	$e^{2\phi}\mathrm{d}s^2_{\mathcal{B}} + \mathrm{d}z ^2$	$e^{2\phi} \mathrm{d}s_{\mathcal{B}}^2 + \mathrm{d}z + \alpha ^2$
e^{ϕ}	e^{ϕ}	e^{ϕ}
B-field	0	$B = \operatorname{Re}(\alpha \wedge d\overline{z})$
Gauge field \mathcal{F}	$\mathcal{F} \neq 0$ on \mathcal{B}	$\mathcal{F} = 0$

Twist map? Only needs connection ! No need of *B*-transform ! $H' = i(\partial - \overline{\partial})J' = (\partial - \overline{\partial})(\dots) + d\left(\operatorname{Re}(\alpha \wedge d\overline{z})\right) \ .$

- Introduction GCG and type Twist Dual solutions
- Heterotic
- Solutions
- Pure spinors, SUSY

Conclusions

Twisting heterotic flux backgrounds Mapping two solutions

SUSY conditions in the presence of $H \neq 0$ and Bianchi id.: Nucl. Phys. B 274 (1986) 253 by A. Strominger $H = dB + \frac{\alpha'}{4} [\omega_3(M) - tr\left(\mathcal{A} \wedge d\mathcal{A} - i\frac{2}{3}\mathcal{A}^3\right)], dH = \frac{\alpha'}{4} [tr(\mathcal{R} \wedge \mathcal{R}) - tr(\mathcal{F} \wedge \mathcal{F})].$

Non-trivial solutions were found later : hep-th/9908088 by K. Dasgupta, G. Rajesh, S. Sethi Two $\mathcal{N} = 2$ solutions: (non)-Kähler transition via dualities.

$\mathcal{M}_{ ext{internal}}$	$T^2 \times K3$	$egin{array}{ccc} T^2 & \hookrightarrow & \mathcal{M} & \ & \downarrow & \ & K3 & \end{array}$
ds_6^2	$e^{2\phi}\mathrm{d}s^2_{\mathcal{B}} + \mathrm{d}z ^2$	$e^{2\phi} \mathrm{d}s_{\mathcal{B}}^2 + \mathrm{d}z + \alpha ^2$
e^{ϕ}	e^{ϕ}	e^{ϕ}
B-field	0	$B = \operatorname{Re}(\alpha \wedge d\overline{z})$
Gauge field \mathcal{F}	$\mathcal{F} \neq 0$ on \mathcal{B}	$\mathcal{F} = 0$

Twist map? Only needs connection ! No need of B-transform !

$$H' = i(\partial - \overline{\partial})J' = (\partial - \overline{\partial})(\dots) + d(\operatorname{Re}(\alpha \wedge d\overline{z}))$$
.

Transform the gauge field? Included in H, but...

- Introduction GCG and type Twist
- TT
- Solutions
- Pure spinors, SUSY

Conclusions

Twisting heterotic flux backgrounds Mapping two solutions

SUSY conditions in the presence of $H \neq 0$ and Bianchi id.: Nucl. Phys. B 274 (1986) 253 by A. Strominger $H = dB + \frac{\alpha'}{4} [\omega_3(M) - tr\left(\mathcal{A} \wedge d\mathcal{A} - i\frac{2}{3}\mathcal{A}^3\right)], dH = \frac{\alpha'}{4} [tr(\mathcal{R} \wedge \mathcal{R}) - tr(\mathcal{F} \wedge \mathcal{F})].$

Non-trivial solutions were found later : hep-th/9908088 by K. Dasgupta, G. Rajesh, S. Sethi Two $\mathcal{N} = 2$ solutions: (non)-Kähler transition via dualities.

$\mathcal{M}_{ ext{internal}}$	$T^2 \times K3$	$egin{array}{ccc} T^2 & \hookrightarrow & \mathcal{M} & \ & \downarrow & \ & K3 & \end{array}$
ds_6^2	$e^{2\phi}\mathrm{d}s^2_{\mathcal{B}} + \mathrm{d}z ^2$	$e^{2\phi} \mathrm{d}s_{\mathcal{B}}^2 + \mathrm{d}z + \alpha ^2$
e^{ϕ}	e^{ϕ}	e^{ϕ}
B-field	0	$B = \operatorname{Re}(\alpha \wedge d\overline{z})$
Gauge field \mathcal{F}	$\mathcal{F} \neq 0$ on \mathcal{B}	$\mathcal{F} = 0$

Twist map? Only needs connection ! No need of B-transform !

$$H' = i(\partial - \overline{\partial})J' = (\partial - \overline{\partial})(\dots) + d(\operatorname{Re}(\alpha \wedge d\overline{z}))$$

Transform the gauge field? Included in H, but... Extend $T \oplus T^*$ with gauge bundle, apply an O(d+16, d+16)...

Introduction

GCG and type II

Twist

Dual solutions

Heterotic

Solutions

Pure spinors, SUSY

Conclusions

Constructing GCG pure spinors and SUSY conditions

Introduction

GCG and type II

Twist

Dual solutions

Heterotic

Solutions

Pure spinors, SUSY

Conclusions

Constructing GCG pure spinors and SUSY conditions

For heterotic: no GCG construction

Introduction

GCG and type II

Twist

Dual solutions

Heterotic

Solutions

Pure spinors, SUSY

Conclusions

Constructing GCG pure spinors and SUSY conditions

For heterotic: no GCG construction \Rightarrow first try to do it !

Introduction

GCG and type II

Twist

Dual solutions

Heterotic

Solutions

Pure spinors, SUSY

Conclusions

Constructing GCG pure spinors and SUSY conditions

For heterotic: no GCG construction \Rightarrow first try to do it ! \hookrightarrow construct pure spinors, twist them; SUSY conditions.

Introduction

GCG and type I

Twist

Dual solutions

Heterotic

Solutions

Pure spinors, SUSY

Conclusions

Constructing GCG pure spinors and SUSY conditions

For heterotic: no GCG construction \Rightarrow first try to do it ! \hookrightarrow construct pure spinors, twist them; SUSY conditions. $\mathcal{N}_{10D} = 1 : \epsilon$

Introduction

GCG and type I

Twist

Dual solutions

Heterotic

Solutions

Pure spinors, SUSY

Conclusions

Constructing GCG pure spinors and SUSY conditions

For heterotic: no GCG construction \Rightarrow first try to do it ! \hookrightarrow construct pure spinors, twist them; SUSY conditions. $\mathcal{N}_{10D} = 1 : \epsilon \Rightarrow$ decomposition on 4D + 6D for $\mathcal{N}_{4D} = 1$:

$$\epsilon = \zeta_+ \otimes \eta_+ + \zeta_- \otimes \eta_-$$

Introduction GCG and type Twist

Dual solutions

Heterotic

Solutions

Pure spinors, SUSY

Conclusions

Constructing GCG pure spinors and SUSY conditions

For heterotic: no GCG construction \Rightarrow first try to do it ! \hookrightarrow construct pure spinors, twist them; SUSY conditions. $\mathcal{N}_{10D} = 1 : \epsilon \Rightarrow$ decomposition on 4D + 6D for $\mathcal{N}_{4D} = 1$:

$$\epsilon = \zeta_+ \otimes \eta_+ + \zeta_- \otimes \eta_-$$

Only one internal spinor η_+ (SU(3) structure)

Introduction GCG and type

Dual solution

Heterotic

Solutions

Pure spinors, SUSY

Conclusions

Constructing GCG pure spinors and SUSY conditions

For heterotic: no GCG construction \Rightarrow first try to do it ! \hookrightarrow construct pure spinors, twist them; SUSY conditions. $\mathcal{N}_{10D} = 1 : \epsilon \Rightarrow$ decomposition on 4D + 6D for $\mathcal{N}_{4D} = 1$:

$$\epsilon = \zeta_+ \otimes \eta_+ + \zeta_- \otimes \eta_-$$

Only one internal spinor η_+ (SU(3) structure) \Rightarrow Pure spinors:

$$\begin{array}{rcl} \Psi_+ &=& 8 \; e^{-\phi} \eta_+ \otimes \eta_+^\dagger = e^{-\phi} \; e^{-iJ} \; , \\ \Psi_- &=& 8 \; e^{-\phi} \eta_+ \otimes \eta_-^\dagger = -i e^{-\phi} \Omega_3 \; . \end{array}$$

Introduction GCG and type

Dual solutions

Heterotic

Solutions

Pure spinors, SUSY

Conclusions

Constructing GCG pure spinors and SUSY conditions

For heterotic: no GCG construction \Rightarrow first try to do it ! \hookrightarrow construct pure spinors, twist them; SUSY conditions. $\mathcal{N}_{10D} = 1 : \epsilon \Rightarrow$ decomposition on 4D + 6D for $\mathcal{N}_{4D} = 1$:

$$\epsilon = \zeta_+ \otimes \eta_+ + \zeta_- \otimes \eta_-$$

Only one internal spinor η_+ (SU(3) structure) \Rightarrow Pure spinors:

$$\begin{array}{rcl} \Psi_+ &=& 8 \; e^{-\phi} \eta_+ \otimes \eta_+^\dagger = e^{-\phi} \; e^{-iJ} \; , \\ \\ \Psi_- &=& 8 \; e^{-\phi} \eta_+ \otimes \eta_-^\dagger = -i e^{-\phi} \Omega_3 \; . \end{array}$$

As before, except that no *B*-field:

Introduction GCG and type Twist

Dual solutions

Heterotic

Solutions

Pure spinors, SUSY

Conclusions

Constructing GCG pure spinors and SUSY conditions

For heterotic: no GCG construction \Rightarrow first try to do it ! \hookrightarrow construct pure spinors, twist them; SUSY conditions. $\mathcal{N}_{10D} = 1 : \epsilon \Rightarrow$ decomposition on 4D + 6D for $\mathcal{N}_{4D} = 1$:

$$\epsilon = \zeta_+ \otimes \eta_+ + \zeta_- \otimes \eta_-$$

Only one internal spinor η_+ (SU(3) structure) \Rightarrow Pure spinors:

$$\begin{array}{rcl} \Psi_+ &=& 8 \, e^{-\phi} \eta_+ \otimes \eta_+^\dagger = e^{-\phi} \, e^{-iJ} \ , \\ \\ \Psi_- &=& 8 \, e^{-\phi} \eta_+ \otimes \eta_-^\dagger = -i e^{-\phi} \Omega_3 \ . \end{array}$$

As before, except that no B-field: B plays a very different role in heterotic string...

Introduction GCG and type Twist

Dual solutions

Heterotic

Solutions

Pure spinors, SUSY

Conclusions

Constructing GCG pure spinors and SUSY conditions

For heterotic: no GCG construction \Rightarrow first try to do it ! \hookrightarrow construct pure spinors, twist them; SUSY conditions. $\mathcal{N}_{10D} = 1 : \epsilon \Rightarrow$ decomposition on 4D + 6D for $\mathcal{N}_{4D} = 1$:

$$\epsilon = \zeta_+ \otimes \eta_+ + \zeta_- \otimes \eta_-$$

Only one internal spinor η_+ (SU(3) structure) \Rightarrow Pure spinors:

$$\begin{array}{rcl} \Psi_+ &=& 8 \; e^{-\phi} \eta_+ \otimes \eta_+^\dagger = e^{-\phi} \; e^{-iJ} \; , \\ \\ \Psi_- &=& 8 \; e^{-\phi} \eta_+ \otimes \eta_-^\dagger = -i e^{-\phi} \Omega_3 \; . \end{array}$$

As before, except that no *B*-field: *B* plays a very different role in heterotic string... $T \oplus T^*$ and not *E*...

Introduction GCG and type Twist

Dual solutions

Heterotic

Solutions

Pure spinors, SUSY

Conclusions

Constructing GCG pure spinors and SUSY conditions

For heterotic: no GCG construction \Rightarrow first try to do it ! \hookrightarrow construct pure spinors, twist them; SUSY conditions. $\mathcal{N}_{10D} = 1 : \epsilon \Rightarrow$ decomposition on 4D + 6D for $\mathcal{N}_{4D} = 1$:

$$\epsilon = \zeta_+ \otimes \eta_+ + \zeta_- \otimes \eta_-$$

Only one internal spinor η_+ (SU(3) structure) \Rightarrow Pure spinors:

$$\begin{array}{rcl} \Psi_+ &=& 8 \; e^{-\phi} \eta_+ \otimes \eta_+^\dagger = e^{-\phi} \; e^{-iJ} \; , \\ \\ \Psi_- &=& 8 \; e^{-\phi} \eta_+ \otimes \eta_-^\dagger = -i e^{-\phi} \Omega_3 \; . \end{array}$$

As before, except that no B-field: B plays a very different role in heterotic string...

 $T \oplus T^*$ and not E...

 \hookrightarrow The generalized vielbein \mathcal{E} point of view: more difficult.

Introduction GCG and type Twist

Dual solutions

Heterotic

Solutions

Pure spinors, SUSY

Conclusions

Constructing GCG pure spinors and SUSY conditions

For heterotic: no GCG construction \Rightarrow first try to do it ! \hookrightarrow construct pure spinors, twist them; SUSY conditions. $\mathcal{N}_{10D} = 1 : \epsilon \Rightarrow$ decomposition on 4D + 6D for $\mathcal{N}_{4D} = 1$:

$$\epsilon = \zeta_+ \otimes \eta_+ + \zeta_- \otimes \eta_-$$

Only one internal spinor η_+ (SU(3) structure) \Rightarrow Pure spinors:

$$\begin{array}{rcl} \Psi_+ &=& 8 \; e^{-\phi} \eta_+ \otimes \eta_+^\dagger = e^{-\phi} \; e^{-iJ} \; , \\ \\ \Psi_- &=& 8 \; e^{-\phi} \eta_+ \otimes \eta_-^\dagger = -i e^{-\phi} \Omega_3 \; . \end{array}$$

As before, except that no B-field: B plays a very different role in heterotic string...

 $T \oplus T^*$ and not E...

 \hookrightarrow The generalized vielbein ${\mathcal E}$ point of view: more difficult.

Twist Ψ_{\pm} : only connection transformation, no *B*-transform

Introduction GCG and type Twist

Dual solutions

Heterotic

Solutions

Pure spinors, SUSY

Conclusions

Constructing GCG pure spinors and SUSY conditions

For heterotic: no GCG construction \Rightarrow first try to do it ! \hookrightarrow construct pure spinors, twist them; SUSY conditions. $\mathcal{N}_{10D} = 1 : \epsilon \Rightarrow$ decomposition on 4D + 6D for $\mathcal{N}_{4D} = 1$:

$$\epsilon = \zeta_+ \otimes \eta_+ + \zeta_- \otimes \eta_-$$

Only one internal spinor η_+ (SU(3) structure) \Rightarrow Pure spinors:

$$\begin{array}{rcl} \Psi_+ &=& 8 \, e^{-\phi} \eta_+ \otimes \eta_+^\dagger = e^{-\phi} \, e^{-iJ} \ , \\ \\ \Psi_- &=& 8 \, e^{-\phi} \eta_+ \otimes \eta_-^\dagger = -i e^{-\phi} \Omega_3 \ . \end{array}$$

As before, except that no B-field: B plays a very different role in heterotic string...

 $T \oplus T^*$ and not E...

 \hookrightarrow The generalized vielbein ${\mathcal E}$ point of view: more difficult.

Twist Ψ_{\pm} : only connection transformation, no *B*-transform \hookrightarrow previous solutions mapped !

David ANDRIOT

Introduction

GCG and type II

Twist

Dual solutions

Heterotic

Solutions

Pure spinors, SUSY

Conclusions

$$\delta \psi_M = (D_M - \frac{1}{4}H_M)\epsilon = 0$$

$$\delta \lambda = (\partial \phi - \frac{1}{2}H)\epsilon = 0,$$

$$\delta \chi = 2 \mathcal{F}\epsilon = 0.$$

David ANDRIOT

Introduction

GCG and type II

Twist

Dual solutions

Heterotic

Solutions

Pure spinors, SUSY

Conclusions

$$\delta \psi_M = (D_M - \frac{1}{4}H_M)\epsilon = 0$$

$$\delta \lambda = (\partial \phi - \frac{1}{2}H)\epsilon = 0,$$

$$\delta \chi = 2 \mathcal{F}\epsilon = 0.$$

 \hookrightarrow decompose on 4D + 6D, and work out conditions for Ψ_{\pm}

David ANDRIOT

- Introduction
- GCG and type II
- Twist
- Dual solutions
- Untorotio
- Solutions
- Pure spinors, SUSY
- Conclusions

$$\delta \psi_M = (D_M - \frac{1}{4}H_M)\epsilon = 0$$

$$\delta \lambda = (\partial \phi - \frac{1}{2}H)\epsilon = 0,$$

$$\delta \chi = 2 \mathcal{F}\epsilon = 0.$$

 \hookrightarrow decompose on 4D + 6D, and work out conditions for Ψ_{\pm} Same as "type A" solutions of type IIB with F = 0, A = 0

David ANDRIOT

Introduction

GCG and type II

Twist

Dual solutions

Untorotio

Solutions

Pure spinors, SUSY

Conclusions

$$\begin{split} \delta\psi_M &= (D_M - \frac{1}{4}H_M)\epsilon = 0\\ \delta\lambda &= (\not \partial \phi - \frac{1}{2} \not H)\epsilon = 0\,,\\ \delta\chi &= 2 \not \mathcal{F}\epsilon = 0\,. \end{split}$$

 \hookrightarrow decompose on 4D + 6D, and work out conditions for Ψ_{\pm} Same as "type A" solutions of type IIB with F = 0, A = 0 \hookrightarrow worked out in

hep-th/0406137 by M. Graña, R. Minasian, M. Petrini, A. Tomasiello

David ANDRIOT

- Introduction
- GCG and type II
- Twist
- Dual solutions
- Heterotic
- Solutions
- Pure spinors, SUSY
- Conclusions

$$\begin{split} \delta\psi_M &= (D_M - \frac{1}{4}H_M)\epsilon = 0\\ \delta\lambda &= (\not \partial \phi - \frac{1}{2} \not H)\epsilon = 0\,,\\ \delta\chi &= 2 \not \mathcal{F}\epsilon = 0\,. \end{split}$$

 \hookrightarrow decompose on 4D + 6D, and work out conditions for Ψ_{\pm} Same as "type A" solutions of type IIB with F = 0, A = 0 \hookrightarrow worked out in

hep-th/0406137 by M. Graña, R. Minasian, M. Petrini, A. Tomasiello

Rewrite the result as a wedge product:

 $d\left(\Psi_{\pm}\right) = \pm \check{H} \wedge \Psi_{\pm}$
David ANDRIOT

- Introduction
- GCG and type I
- Twist
- Dual solutions
- Heterotic
- Solutions
- Pure spinors, SUSY
- Conclusions

$$\begin{split} \delta\psi_M &= (D_M - \frac{1}{4}H_M)\epsilon = 0\\ \delta\lambda &= (\not \partial \phi - \frac{1}{2} \not H)\epsilon = 0\,,\\ \delta\chi &= 2 \not \mathcal{F}\epsilon = 0\,. \end{split}$$

 \hookrightarrow decompose on 4D + 6D, and work out conditions for Ψ_{\pm} Same as "type A" solutions of type IIB with F = 0, A = 0 \hookrightarrow worked out in

hep-th/0406137 by M. Graña, R. Minasian, M. Petrini, A. Tomasiello

Rewrite the result as a wedge product:

$$d(\Psi_{\pm}) = \pm \check{H} \wedge \Psi_{\pm} = \pm \left[(H^{1,2} - H^{2,1}) - i(H^{0,1} - H^{1,0}) \right] \wedge \Psi_{\pm} .$$

David ANDRIOT

- Introduction
- Twist
- Dual solutions
- Heterotic
- Solutions
- Pure spinors, SUSY
- Conclusions

$$\delta \psi_M = (D_M - \frac{1}{4}H_M)\epsilon = 0$$

$$\delta \lambda = (\partial \phi - \frac{1}{2}H)\epsilon = 0,$$

$$\delta \chi = 2 \mathcal{F}\epsilon = 0.$$

 \hookrightarrow decompose on 4D + 6D, and work out conditions for Ψ_{\pm} Same as "type A" solutions of type IIB with F = 0, A = 0 \hookrightarrow worked out in

hep-th/0406137 by M. Graña, R. Minasian, M. Petrini, A. Tomasiello

Rewrite the result as a wedge product:

$$d(\Psi_{\pm}) = \pm \check{H} \wedge \Psi_{\pm} = \pm \left[(H^{1,2} - H^{2,1}) - i(H^{0,1} - H^{1,0}) \right] \wedge \Psi_{\pm} .$$

Decomposing on various degrees \Rightarrow usual SUSY conditions

David ANDRIOT

- Introduction GCG and typ
- Twist
- Dual solutions
- Heterotic
- Solutions
- Pure spinors, SUSY
- Conclusions

$$\delta \psi_M = (D_M - \frac{1}{4}H_M)\epsilon = 0$$

$$\delta \lambda = (\partial \phi - \frac{1}{2}H)\epsilon = 0,$$

$$\delta \chi = 2 \mathcal{F}\epsilon = 0.$$

 \hookrightarrow decompose on 4D + 6D, and work out conditions for Ψ_{\pm} Same as "type A" solutions of type IIB with F = 0, A = 0 \hookrightarrow worked out in

hep-th/0406137 by M. Graña, R. Minasian, M. Petrini, A. Tomasiello

Rewrite the result as a wedge product:

$$d(\Psi_{\pm}) = \pm \check{H} \wedge \Psi_{\pm} = \pm \left[(H^{1,2} - H^{2,1}) - i(H^{0,1} - H^{1,0}) \right] \wedge \Psi_{\pm} .$$

Decomposing on various degrees \Rightarrow usual SUSY conditions Equation for Ψ_- : integrability of complex structure

David ANDRIOT

- Introduction GCG and typ
- Twist
- Dual solutions
- Heterotic
- Solutions
- Pure spinors, SUSY
- Conclusions

$$\delta \psi_M = (D_M - \frac{1}{4}H_M)\epsilon = 0$$

$$\delta \lambda = (\partial \phi - \frac{1}{2}H)\epsilon = 0,$$

$$\delta \chi = 2 \mathcal{F}\epsilon = 0.$$

 \hookrightarrow decompose on 4D + 6D, and work out conditions for Ψ_{\pm} Same as "type A" solutions of type IIB with F = 0, A = 0 \hookrightarrow worked out in

hep-th/0406137 by M. Graña, R. Minasian, M. Petrini, A. Tomasiello $% \left({{{\rm{A}}_{{\rm{B}}}} \right)$

Rewrite the result as a wedge product:

$$d(\Psi_{\pm}) = \pm \check{H} \wedge \Psi_{\pm} = \pm \left[(H^{1,2} - H^{2,1}) - i(H^{0,1} - H^{1,0}) \right] \wedge \Psi_{\pm} .$$

Decomposing on various degrees \Rightarrow usual SUSY conditions Equation for Ψ_- : integrability of complex structure $\hookrightarrow \mathcal{M}_{internal}$ is complex (GCY).

David ANDRIOT

- Introduction GCG and type
- Twist
- Dual solutions
- Heterotic
- Solutions
- Pure spinors, SUSY
- Conclusions

$$\delta \psi_M = (D_M - \frac{1}{4}H_M)\epsilon = 0$$

$$\delta \lambda = (\partial \phi - \frac{1}{2}H)\epsilon = 0,$$

$$\delta \chi = 2 \mathcal{F}\epsilon = 0.$$

 \hookrightarrow decompose on 4D + 6D, and work out conditions for Ψ_{\pm} Same as "type A" solutions of type IIB with F = 0, A = 0 \hookrightarrow worked out in

hep-th/0406137 by M. Graña, R. Minasian, M. Petrini, A. Tomasiello

Rewrite the result as a wedge product:

$$d(\Psi_{\pm}) = \pm \check{H} \wedge \Psi_{\pm} = \pm \left[(H^{1,2} - H^{2,1}) - i(H^{0,1} - H^{1,0}) \right] \wedge \Psi_{\pm} .$$

Decomposing on various degrees \Rightarrow usual SUSY conditions Equation for Ψ_- : integrability of complex structure $\hookrightarrow \mathcal{M}_{internal}$ is complex (GCY).

Perform a twist: $\Psi'_{\pm} = O_c \Psi_{\pm}$

David ANDRIOT

- Introduction GCG and type
- Twist
- Dual solutions
- Heterotic
- Solutions
- Pure spinors, SUSY
- Conclusions

$$\delta \psi_M = (D_M - \frac{1}{4}H_M)\epsilon = 0$$

$$\delta \lambda = (\partial \phi - \frac{1}{2}H)\epsilon = 0,$$

$$\delta \chi = 2 \mathcal{F}\epsilon = 0.$$

 \hookrightarrow decompose on 4D + 6D, and work out conditions for Ψ_{\pm} Same as "type A" solutions of type IIB with F = 0, A = 0 \hookrightarrow worked out in

hep-th/0406137 by M. Graña, R. Minasian, M. Petrini, A. Tomasiello

Rewrite the result as a wedge product:

$$d(\Psi_{\pm}) = \pm \check{H} \wedge \Psi_{\pm} = \pm \left[(H^{1,2} - H^{2,1}) - i(H^{0,1} - H^{1,0}) \right] \wedge \Psi_{\pm} .$$

Decomposing on various degrees \Rightarrow usual SUSY conditions Equation for Ψ_- : integrability of complex structure $\hookrightarrow \mathcal{M}_{internal}$ is complex (GCY).

Perform a twist: $\Psi'_{\pm} = O_c \Psi_{\pm}$, check at least that

 $(\mathbf{d} \mp \check{H}' \wedge) (O_c \ \Psi_{\pm}) = 0$.

David ANDRIOT

- Introduction GCG and type
- Twist
- Dual solutions
- Heterotic
- Solutions
- Pure spinors, SUSY
- Conclusions

$$\delta \psi_M = (D_M - \frac{1}{4}H_M)\epsilon = 0$$

$$\delta \lambda = (\partial \phi - \frac{1}{2}H)\epsilon = 0,$$

$$\delta \chi = 2 \mathcal{F}\epsilon = 0.$$

 \hookrightarrow decompose on 4D + 6D, and work out conditions for Ψ_{\pm} Same as "type A" solutions of type IIB with F = 0, A = 0 \hookrightarrow worked out in

hep-th/0406137 by M. Graña, R. Minasian, M. Petrini, A. Tomasiello

Rewrite the result as a wedge product:

$$d(\Psi_{\pm}) = \pm \check{H} \wedge \Psi_{\pm} = \pm \left[(H^{1,2} - H^{2,1}) - i(H^{0,1} - H^{1,0}) \right] \wedge \Psi_{\pm} .$$

Decomposing on various degrees \Rightarrow usual SUSY conditions Equation for Ψ_- : integrability of complex structure $\hookrightarrow \mathcal{M}_{internal}$ is complex (GCY).

Perform a twist: $\Psi'_{\pm} = O_c \Psi_{\pm}$, check at least that

$$(\mathbf{d} \mp \check{H}' \wedge)(O_c \ \Psi_{\pm}) = 0$$
.

 \hookrightarrow constraints...

Introduction

GCG and type II

Twist

Dual solutions

Heterotic

Conclusions

- Introduction
- GCG and type II
- Twist
- Dual solutions
- Heterotic
- Conclusions

Conclusions

• GCG provides a mathematical characterization of $\mathcal{M}_{\mathrm{internal}}$ in the presence of fluxes.

Conclusions

David ANDRIOT

- Introduction
- GCG and type II
- Twist
- Dual solutions
- Heterotic
- Conclusions

- GCG provides a mathematical characterization of $\mathcal{M}_{\mathrm{internal}}$ in the presence of fluxes.
- GCG aspects:

Conclusions

David ANDRIOT

- Introduction
- GCG and type II
- Twist
- Dual solutions
- Heterotic
- Conclusions

- GCG provides a mathematical characterization of $\mathcal{M}_{\mathrm{internal}}$ in the presence of fluxes.
- GCG aspects: E, B-field

- Introduction
- GCG and type II
- Twist
- Dual solutions
- Heterotic
- Conclusions

- GCG provides a mathematical characterization of $\mathcal{M}_{\mathrm{internal}}$ in the presence of fluxes.
- GCG aspects: E, B-field, \mathcal{E}, Ψ_{\pm}

- Introduction
- GCG and type II
- Twist
- Dual solutions
- Heterotic
- Conclusions

- GCG provides a mathematical characterization of $\mathcal{M}_{internal}$ in the presence of fluxes.
- GCG aspects: E, B-field, \mathcal{E} , Ψ_{\pm} , action of O(d, d).

- Introduction
- GCG and type II
- Twist
- Dual solution
- Heterotic
- Conclusions

- GCG provides a mathematical characterization of $\mathcal{M}_{internal}$ in the presence of fluxes.
- GCG aspects: E, B-field, \mathcal{E} , Ψ_{\pm} , action of O(d, d).
- Twist transformation: provides a connection

- Introduction
- GCG and type II
- Twist
- Dual solutions
- Heterotic
- Conclusions

- GCG provides a mathematical characterization of $\mathcal{M}_{internal}$ in the presence of fluxes.
- GCG aspects: E, B-field, \mathcal{E} , Ψ_{\pm} , action of O(d, d).
- Twist transformation: provides a connection, transforms metric, dilaton, *B*-field.

- Introduction
- GCG and type II
- Twist
- Dual solutions
- Heterotic
- Conclusions

- GCG provides a mathematical characterization of $\mathcal{M}_{internal}$ in the presence of fluxes.
- GCG aspects: E, B-field, \mathcal{E} , Ψ_{\pm} , action of O(d, d).
- Twist transformation: provides a connection, transforms metric, dilaton, *B*-field.
- Generating new solutions: constraints

- Introduction
- GCG and type II
- Twist
- Dual solutions
- Heterotic
- Conclusions

- GCG provides a mathematical characterization of $\mathcal{M}_{internal}$ in the presence of fluxes.
- GCG aspects: E, B-field, \mathcal{E} , Ψ_{\pm} , action of O(d, d).
- Twist transformation: provides a connection, transforms metric, dilaton, *B*-field.
- Generating new solutions: constraints, action on RR (sectors mixing).

- Introduction
- GCG and type II
- Twist
- Dual solutions
- Heterotic
- Conclusions

- GCG provides a mathematical characterization of $\mathcal{M}_{internal}$ in the presence of fluxes.
- GCG aspects: E, B-field, \mathcal{E} , Ψ_{\pm} , action of O(d, d).
- Twist transformation: provides a connection, transforms metric, dilaton, *B*-field.
- Generating new solutions: constraints, action on RR (sectors mixing).
- Family of (non)-trivial $T^2 \times T^4$ bundles twist duals in IIB.

- Introduction
- GCG and type II
- Twist
- Dual solutions
- Heterotic
- Conclusions

- GCG provides a mathematical characterization of $\mathcal{M}_{internal}$ in the presence of fluxes.
- GCG aspects: E, B-field, \mathcal{E} , Ψ_{\pm} , action of O(d, d).
- Twist transformation: provides a connection, transforms metric, dilaton, *B*-field.
- Generating new solutions: constraints, action on RR (sectors mixing).
- Family of (non)-trivial $T^2 \times T^4$ bundles twist duals in IIB.
- (Non)-trivial $T^2 \times K3$ bundles a priori twist duals in het.

- Introduction
- GCG and type II
- Twist
- Dual solutions
- Heterotic
- Conclusions

- GCG provides a mathematical characterization of $\mathcal{M}_{internal}$ in the presence of fluxes.
- GCG aspects: E, B-field, \mathcal{E} , Ψ_{\pm} , action of O(d, d).
- Twist transformation: provides a connection, transforms metric, dilaton, *B*-field.
- Generating new solutions: constraints, action on RR (sectors mixing).
- Family of (non)-trivial $T^2 \times T^4$ bundles twist duals in IIB.
- (Non)-trivial $T^2 \times K3$ bundles a priori twist duals in het.
- GCG pure spinors on $T \oplus T^*$, not E.

- Introduction
- GCG and type II
- Twist
- Dual solutions
- Heterotic
- Conclusions

- GCG provides a mathematical characterization of $\mathcal{M}_{internal}$ in the presence of fluxes.
- GCG aspects: E, B-field, \mathcal{E} , Ψ_{\pm} , action of O(d, d).
- Twist transformation: provides a connection, transforms metric, dilaton, *B*-field.
- Generating new solutions: constraints, action on RR (sectors mixing).
- Family of (non)-trivial $T^2 \times T^4$ bundles twist duals in IIB.
- (Non)-trivial $T^2 \times K3$ bundles a priori twist duals in het.
- GCG pure spinors on $T \oplus T^*$, not E. SUSY conditions.

- Introduction
- GCG and type II
- Twist
- Dual solutions
- Heterotic
- Conclusions

- GCG provides a mathematical characterization of $\mathcal{M}_{internal}$ in the presence of fluxes.
- GCG aspects: E, B-field, \mathcal{E} , Ψ_{\pm} , action of O(d, d).
- Twist transformation: provides a connection, transforms metric, dilaton, *B*-field.
- Generating new solutions: constraints, action on RR (sectors mixing).
- Family of (non)-trivial $T^2 \times T^4$ bundles twist duals in IIB.
- (Non)-trivial $T^2 \times K3$ bundles a priori twist duals in het.
- GCG pure spinors on $T \oplus T^*$, not E. SUSY conditions.
- Open issues...