Bounds on 4D Conformal and Superconformal Field Theories

Outlook

David Simmons-Duffin

Harvard University

January 26, 2011

(with David Poland [arXiv:1009.2087])

Motivation

- Near-conformal dynamics could play a role in BSM physics!
 - Walking/Conformal Technicolor [Many people...]
 - Conformal Sequestering [Luty, Sundrum '01; Schmaltz, Sundrum '06]
 - Solution to $\mu/B\mu$ problem [Roy, Schmaltz '07; Murayama, Nomura, Poland '07]
 - Flavor Hierarchies [Georgi, Nelson, Manohar '83; Nelson, Strassler '00]
 - ► ...
- However, many of these ideas involve statements about operator dimensions that are difficult to check.
- In non-SUSY theories, hard to calculate anything! Lattice studies may be only hope.
- ► In N = 1 SCFTs, we actually know lots about chiral operators, but not much about non-chiral operators...

Outlook

Example: Nelson-Strassler Flavor Models ['00]

► Idea: Matter fields *T_i* have large anomalous dimensions under some CFT, flavor hierarchies generated dynamically!

 $W = T_1 \mathcal{O}_1 + T_2 \mathcal{O}_2 + y^{ij} T_i T_j H + \dots$

- Interactions of matter T_i with CFT operators \mathcal{O}_i are marginal
- Yukawa couplings y^{ij} are irrelevant, flow to zero at a rate controlled by dim T_i
- Since T_i are chiral, $\dim T_i = \frac{3}{2}R_{T_i}$
- Can write down lots of concrete models and then calculate dimensions using a-maximization! [Poland, DSD '09]

Outlook

Example: Nelson-Strassler Flavor Models ['00]

- Flavor violating soft-mass operators $K \sim \frac{1}{M_{pl}^2} X^{\dagger} X T_i^{\dagger} T_j$ also flow to zero, rate depends on $\dim T_i^{\dagger} T_j$
- Maybe can solve SUSY flavor problem? But no 4D tools to calculate dimensions...
- Can we say *anything* about $\dim T^{\dagger}T$, given $\dim T$?
- ▶ Recently Rattazzi, Rychkov, Tonni, Vichi [arXiv:0807.0004, arXiv:0905.2211] addressed a similar question in non-SUSY CFTs, deriving *bounds* on dim φ² as a function of dim φ...

Goals

Generalizing their methods, we'll compute

- Bounds on dimensions of nonchiral operators in SCFTs
- Bounds on central charges in general CFTs and SCFTs

Outline

1 CFT Review

- **2** Bounds from Crossing Relations
- **3** Superconformal Blocks
- **4** Bounds on CFTs and SCFTs

5 Outlook

Outline

1 CFT Review

- 2 Bounds from Crossing Relations
- **3** Superconformal Blocks
- **4** Bounds on CFTs and SCFTs
- **5** Outlook

CFT Review: Primary Operators

- ► In addition to Poincaré generators, a CFT has a dilatation generator D and special conformal generators K^a
- Primary operators $\mathcal{O}^{I}(0)$ are defined by the condition

 $[K^a, \mathcal{O}^I(0)] = 0$

(descendants obtained by acting with P^a)

- ▶ Primary 2-pt functions $\langle \mathcal{O}^I(x_1)\mathcal{O}^J(x_2)\rangle$ and 3-pt functions $\langle \phi(x_1)\phi(x_2)\mathcal{O}^I(x_3)\rangle$ fixed by conformal symmetry in terms of dimensions and spins, up to overall coefficients $\lambda_{\mathcal{O}}$
- Higher *n*-pt functions *not* fixed by conformal symmetry alone, but are determined once operator spectrum and 3-pt function coefficients λ_O are known...

CFT Review: Operator Product Expansion

Let ϕ be a scalar primary of dimension d in a 4D CFT:

$$\phi(x)\phi(0) = \sum_{\mathcal{O}\in\phi\times\phi} \lambda_{\mathcal{O}}C_I(x,P) \mathcal{O}^I(0) \quad (OPE)$$

- ► Sum runs over *primary* O's
- $\blacktriangleright~C_{I}(x,P)$ fixed by conformal symmetry $_{\rm [Dolan,~Osborn~'00]}$
- $\mathcal{O}^I = \mathcal{O}^{a_1...a_l}$ can be any spin-*l* Lorentz representation (traceless symmetric tensor) with l = 0, 2, ...
- Unitarity tells us that $\lambda_{\mathcal{O}}$ is real

CFT Review: Conformal Block Decomposition

Use OPE to evaluate 4-point function

$$\langle \phi(x_1)\phi(x_2)\phi(x_3)\phi(x_4) \rangle$$

$$= \sum_{\mathcal{O}\in\phi\times\phi} \lambda_{\mathcal{O}}^2 C_I(x_{12},\partial_2) C_J(x_{34},\partial_4) \langle \mathcal{O}^I(x_2)\mathcal{O}^J(x_4) \rangle$$

$$\equiv \frac{1}{x_{12}^{2d} x_{34}^{2d}} \sum_{\mathcal{O}\in\phi\times\phi} \lambda_{\mathcal{O}}^2 g_{\Delta,l}(u,v)$$

• $u = \frac{x_{12}^2 x_{34}^2}{x_{13}^2 x_{24}^2}$, $v = \frac{x_{14}^2 x_{23}^2}{x_{13}^2 x_{24}^2}$ conformally-invariant cross ratios. • $g_{\Delta,l}(u, v)$ conformal block ($\Delta = \dim \mathcal{O}$ and $l = \text{spin of } \mathcal{O}$)

CFT Review: Conformal Blocks

Explicit formula [Dolan, Osborn '00]

$$g_{\Delta,l}(u,v) = \frac{(-1)^l}{2^l} \frac{z\overline{z}}{z-\overline{z}} [k_{\Delta+l}(z)k_{\Delta-l-2}(\overline{z}) - z \leftrightarrow \overline{z}]$$

$$k_{\beta}(x) = x^{\beta/2} {}_2F_1(\beta/2, \beta/2, \beta; x),$$

where $u = z\overline{z}$ and $v = (1 - z)(1 - \overline{z})$.

- Similar expressions in other even dimensions, recursion relations known in odd dimensions
- Alternatively can be viewed as eigenfunctions of the quadratic casimir of the conformal group [Dolan, Osborn '03]

CFT Review: Crossing Relations

- ► Four-point function \langle \phi(x_1)\phi(x_2)\phi(x_3)\phi(x_4) \rangle is clearly symmetric under permutations of x_i
- After OPE, symmetry is non-manifest!
- Switching $x_1 \leftrightarrow x_3$ gives the "crossing relation":

$$\sum_{\mathcal{O}\in\phi\times\phi}\lambda_{\mathcal{O}}^{2}g_{\Delta,l}(u,v) = \left(\frac{u}{v}\right)^{d}\sum_{\mathcal{O}\in\phi\times\phi}\lambda_{\mathcal{O}}^{2}g_{\Delta,l}(v,u)$$
$$\sum_{2}\sum_{2}^{1}\underbrace{\mathcal{O}}_{3} = \sum_{2}\underbrace{2}_{2}\underbrace{\mathcal{O}}_{3}^{4}$$

- Other permutations give no new information
- $\lambda_{\mathcal{O}}^2$ positive by unitarity

Outline

1 CFT Review

2 Bounds from Crossing Relations

3 Superconformal Blocks

4 Bounds on CFTs and SCFTs

5 Outlook

Review: Method of Rattazzi et. al. [arXiv:0807.0004]

- ▶ Let's study the OPE coefficient of a particular $\mathcal{O}_0 \in \phi imes \phi$
- We can rewrite crossing relation as

$$F_{\Delta,l}(u,v) \equiv \frac{v^d g_{\Delta,l}(u,v) - u^d g_{\Delta,l}(v,u)}{u^d - v^d}.$$

Review: Method of Rattazzi et. al. [arXiv:0807.0004]

Idea: Find a linear functional $\boldsymbol{\alpha}$ such that

$$\begin{aligned} \alpha(F_{\Delta_0,l_0}) &= 1, \quad \text{and} \\ \alpha(F_{\Delta,l}) &\geq 0, \quad \text{for all other } \mathcal{O} \in \phi \times \phi. \end{aligned}$$

Applying to both sides:

$$\alpha \left(\lambda_{\mathcal{O}_0}^2 F_{\Delta_0, l_0} \right) = \alpha (1 - \sum_{\mathcal{O} \neq \mathcal{O}_0} \lambda_{\mathcal{O}}^2 F_{\Delta, l})$$

$$\lambda_{\mathcal{O}_0}^2 = \alpha (1) - \sum_{\mathcal{O} \neq \mathcal{O}_0} \lambda_{\mathcal{O}}^2 \alpha (F_{\Delta, l}) \leq \alpha (1)$$

since $\lambda_{\mathcal{O}}^2 \geq 0$ by unitarity.

Outlook

Review: Method of Rattazzi et. al. [arXiv:0807.0004]

- ▶ To make the bound $\lambda_{\mathcal{O}_0}^2 \leq \alpha(1)$ as strong as possible, can minimize $\alpha(1)$ subject to the constraints $\alpha(F_{\Delta_0,l_0}) = 1$ and $\alpha(F_{\Delta,l}) \geq 0$ ($\mathcal{O} \neq \mathcal{O}_0$).
- This is an infinite dimensional linear programming problem... to use known algorithms (e.g., simplex) we must make it finite
- Can take α to be linear combinations of derivatives at some point in z, z̄ space

$$\alpha: F(z,\overline{z}) \mapsto \sum_{m+n \le 2k} a_{mn} \partial_z^m \partial_{\overline{z}}^n F(1/2, 1/2)$$

- ▶ Discretize constraints to $\alpha(F_{\Delta_i,l_i}) \ge 0$ for $D = \{(\Delta_i,l_i)\}$
- Take $k, D \rightarrow \infty$ to recover "optimal" bound

Review: Method of Rattazzi et. al. [arXiv:0807.0004]

- Can do this under any assumptions we want
- ▶ E.g., can assume that all scalars appearing in the OPE $\phi \times \phi$ have dimension larger than some $\Delta_{\min} = \dim \mathcal{O}_0$
- ▶ If $\lambda_{\mathcal{O}_0}^2 \leq \alpha(1) < 0$, there is a contradiction with unitarity and the assumed spectrum can be ruled out

By scanning over different $\Delta_{\min},$ one can obtain bounds on $\dim \phi^2$ as a function of $d=\dim \phi$

Bounds on $\dim \phi^2$ (taken from arXiv:0905.2211)

Bounds on dim ϕ^2 (taken from arXiv:0905.2211)

Bounds on dim ϕ^2 (taken from arXiv:0905.2211)

Bounds on $\dim \phi^2$ (taken from arXiv:0905.2211)

Outlook

Limitations of This Method

- ► Only considered a single real φ, can't distinguish between O's in different global symmetry representations
- ► E.g., for a chiral Φ in an $\mathcal{N} = 1$ SCFT, $\operatorname{Re}[\Phi] \times \operatorname{Re}[\Phi]$ contains operators from both $\Phi \times \Phi$ and $\Phi \times \Phi^{\dagger}$
- $\dim \Phi^2 = 2 \dim \Phi$. So Φ^2 always satisfies dimension bound and we learn nothing about $\Phi^{\dagger} \Phi$...
- Supersymmetry also relates different conformal primaries, so we should additionally take this information into account

Let's try to generalize the method to deal with this case!

Outline

CFT Review

2 Bounds from Crossing Relations

3 Superconformal Blocks

4 Bounds on CFTs and SCFTs

5 Outlook

$\mathcal{N} = 1$ Superconformal Algebra

$$\{Q, \overline{Q}\} = P \qquad \qquad \{S, \overline{S}\} = K$$

- Superconformal primary means $[S, \mathcal{O}(0)] = [\overline{S}, \mathcal{O}(0)] = 0$
- Descendents obtained by acting with P, Q, \overline{Q}

• Chiral means
$$[\overline{Q}, \phi(0)] = 0$$

Superconformal Block Decomposition

 ϕ : scalar chiral superconformal primary of dimension d in an SCFT (lowest component of chiral superfield Φ)

$$\langle \phi(x_1)\phi^{\dagger}(x_2)\phi(x_3)\phi^{\dagger}(x_4)\rangle = \frac{1}{x_{12}^{2d}x_{34}^{2d}} \sum_{\mathcal{O}\in\Phi\times\Phi^{\dagger}} |\lambda_{\mathcal{O}}|^2 (-1)^l \mathcal{G}_{\Delta,l}(u,v)$$

- Sum over superconformal primaries O^I with zero R-charge
- $\lambda_{\mathcal{O}}$ real for even spin \mathcal{O}^I , imaginary for odd spin \mathcal{O}^I
- $x_1 \leftrightarrow x_3$ gives crossing relation only involving $\mathcal{O}^I \in \Phi imes \Phi^\dagger$
- Must organize superconformal descendents into reps of the conformal subalgebra...

Superconformal Block Derivation

Multiplet built from O (generically) contains four conformal primaries with vanishing R-charge and definite spin:

- ► Superconformal symmetry fixes coefficients of $\langle \phi \phi^{\dagger} J \rangle, \langle \phi \phi^{\dagger} N \rangle, \langle \phi \phi^{\dagger} D \rangle$ in terms of $\langle \phi \phi^{\dagger} O \rangle$
- Must also normalize J, N, D to have canonical 2-pt functions
- ▶ Superconformal block is then a sum of $g_{\Delta,l}$'s for \mathcal{O}, J, N, D

Superconformal Block Derivation

We find, 1

$$\mathcal{G}_{\Delta,l} = g_{\Delta,l} - \frac{(\Delta+l)}{2(\Delta+l+1)}g_{\Delta+1,l+1} - \frac{(\Delta-l-2)}{8(\Delta-l-1)}g_{\Delta+1,l-1} + \frac{(\Delta+l)(\Delta-l-2)}{16(\Delta+l+1)(\Delta-l-1)}g_{\Delta+2,l}.$$

- When unitarity bound ∆ ≥ l + 2 is saturated, multiplet is shortened.
- G_{∆,l} can also be determined from consistency with N = 2 superconformal blocks computed by Dolan and Osborn ['01].

¹after plenty of algebra

Outline

CFT Review

- 2 Bounds from Crossing Relations
- **3** Superconformal Blocks
- **4** Bounds on CFTs and SCFTs

5 Outlook

Bounds on Dimension of $\Phi^{\dagger}\Phi$

Isolating the lowest dimension scalar $\Phi^\dagger \Phi \in \Phi \times \Phi^\dagger,$ we have

$$|\lambda_{\Phi^{\dagger}\Phi}|^{2}\mathcal{F}_{\Delta_{\min},0} = 1 - \sum_{\mathcal{O}\neq\Phi^{\dagger}\Phi} |\lambda_{\mathcal{O}}|^{2}\mathcal{F}_{\Delta,l},$$

where $\Delta_{\min} = \dim \Phi^{\dagger} \Phi$, and $\mathcal{F}_{\Delta,l}$ is $F_{\Delta,l}$ with $g_{\Delta,l} \to (-1)^{l} \mathcal{G}_{\Delta,l}$.

Now minimize $\alpha(1)$ subject to

$$\begin{array}{l} \blacktriangleright \ \alpha(\mathcal{F}_{\Delta,0}) \geq 0 \mbox{ for all } \Delta \geq \Delta_{\min}, \\ \blacktriangleright \ \alpha(\mathcal{F}_{\Delta,l}) \geq 0 \mbox{ for all } \Delta \geq l+2 \mbox{ and } l \geq 1, \\ \blacktriangleright \ \alpha(\mathcal{F}_{\Delta_{\min},0}) = 1 \end{array}$$

If $\alpha(1)<0,$ we get $|\lambda_{\Phi^\dagger\Phi}|^2<0\implies \Phi^\dagger\Phi$ can't have dim Δ_{\min}

Outlook

Upper Bound on Dimension of $\Phi^{\dagger}\Phi$

 Scanning over Δ_{min}, minimizing α(1) over 21 dimensional space of derivatives

Flavor Currents

• If ϕ transforms under flavor symmetry with charges T^I , conserved currents J^I appear in the $\phi \times \phi^{\dagger}$ OPE:

$$\langle \phi \phi^{\dagger} J^{I} \rangle \sim -\frac{i}{2\pi^{2}} T^{I}$$
 (Ward id.)

 Flavor current conformal blocks are then determined by current 2-pt functions

$$\langle J^{I}J^{J}\rangle \sim \frac{3}{4\pi^{4}}\tau^{IJ}$$

$$\langle \phi\phi^{\dagger}\phi\phi^{\dagger}\rangle \sim -\frac{1}{3}\tau_{IJ}T^{I}T^{J}g_{3,1} \qquad \text{(general CFTs)},$$

$$\langle \phi\phi^{\dagger}\phi\phi^{\dagger}\rangle \sim \tau_{IJ}T^{I}T^{J}\mathcal{G}_{2,0} \qquad \text{(SCFTs)},$$

where $\tau_{IJ} = (\tau^{IJ})^{-1}$ (in SCFTs, $\tau^{IJ} = -3\text{Tr}(RT^{I}T^{J})$).

Superconformal Blocks

Upper Bounds on $au_{IJ}T^{I}T^{J}$

- ► Example: SUSY QCD with $\frac{3}{2}N_c < N_f < 3N_c$, consider $\langle MM^{\dagger}MM^{\dagger}\rangle$. $d = 3 \frac{3N_c}{N_f}$ and $\tau_{IJ}T^IT^J = \frac{2}{3}\frac{N_f-1}{N_c^2}$
- ▶ For a U(1) in an SCFT, $\frac{Q^2}{-3\sum_i (R_i-1)Q_i^2}$ can't be too big.
- ► In dual AdS₅, $(8\pi^2 L)\tau_{IJ} = g_{IJ}^2$. Gauge coupling can't be too strong in presence of charged scalar.

The Stress Tensor

- Ward identity ensures $T^{ab} \in \phi \times \phi$
- ► $\langle TT \rangle$ is proportional to the central charge c(trace anomaly $16\pi^2 \langle T_a^a \rangle = c(\text{Weyl})^2 - a(\text{Euler})$)
- ▶ In an SCFT, T lives in the supercurrent multiplet $\mathcal{J}^a = J^a_R + \theta \sigma_b \overline{\theta} T^{ab} + \dots$, and c is determined in terms of $U(1)_R$ anomalies
- Conformal block contributions are

$$\langle \phi \phi \phi \phi \rangle \sim \frac{d^2}{90c} g_{4,2}$$
 (general CFTs)
 $\langle \phi \phi^{\dagger} \phi \phi^{\dagger} \rangle \sim -\frac{d^2}{36c} \mathcal{G}_{3,1}$ (SCFTs)

Lower Bound on c in General CFT

▶ In dual AdS₅, $c \sim \pi^2 L^3 M_P^3$. Gravity can't be too strong in presence of bulk scalar.

Outline

1 CFT Review

- 2 Bounds from Crossing Relations
- **3** Superconformal Blocks
- **4** Bounds on CFTs and SCFTs

Outlook

We calculated:

- Superconformal blocks
- Bound $\dim \Phi^{\dagger} \Phi < f_{\Phi^{\dagger} \Phi}(d)$
- ▶ Bound $\tau_{IJ}T^{I}T^{J} \leq f_{\tau}(d)$ in CFT, SCFT
- ▶ Bound $c \ge f_c(d)$ in CFT, SCFT

In the future, we'd like:

- Stronger bounds to make contact with BSM motivation! Improved numerics and better algorithms.
- SUSY theories that come close to saturating bounds on τ, c .
- Bounds in other numbers of dimensions.
- Understand bounds from bulk dual perspective.