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Quantum Phase Transition:
a phase transition between different quantum phases (phases of
matter at T = 0). Quantum phase transitions can only be
accessed by varying a physical parameter — such as magnetic field
or pressure — at T = 0.
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Figure: Phase diagram paradigm



Experimental relevance

Many important physical systems may have quantum critical
points (QCPs). The QCP has an effective field theory description
which continues to be valid at small “distances” away from the
QCP. This quantum critical region may be in an experimentally
accessible regime.
Examples:

I superfluid-insulator transition in thin films

I high temperature, under-doped superconductors at T > Tc

and the Nernst effect



Thin Films

Conductivity σ
σthick(T → 0) =∞
σthin(T → 0) = 0

Haviland, Liu, and Goldman,
Phys. Rev. Lett., 62, 2180
(1989)



High Tc superconductors
I La2CuO4 is an antiferromagnetic insulator
I 2d physics: The Cu atoms arrange themselves into a square

lattice on separated sheets.
I Hole doping: substitute some of the La with Sr,

La2−xSrxCuO4

The Nernst effect

I Apply ∇T

I Apply B ⊥ ∇T

I Measure E ‖ B ×∇T

I The Nernst coefficient is

ν =
E

B|∇T |



High Tc superconductors and quantum criticality



Comments about Scale Invariance

At the quantum critical point, the system is invariant under

t → λz t and x → λx .

where z is the dynamical critical exponent.

I The Lorentzian case z = 1:
I insulating quantum antiferromagnets (relevant for high Tc)
I Bose Hubbard-like models at p/q filling (optical lattices)

I The case z = 2 is more common (Galilean, Schrödinger, and
Lifshitz scaling symmetries)

I Other z , e.g. z = 3 for the heavy fermion compounds.

How do we analyze strongly interacting, scale invariant field
theories?



The role of AdS/CFT
The AdS/CFT correspondence provides a tool to study a class of
strongly interacting field theories with Lorentzian symmetry in d
dimensions by mapping the field theories to classical gravity in
d + 1 dimensions.

I equation of state
I real time correlation functions
I transport properties — conductivities, diffusion constants, etc.

The ambitious program: There may be an example in this class of
field theories which describes the quantum critical region of a real
world material such as a high Tc superconductor.

The less ambitious program: By learning about this class of field
theories, we may find universal features that could hold more
generally for QCPs (η/s = ~/4πkB).

There are a few entries in the AdS/CFT dictionary for z > 1
(Kachru, Balasubramanian, McGreevy, . . . ), but here we consider
only z = 1.



Some Recent History

The AdS/CFT approach to superconductors and superfluids has
been evolving:

2007 The first papers modeled the quantum critical region only.
(Herzog, Kovtun, Sachdev, Son; Hartnoll, Kovtun, Mueller,
Sachdev; Hartnoll, Herzog)

2008 Next we added the physics of a classical thermal phase
transition. These simple gravity models were
phenomenological in nature.
(Gubser; Hartnoll, Herzog, Horowitz)

2009 Do field theory duals to these simple gravity models exist?
What is the nature of these field theories? To answer these
questions, we have been looking for string embeddings.
(Gubser, Herzog, Pufu, Tesileanu; Gauntlett, Sonner,
Wiseman)



What happened in 2008



Holographic Phase Transitions

Old Goal: To have a simple holographic model of a phase
transition where we can calculate the phase diagram and transport
coefficients.

S =
1

2κ2

∫
dd+1x

√
−g(R − 2Λ)− 1

4g2

∫
dd+1x

√
−gFµνF

µν

−
∫

dd+1x
√
−g
(
|(∂ − iqA)Ψ|2 + V (|Ψ|)

)
.

I Einstein-Hilbert produces correlators of the stress tensor Tµν

in the boundary theory. (Λ < 0)

I Maxwell produces correlators of a global current Jµ in the
boundary.

I The order parameter is the boundary value of Ψ.



The Phase Structure

Different types of black holes correspond to different phases.

I The high temperature phase is an electrically charged black
hole in AdSd+1 with Ψ = 0. In this phase, the system is not
superconducting. In our QCP paradigm, we would be in the
quantum critical regime where the most important scales are
T and charge density ρ.

I The low temperature phase is an electrically charged black
hole in AdSd+1 with hair, Ψ 6= 0. The system is
superconducting/superfluid.

The Hawking temperature of the black hole is T of the field theory.
The charge on the black hole translates into ρ in the field theory.
These parameters are tuneable, and we can calculate the transport
coefficients as a function of T and ρ!



Why there is a phase transition

Assuming V (Ψ) = m2|Ψ|2, Gubser observed an instability for the
scalar to condense when ρ gets too large:

m2
eff = m2 + g ttA2

t

where
gtt < 0 ; At ∼ ρ .

The effective mass becomes tachyonic and the scalar condenses in
a narrow region of radial coordinate r .

There is no need for a Ψ4 term because curvature in the radial
direction stabilizes the runaway.

There is only one other scale in the problem, the temperature, so
large ρ corresponds to small T .



Superfluid or superconductor?

Two interpretations of the instability

I This U(1) symmetry in the field theory is global, and strictly
speaking we have only spontaneous symmetry breaking — a
superfluid phase transition.

I We can think of the U(1) as being weakly gauged, in which
case we have a superconductor.



The phase transition
Given m2L2 = −2 (above the BF bound), we can choose a scalar
in the field theory with scaling dimension one or two.
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Figure: The value of the condensate as a function of temperature for the
two different boundary conditions: a) from bottom to top, the various
curves correspond to q = 1, 3, 6, and 12; b) from top to bottom, the
curves correspond to q = 3, 6, and 12. Note that Tc ∼

√
ρ.

Probe limit is large q.



The Conductivity from BCS Theory

Figure: Frequency dependence of absorption processes obeying case I and
II coherence factors at T = 0 (solid curves) and T ≈ 1

2Tc (dashed
curves). [Tinkham, Superconductivity, 2nd edition]



Conductivity for dimension one case, probe limit
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Figure: Left: Plots of the real part of the conductivity versus frequency
for various temperatures. Right: Plots of the conductivity versus
frequency at very low temperature. The dotted red curve is the Im(σ)/5.

Re[σ(ω)] contains a delta function πnsδ(ω) which leads to
superconductivity where ns is the superfluid density.



Conductivity for dimension two case, probe limit
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Figure: Left: Plots of the real part of the conductivity versus frequency
for various temperatures. Right: Plots of the conductivity versus
frequency at very low temperature. The dotted red curve is the Im(σ)/5.

One conclusion that may be drawn from these plots is that 〈O1〉
and

√
〈O2〉 can be interpreted as twice the superconducting gap.



What’s happening in 2009



Finding a Stringy Embedding
The construction of a large class of AdS5/CFT4 dualities starts by
placing N D3-branes at the tip of a six dimensional Calabi-Yau
cone in type IIB string theory.

Generically, the resulting superconformal field theory has a
collection of SU(N) gauge groups and bifundamental matter fields
that can be described by a quiver.
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Figure: L263

An important point is that each SU(N) gauge group implies the
existence of a gluino with R = 1.



A Universal Mode

There exists a gauge invariant, chiral primary operator in all of
these quiver gauge theories with ∆ = 3 and R = 2.

O =W(φi ) +
1

32πi

∑
j

τj trλ2
jα ,

where W is the superpotential, the gluino field λα is the lowest
component of the superfield Wα, and the complex scalar fields φi

are the lowest component of the chiral matter superfields Φi . The
τj = θj/2π + 4πi/g2

j are the complexified gauge couplings, and the
sum j runs over the gauge groups in the quiver.

Can we figure out what this operator is dual to in gravity?



A Consistent Truncation

A solution to the following 5d effective action lifts to a solution of
type IIB supergravity in 10 dimensions.

L = LEM + Lscalar ; LEM = R − L2

3
FµνF

µν + CS ,

Lscalar = −1

2

[
(∂µη)2 + sinh2 η(∂µθ − 2Aµ)2 − 6

L2
cosh2 η

2
(5− cosh η)

]
The real fields η and θ are the modulus and phase of a complex
scalar dual to the gluino bilinear O.

The potential for the scalars looks like a Mexican hat. A simple
phenomenological model with this type of potential was already
studied in 2008 by Gubser and de la Rocha.



The 10d Lift: The metric
The metric looks like

ds2 = cosh
η

2
ds2

M +
L2

cosh η
2

[
ds2

V + cosh2 η

2
(ζA)2

]
.

Recall that the level surface of a Calabi-Yau cone X is a
Sasaki-Einstein manifold Y . Locally, Y looks like a U(1) fibration
over a Kähler-Einstein manifold V .

V

x

Y

S1



The 10d Lift: The RR 5-form

The guess work was made easier by previous consistent truncations
where only the scalars or only the U(1) gauge field were kept.

F5 =
1

gs
(F + ∗F) ,

F ≡ −1

L
cosh2 η

2
(cosh η − 5) volM −

2L3

3
(∗MF ) ∧ ω

+
L4

4 cosh4 η
2

J ∧ ω2 ,

∗F = L4 (cosh η − 5)

2 cosh2 η
2

ζA ∧ ω2 +
2L4

3
F ∧ ζA ∧ ω

+
L

2
(∗MJ) ∧ ζA .

J = sinh2 η(dθ − 2A) and ω is the Kähler form on V .



The 10d Lift: The 3-forms

Ω̂3 is the holomorphic 3-form on the Calabi-Yau X .

Ω̂3 = r3

(
dr

r
∧ Ω2 + Ω3

)
,

F2 = L2 tanh
η

2
e iθΩ2 , F2 ≡ B2 + igsC2 .



0.5 0.6 0.7 0.8 0.9 1.0
0

5000

10 000

15 000

20 000

0

2

4

6

8

10

12

T
T0

DP
T4

XO\ 1�3

T0

Figure: Upper right plot: |〈O〉|1/3/T0 vs. T/T0, where 〈O〉 is expressed
as multiples of L3/κ2

5. The critical temperature is T0 ≈ 0.0607µ. Near
T0, 〈O〉 ∼ |T − T0|1/2, indicating a mean field critical exponent. Lower
left plot: ∆P/T 4 vs. T/T0, where ∆P is the difference in pressure
between the broken and unbroken phases, calculated in the grand
canonical ensemble. Near T0, one has ∆P ∼ (T − T0)2, so the phase
transition is second order.



Does the instability drive the phase transition?

Are there other modes with instabilities that set in at a T > T0?

I Let’s ignore vector and tensor modes.

I Let’s look at an arbitrary scalar with charge R and mass
m2L2 = ∆(∆− 4). (We just assumed m2 is not corrected by
the background charged black hole solution!)

I We can determine the Tp(R,∆) at which these other scalars
become perturbatively unstable. (If the transition is first
order, Tp < Tc .)

I What region of the R∆ plane do we need to worry about?

Hard argument!
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Figure: A contour plot of Tp/µ as a function of ∆ and R. The numbers
next to the contour lines represent Tp/µ. We need only consider scalars
above the unitarity bound, ∆ ≥ 1. The dark solid line is the BPS bound
∆ = 3R/2. Scalars which are less stable than the operator O are
restricted to the triangular, shaded region near the lower-left corner.



Discussion

I Stringy models with an instability to condense a gluino
bilinear.

I The condensation involves fermion pairing, morally.

I It is not clear if we have a model where this instability is
dominant. The “beta deformation” exists in all quiver theories
arising from placing D3-branes at the tip of a toric Calabi-Yau
cone. This mode also has ∆ = 3, R = 2.

I There are some reasons to suspect that nonzero R-charge
chemical potential means these quiver theories can only be
metastable (N = 4 SYM).

I Reasons for optimism: One might hope that other
symmetries, U(1)B for instance, might allow for similar phase
transitions but where one has greater control. Stay tuned!


