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Introduction

Quantum Field Theory (QFT) models with constrained
configuration spaces naturally arise within the context of modern
applications, particularly gauge invariant systems (M. Henneaux and C.
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In this context:

Fields are used to impose the constraints

m

integrating out the original variables

m

effective model

Where the dynamical fields live on the constrained surface.

Here, we extend that kind of approach to QFT at finite
temperature (T > 0), in order to deal with the periodicity
constraints in the imaginary time.
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? First a glimpse of the usual QFT at T > 0:

T. Matsubara (1955)
H. Ezawa, Y. Tomonaga and H. Umezawa (1957)

This original approach now called Matsubara (or
‘imaginary-time’) formalism has been very successful
( see, for instance, Kapusta, Finite-Temperature Field Theory, Cambridge University Press,

Cambridge (1989)),
both in High Energy and Condensed Matter Physics.
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A fundamental property introduced by this formalism is the
imaginary-time periodicity (antiperiodicity) conditions for the
bosonic (fermionic) field configurations in the path integral.
Which can be seen at the level of the partition function

Z(β) = Tr
(
e−βĤ

)
=

∫
dq 〈q|e−βH |q〉 =

∫
dq 〈q,−iβ|q, 0〉.

(1)
The standard path integral construction for the transition
amplitude between different times may be applied, to obtain the
partition function in the Matsubara formalism:

Z(β) =
∫

q(0)=q(β)
DpDq e

R β
0 dτ

[
ipq̇−H(p,q)

]
, (2)
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For a bosonic field theory in d+ 1 spacetime dimensions

m

field paths are periodic in the imaginary time
canonical momentum ones are unrestricted

m

Hamiltonian quadratic in the canonical momentum

m Integrating

model where the dynamical field is defined on S1 ×Rd,
(radius of S1) ∝ β = 1/T

m

in Fourier space, frequencies become the usual Matsubara ones.
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A characteristic feature of the Matsubara formalism (shared with
the real-time formulation) is that the introduction of a time
dependence for the fields seems to be unavoidable, even if one
limits oneself to the calculation of time independent objects.

• We construct a representation where only static fields are
involved, an alternative way of dealing with T > 0 QFT
calculations.

• Inspired by the constrained functional integral
approach used in the Casimir effect (Kardar et al).

• The periodicity conditions are met by Lagrange multipliers
(d-dimensional when the field lives in d+ 1 dimensions).

• Integrating the original fields leaves a functional of the
d-dimensional Lagrange multipliers.)
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The method

0.1 The periodicity constraint

We start from the phase-space path integral of Z0, the (zero
temperature) vacuum persistence amplitude:

Z0 =
∫
DpDq e−S[q(τ),p(τ)] , (3)

where S is the first-order action, S =
∫ +∞
−∞ dτ L, with

L = −ipq̇ +H(p, q), and H denotes the Hamiltonian, assumed to
be of the form: H(p, q) = T (p) + V (q).
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Z0 is the limit of an imaginary-time transition amplitude,

Z0 = lim
T→+∞

〈q0,−iT |q0, iT 〉

= lim
T→+∞

∑
n

|〈q0|n〉|2e−2TEn = lim
T→+∞

|〈q0|0〉|2e−2TE0(4)

• |n〉 are the eigenstates of Ĥ,

• Ĥ|n〉 = En|n〉, and q0, the asymptotic value for q0 at
T → ±∞ (usually, q0 ≡ 0).

• E0 is the energy of |0〉, the ground state.

Next we obtain an alternative expression for Z(β).
Starting from Z0, and imposing the appropriate constraints on
the paths.
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We first introduce decompositions of the identity at the imaginary
times corresponding to τ = 0 and τ = β, so that we may write:

Z0 = lim
T→∞

∫
dq2dq1 〈q0,−iT |q2,−iβ〉 〈q2,−iβ|q1, 0〉 〈q1, 0|q0, iT 〉 ,

(5)
or, in a path integral representation,

Z0 = lim
T→∞

∫
dq2dq1

∫ q(T )=q0

q(β)=q2

DpDq e−
R T

β dτL

×
∫ q(β)=q2

q(0)=q1

DpDq e−
R β
0 dτL

∫ q(0)=q1

q(−T )=q0

DpDq e−
R 0
−T dτL .(6)

In short, one obtains a thermal partition function by imposing
periodicity constraints for both phase space variables.
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Indeed, let us introduce an object Zs(β) that results from
imposing those constraints on the Z0 path integral, and
extracting a Z0 factor:

Zs(β) ≡
∫
DpDq δ

(
q(β)− q(0)

)
δ
(
p(β)− p(0)

)
e−S∫

DpDq e−S
. (7)

Then, the use of the superposition principle yields:∫
DpDq δ

(
q(β)− q(0)

)
δ
(
p(β)− p(0)

)
e−S =

lim
T→∞

∫
dp1dq1

[
〈q0,−iT |p1,−iβ〉 〈p1,−iβ|q1,−iβ〉 〈q1,−iβ|q1, 0〉

× 〈q1, 0|p1, 0〉 〈p1, 0|q0, iT 〉
]
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or∫
DpDq δ

(
q(β)− q(0)

)
δ
(
p(β)− p(0)

)
e−S = lim

T→∞
e−E0(2T−β)

×
∫
dp1dq1

2π
〈q0|0〉〈0|p1〉 〈q1,−iβ|q1, 0〉 〈p1|0〉〈0|q0〉

= lim
T→∞

e−E0(2T−β) |〈q0|0〉|2
∫
dq1 〈q1,−iβ|q1, 0〉.

= Z0 × eβE0 Z(β) = Z0 × Tr
[
e−β(Ĥ−E0)

]
. (8)

Then we conclude that

Zs(β) = Tr
[
e−β :Ĥ:

]
(9)

where : Ĥ : denotes the normal-ordered Hamiltonian operator,
i.e.:

: Ĥ : ≡ Ĥ − E0 . (10)
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• So, by imposing periodicity on both phase space variables,
and discarding β-independent factors (since they would be canceled by

the normalization constant) we obtain Zs(β).

• the partition function corresponding to the original
Hamiltonian, the ground state energy redefined to zero.

• The subtraction of the vacuum energy is usually irrelevant
(except in some known situations), as it is wiped out when taking
derivatives of the free energy to calculate physical quantities.

Periodicity constraints for both variables is not in contradiction
with the usual representation, (2), where they only apply to q,
since they corresponds to different sets of paths. These constraints
get rid of the unwelcome factors coming from paths which are
outside of the [0, β] interval (which are absent from the standard approach).
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Summarizing, we have shown that a way to extract the partition
function from the T = 0 partition function Z0, is to impose
periodicity constraints for both the coordinate and its canonical
momentum, a procedure that yields a Z0 factor times the thermal
partition function, Zs(β).

Finite temperature QFT:
A dual path integral representation

17 I. Roditi (CBPF)
Cornell Feb. 2009



0.2 Rephrasing with auxiliary fields

The two δ-functions require the introduction of two auxiliary
fields, ξ1 and ξ2.

Using Q1 ≡ q and Q2 ≡ p, we have

2∏
a=1

{
δ
[
Qa(β)−Qa(0)

]}
=

∫
d2ξ

(2π)2
ei

P2
a=1 ξa

[
Qa(β)−Qa(0)

]
. (11)

Using this representation for the constraints we have:

Zs(β) = N−1

∫ ∞

−∞

dξ1
2π

∫ ∞

−∞

dξ2
2π

∫
DQ

× e−S(Q)+ i
R∞
−∞ dτja(τ)Qa(τ) , (12)
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where N ≡ Z0, and we have introduced the notation:

ja(τ) ≡ ξa
[
δ(τ − β)− δ(τ)

]
. (13)

The phase-space measure has been written in terms of Q:

DQ ≡
∏

−∞<τ<∞

dq(τ)dp(τ)
2π

. (14)

For the particular case of a harmonic oscillator with unit mass
and frequency ω, we have

S(Q) = S0(Q) =
1
2

∫ +∞

−∞
dτ Qa(τ)K̂abQa(τ) , (15)
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where the 2× 2 operator matrix K̂, given by:

K̂ =

 ω2 i ddτ

−i ddτ 1

 . (16)

Thus the integral over Q is a Gaussian; it may therefore be
written as follows:

Zs(β) = 2πN−1
(
det K̂

)− 1
2

∫
d2ξ

(2π)2
e−

1
2
ξaMabξb , (17)

with

M ≡ Ω(0+) + Ω(0−) − Ω(β) − Ω(−β) , (18)

where:

K̂acΩcb(τ) = δab δ(τ). (19)
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Such that:

Ω(τ) ≡

 1
2ω

i
2sgn(τ)

− i
2sgn(τ) ω

2

 e−ω|τ | (20)

(sgn ≡ sign function).

Equation (20) can be used in (18), to see that:

M =

 ω−1 0

0 ω

 (nB(ω) + 1)−1 , (21)

where

nB(ω) ≡ (eβω − 1)−1 (22)

is the Bose-Einstein distribution function (the zero of energy set at the

ground state).
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Finally, note that N cancels the
(
det K̂

)− 1
2 factor, and thus we

arrive to a sort of ‘dual’ description for the partition function, as
an integral over the ξa variables:

Zs(β) =
∫
d2ξ

2π
e
−ω−1 ξ21 + ω ξ22

2[nB(ω)+1] . (23)

This integral is over two real variables ξa, which are 0-dimensional
fields, one dimension less than the 0 + 1 dimensional original
theory.
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Evaluating the partition function in the classical
(high-temperature) limit we can see that Zs(β) becomes:

Zs(β) '
∫
d2ξ

2π
e−βH(ξ1,ξ2) (β << 1) , (24)

where:

H(ξ1, ξ2) ≡
1
2
(
ξ21 + ω2ξ22

)
. (25)

Such that (24) corresponds exactly to the classical partition
function for a harmonic oscillator, when the identifications: ξ1 = p

(classical momentum), and ξ2 = q (classical coordinate) are made

Zs(β) '
∫
dpdq

2π
e−β

1
2

(
p2 +ω2q2

)
(β << 1) . (26)
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On the other hand, had the exact form of the integral been kept
(no approximation), we could still have written an expression
similar to the classical partition function, albeit with an ‘effective
Hamiltonian’ Heff (ξ1, ξ2):

Zs(β) =
∫
d2ξ

2π
e−βHeff (ξ1,ξ2) , (27)

where:

Heff (ξ1, ξ2) ≡
1
2β

(
nB(ω) + 1

)−1 (
ω−1 ξ21 + ω ξ22

)
. (28)

This shows that the quantum partition function may also be
written as a classical one, by using a β-dependent Hamiltonian,
which tends to its classical counterpart in the high-temperature
limit.
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By integrating out the auxiliary fields in the (exact) expression
for the partition function (23), we obtain:

Zs(β) = nB(ω) + 1 =
1

1 − e−βω
(29)

which is the usual result.
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0.3 Interacting theories

When the action S is not quadratic, we may still give a formal
expression for the alternative representation. Indeed, denoting by
Z(J) the zero-temperature generating functional of correlation
functions of the canonical variables:

Z(J) =
∫
DQe−S(Q)+

R∞
−∞ dτJa(τ)Qa(τ) (30)

and by W(J) the corresponding functional for connected ones, we
see that

Zs(β) = [Z(0)]−1

∫
d2ξ

(2π)2
exp{W

[
i j(τ)

]
} , (31)

where, with our normalization conventions, Z(0) = Z0 (the
vacuum functional for the interacting case).
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Thus, a possible way to derive the effective Hamiltonian in the
interacting case is to obtain first W[J ], and then to replace the
(arbitrary) source J(τ) by i[j(τ)], where j(τ) is the function of
the auxiliary field defined in (13). Of course, W cannot be
obtained exactly, except in very special cases. Otherwise, a
suitable perturbative expansion can be used. In any case, W can
be functionally expanded in powers of the source J(τ):

W[J ] = W[0] +
∞∑
n=1

1
n!

∫
τ1,...,τn

W(n)
ab (τ1, . . . , τn)Ja1(τ1) . . . Jan(τn)

(32)
where each coefficient W(n) is the n-point connected correlation
function. The expansion above yields an expansion for Heff in
powers of the auxiliary fields. Not necessarily a perturbative
expansion.
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Indeed, the strength of each term is controlled by W(n), which
could even be exact (non-perturbative) in a coupling constant. To
fix ideas, let us see what happens when one keeps only up to the
n = 4 term, assuming also that there is Qa → −Qa symmetry in
S. Then, we first see that the W[0] is cancelled by the N factor,
and on the other hand we obtain

Zs(β) =
∫

d2ξ

(2π)2
e−βHeff (ξ1,ξ2) , (33)

where

Heff =
1
2β

∫
τ1,τ2

W(2)
a1a2

(τ1, τ2)ja1(τ1)ja2(τ2)

− 1
4!β

∫
τ1,τ2

W(2)
a1a2a3a4

(τ1, τ2, τ3, τ4)ja1(τ1)ja2(τ2)ja3(τ3)ja4(τ4)

+ . . . (34)
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Using the explicit form of ja(τ) in terms of the auxiliary fields, we
see that:

Heff = H
(2)
eff + H

(4)
eff + . . . (35)

where

H
(2)
eff =

1
2
M(2)

ab ξa ξb

H
(4)
eff =

1
4!
M(4)

abcd ξa ξb ξc ξb

. . . = . . .

H
(2k)
eff =

1
(2k)!

M(2k)
a1...a2k

ξa1 . . . ξa2k
, (36)

where the explicit forms of the coefficients M(2k) in terms of
W(2k) may be found, after some algebra.
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For example M(2) is a diagonal matrix:

M(2) =

 c1 0

0 c2

 (37)

where

ca =
1
β

∫
dν

π

(
1− e−iνβ

)
W̃aa(ν) (38)

(where the tilde denotes Fourier transform). c1 plays the role of
an effective coefficient for the kinetic term (∝ p2) in the effective
Hamiltonian, while c2 does introduce an effective quadratic
potential. Note that they will, in general, depend on β, ω, and on
any additional coupling constant the system may have. For the
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harmonic oscillator case we have the rather simple form:

c1 =
1

ω(nB(ω) + 1)

c2 =
ω

nB(ω) + 1
. (39)

The quartic term involves M(4), which may be written in terms of
the connected 4-point function:

M(4)
abcd =

1
β

[
−W(4)

abcd(0, 0, 0, 0) + 4W(4)
abcd(β, β, β, 0)

− 6W(4)
abcd(β, β, 0, 0) + 4W(4)

abcd(β, 0, 0, 0) − W(4)
abcd(0, 0, 0, 0)

]
sym

(40)
where the sym suffix denotes symmetrization under simultaneous
interchange of time arguments and discrete indices.
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Scalar field

The extension of the harmonic oscillator results to the QFT of a
real scalar field ϕ in d+ 1 (Euclidean) dimensions is quite
straightforward. Let ϕ(x) = ϕ(τ,x) where x = (τ,x) ∈ R(d+1),
τ ∈ R and x ∈ R(d).

0.4 Free partition function

The free Euclidean action in terms of the phase-space variables
S0, is in this case given by:

S0 =
∫
dd+1x

[
− iπ∂τϕ+H0(π, ϕ)

]
, (41)
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with

H0(π, ϕ) ≡ 1
2

[
π2 + |∇ϕ|2 +m2ϕ2

]
. (42)

We then have to implement the periodic boundary conditions
both for ϕ(τ,x) and its canonical momentum π(τ,x)

ϕ (β,x) = ϕ (0,x) , π (β,x) = π (0,x) , ∀x ∈ R(d) , (43)

which requires the introduction of two time-independent
Lagrange multiplier fields: ξa(x), a = 1, 2. Defining a
two-component field Φ = (Φa), a = 1, 2, such that Φ1 = ϕ and
Φ2 = π, an analogous procedure to the one followed for the
harmonic oscillator yields, for the free partition function Z0(β):

Z0(β) = N−1

∫
Dξ

∫
DΦ e−

1
2

R
dd+1xΦaK̂abΦb + i

R
dd+1xjaΦa ,

(44)
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where ja(x) ≡ ξa(x)
[
δ(τ − β)− δ(τ)

]
and:

K̂ =

 ĥ2 i ∂∂τ

−i ∂∂τ 1

 , (45)

where we have introduced ĥ ≡
√
−∇2 +m2, the first-quantized

energy operator for massive scalar particles. Performing the
integral over Φ, yields the partition function in terms of the
Lagrange multipliers:

Z0(β) =
∫
Dξ e−

1
2

R
ddx

R
ddy ξa(x) 〈x|M̂ab|y〉 ξb(y) , (46)
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with M̂ ≡ Ω̂(0+) + Ω̂(0−)− Ω̂(β)− Ω̂(−β) and

Ω̂(τ) ≡

 1
2 ĥ

−1 i
2sgn(τ)

− i
2sgn(τ) 1

2 ĥ

 e−ĥ|τ | . (47)

Then,

M̂ ≡

 ĥ−1 0

0 ĥ

 (n̂B + 1)−1 , (48)

where

n̂B ≡ 1

eβĥ − 1
. (49)
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So, we see that:

Z0(β) = (50)∫
Dξ exp

{
− 1

2

∫
ddx

∫
ddy

[
ξ1(x) 〈x|ĥ−1 (n̂B + 1)−1|y〉 ξ1(y)

+ ξ2(x) 〈x|ĥ (n̂B + 1)−1|y〉 ξ2(y)
]}

. (51)

Which gives:

Z0(β) = det
(
n̂B + 1

)
(52)

and can be evaluated in the basis of eigenstates of momentum to
yield:

Z0(β) =
∏
k

[
nB(Ek) + 1

]
(53)

where Ek ≡
√

k2 +m2.
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The free-energy density, F0(β), is:

F0(β) =
1
β

∫
ddk

(2π)d
ln

(
1 − e−βEk

)
. (54)

In the classical, high-temperature limit, the path integral for the
partition function becomes:

Z0(β) '
∫
Dξ e−β H(ξ) , (55)

where:

H(ξ) =
1
2

∫
ddx

[
ξ21(x) + |∇ξ2(x)|2 + m2 ξ22(x)

]
. (56)

This is, again, the usual classical expression for the partition
function, with the Lagrange multipliers playing the role of phase
space variables.
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0.5 Self-interacting real scalar field

When field self-interactions are included, instead of the free
action S0, we must consider instead

S = S0 + SI , (57)

where the free action S0, has already been defined in (41), while
SI is a self-interaction term. We shall assume it to be of the type:

SI =
∫
dd+1xV (ϕ) , (58)

V (ϕ) being an even polynomial in ϕ, with only one (trivial)
minimum. Proceeding along similar lines to the ones followed for
the free field case in the preceding section, the partition function
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for the interacting system can be written in the form:

Z(β) = N
∫
Dξ

∫
DΦ e−S(Φ)+ i

R
dd+1xjaΦa , (59)

where Φ, as well as the ‘current’ ja have already been defined for
the free case, in the previous subsection. The constant N is
introduced to satisfy Z(∞) = 1. On the other hand, since the
fields are assumed to tend to zero at infinity, β →∞ implies that
the term involving j vanishes in this limit. This means that

N−1 =
∫
Dξ

∫
DΦ e−S(Φ) . (60)

There are many different paths one could follow from now on in
order to evaluate the partition function. We choose to adopt a
procedure that makes contact with quantities defined for QFT at
T = 0, in such a way that the T 6= 0 theory is built ‘on top of it’.
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Indeed, recalling the definition of the generating functional for
connected correlation functions, W, we may write:

N
∫
DΦ exp

[
−S(Φ) + i

∫
dd+1xjaΦa

]
≡ e−W(j) , (61)

so that the partition function Z(β) becomes:

Z(β) =
∫
Dξ e−W(j) . (62)

We use the small j to denote the 2-component current which is a
function of the Lagrange multipliers, as defined in (13). A capital
J shall be reserved to denote a completely arbitrary 2-component
source, so that:

N
∫
DΦ exp

[
−S(Φ) + i

∫
dd+1xJaΦa

]
≡ e−W(J) . (63)

Finite temperature QFT:
A dual path integral representation

40 I. Roditi (CBPF)
Cornell Feb. 2009



Defining Heff (ξ), the ‘effective Hamiltonian’ for ξ, by means of
the expression:

Heff (ξ) =
1
β
W(j) , (64)

we see that the partition function is given by:

Z(β) =
∫
Dξ exp [−βHeff (ξ)] . (65)

This yields the path integral for the quantum partition function
as a classical-looking functional integral, involving an effective
Hamiltonian which takes into account all the T = 0 quantum
effects.
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Dirac field

The final example we consider is a massive Dirac field in d+ 1
spacetime dimensions. The procedure will be essentially the same
as for the real scalar field, once the relevant kinematical
differences are taken into account. The action Sf0 for the free case
is given by Sf0 =

∫
dd+1xψ̄(6∂ +m)ψ where 6∂ = γµ∂µ, γ

†
µ = γµ and

{γµ, γν} = 2δµν .

We then impose antiperiodic conditions for both fields:

ψ (β,x) = −ψ (0,x) , ψ̄ (β,x) = −ψ̄ (0,x) (66)

as constraints on the Grassmann fields.
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Those conditions lead to the introduction of the two δ−functions:

Zf0 (β) =
∫
DψDψ̄ δ

(
ψ(β,x) + ψ(0,x)

)
δ
(
ψ̄(β,x) + ψ̄(0,x)

)
× exp

[
− Sf0 (ψ̄, ψ)

]
. (67)

Those auxiliary fields, denoted by χ(x) and χ̄(x) must be
time-independent Grassmann spinors. The resulting expression
for Zf0 (β) is then

Zf0 (β) = N−1

∫
DχDχ̄DψDψ̄ e−S

f
0 (ψ̄,ψ)+i

R
dd+1x (η̄ψ+ψ̄η), (68)

where η and η̄ are (Grassmann) sources depending on χ and χ̄
through the relations:

η(x) = χ(x)
[
δ(τ − β) + δ(τ)

]
, η̄(x) = χ̄(x)

[
δ(τ − β) + δ(τ)

]
.

(69)
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Integrating out ψ, ψ̄, we arrive to:

Zf0 (β) =
∫
DχDχ̄ exp

[
− βHeff

(
χ̄, χ

)]
(70)

where

Heff

(
χ̄, χ

)
=

∫
ddx

∫
ddy χ̄(x)H(2)

(
x,y

)
χ(y) (71)

with:

H(2)
(
x,y

)
= 〈x, 0|(6∂ +m)−1|y, 0〉+ 〈x, β|(6∂ +m)−1|y, β〉

+ 〈x, 0|(6∂ +m)−1|y, β〉+ 〈x, β|(6∂ +m)−1|y, 0〉

=
1
β

[
2Sf

(
0,x− y

)
+ Sf

(
β,x− y

)
+ Sf

(
− β,x− y

)]
. (72)

On the last line, Sf , denotes the Dirac propagator. It is possible
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to show that

H
(
x,y

)
=

1
β
〈x|û(1− n̂F )−1|y〉 (73)

where n̂F ≡
(
1 + eβn̂

)−1
is the Fermi-Dirac distribution function,

written in terms of ĥ, the energy operator (defined identically to
its real scalar field counterpart); û is a unitary operator, defined
as

û ≡ ĥD

ĥ
, ĥD ≡ γ · ∇+m . (74)

Then we verify that:

Zf0 (β) = det û det−1
[
(1− n̂F ) I

]
, (75)
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(I ≡ identity matrix in the representation of Dirac’s algebra)

Zf0 (β) =

∏
~p

[
1 + e−βE(~p)

]
rd

(76)

with E(p) =
√

p2 +m2 and rd ≡ dimension of the representation
(we have used the fact that det û = 1).

Again, the procedure has produced the right result for the
partition function, with a normal-ordered Hamiltonian.
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1 Conclusions

• We have shown that, by introducing the periodicity
conditions as constraints for the paths in the Euclidean path
integral for the T = 0 vacuum functional, one can obtain a
representation for a thermal partition function.

• These constraints should be applied on fields and canonical
momenta, and when they are represented by means of
auxiliary fields, they lead to an alternative, ‘dual’
representation for the corresponding thermal observable.

• The resulting representation for the partition function may be
thought of as a dimensionally reduced path integral over
phase space, similar to the one of a classical thermal field
theory, with the auxiliary fields playing the role of canonical
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variables, but with an effective Hamiltonian, Heff , which
reduces to the classical one in the corresponding
(high-temperature) limit.

• The effective Hamiltonian can be constructed by assuming
the knowledge of the corresponding T = 0 generating
functional of connected correlation functions. If this
knowledge is perturbative, one recovers the perturbative
expansion for the thermal partition function.
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• We believe that the most important applications of this
formalism are to be found in the case of having
non-perturbative information about the T = 0 correlation
functions: here, it is possible to incorporate that knowledge
into the formalism, and to compute thermal corrections from
it.
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• We believe that the most important applications of this
formalism are to be found in the case of having
non-perturbative information about the T = 0 correlation
functions: here, it is possible to incorporate that knowledge
into the formalism, and to compute thermal corrections from
it.

Thank You!
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