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Low Scale Hidden Sectoé—

| A

Intriguing idea. May be motivated by:
e Fine tuning in SUSY models (hidding the Higgs).

[Falkowski,Ruderman,TV,Zupan, 2010]
e Recent cosmic-ray anomalies.
[Cholis,Goodenough,Weiner, 2008; Arkani-Hamed,Finkbeiner,Slatyer,Weiner 2008...]

e Some string theory constructions.

e LHC phenomenology (hidden valleys). [Strassler,Zurek, 2006]
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e For concreteness, we’ll assume that the hidden sector contains a new force (new,
dark photon).

e Mass of dark photon ~ GeV.

e Then the SM fields are charged under new force:
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e For concreteness, we’ll assume that the hidden sector contains a new force (new,
dark photon).

e Mass of dark photon ~ GeV.

e Then the SM fields are charged under new force:

e The new photon can also decay into SM particles.




Experimental Pr

The hidden sector can be probed directly by various experiments:

e High-Energy colliders. e <1078 — (107°97)
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The hidden sector can be probed directly by various experiments:

e High-Energy colliders. e <1076 — (10797)
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Experimental Pro

The hidden sector can be probed directly by various experiments:

e High-Energy colliders. e <1078 — (107°97)
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[Bjorken,Essig,Schuster,Toro 2009; Reece,Wang 2009; Batell,Pospelov,Ritz 2009;]




Experimental Pr

The hidden sector can be probed directly by various experiments:

e High-Energy colliders. e <1078 — (107°97)
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Experimental Probes: I_

e Hidden sector can be probed indirectly by searching for sources that pro-
duce the light hidden states.

e An attractive possibility:

DM <« >  Hidden Sector

Motivated by recent CR anomalies.

In this talk we concentrate on two new probes:

— Photon measurements. bl

— Neutrino Telescopes. e <10-15




Outline

e The Cosmic Ray Anomalies
e Model Independent Analysis
e Decaying DM: Probing a Hidden Sector
e A Model
e Predictions
 Seeing the Hidden Sector in Neutrino Telescopes

e Conclusions
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e Systematics?

— PAMELA: sufficient proton rejection?
— PAMELA and FERMI electron measurements consistent?

e Propagation?

e Astrophysical Source?

eT created through interactions of CR-p’s with interstellar matter.
Propagation of positrons to us is model dependent and unknown.

PAMELA may encode information of the propagation model. Indi-

cates a more significant energy loss at lower energies.
[Blum, Katz, Waxman, 2009]

Positrons from Pulsars
[Hooper et al., 2008; Yuksel et al., 2008; Zhang, Cheng 2001; Profumo 2008]

Acceleration in SNR
[Blasi, 2009]

Inhomogeneities of sources
[Nakar, Piran, Shaviv, 2009]




For the rest of the talk:

Assume anomalies are
indirect evidence for DM







Identifying Dark

DM is required to address:
e Significant excess in e®: Electronic activity.
e No excess in p: No hadronic activity.

e No feature in FERMI:DM mass must be 2 1 TeV.

e For annihilating DM: In the absence of large local overdensity (boost
factor), annihilation cross-section is O(1000)x WIMP.
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DM is required to address:

e Significant excess in e®: Electronic activity.
e No excess in p: No hadronic activity.

e No feature in FERMI:DM mass must be 2 1 TeV.

e For annihilating DM: In the absence of large local overdensity (boost
factor), annihilation cross-section is O(1000)x WIMP.

e Models of DM bifurcate into annihilating or decaying DM.

e Those that further explain absence of hadronic activity assume
or kinematical constraint.
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Annihilating

Kinematics

Symmetry

Tension with measurements from Galactic Center.
Tension with CMB Measurements.
Tension with Extra-galactic photon measurements.

Required enhancement of annihilation rate, O(few x 1000),
hard to achieve.




Disclaimer

Astrophysics uncertainties do not allow for a
robust statement. Annihilating models cannot

be excluded definitively.
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Positron Fraction
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[Meade,Papucci,Strumia, TV 2009]

e All 4-leptonic channels fit well.

e Positron faction expected to rise.




Constraints: Ann’ inL
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e Diffuse photons provide (relatively) robust prediction. Should be
measured at ~ 100 GeV.

e Ann’ modes that produce 7%’s are disfavored by GC/GR.
e Ann’ modes that produce many v’s are disvafored by SuperK.

e 7F channel predict a bump (due to 7°’s) in diffuse gamma, but is

excluded by GC/GR and SuperK.

e All annihilation channels are in tension with measurements in GC/GR.

Together with background they are excluded, unless DM profile is
shallower.
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CMB Constr
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Symmetry

Tension with measurements from (Galactic Center.

Tension with CMB Measurements.

Tension with Extra-galactic photon measurements.
Required enhancement of annihilation rate, O(few x 1000),

hard to achieve.




Sommerfeld

[Arkani-Hamed et. al. 2008;]

e Requires large coupling to force carrier, A 2 1.

e Same coupling A sets the relic abundance.

e In practice, hard to write models that generate sufficient enhancement and

the correct relic abundance.




Decaying DM works better.. N

e Correct lifetime to explain PAMELA+FERMI+HESS is obtained if DM
decays through dimension-6 operators suppressed by the GUT scale:

T o~ MBM (i ~ 10?9 sec Mpm i Mgur {
1 16772MéUT 1] 1TeV 5 x 1015 GeV

{Eichler, 1989}




e Correct lifetime to explain PAMELA+FERMI+HESS is obtained if DM
decays through dimension-6 operators suppressed by the GUT scale:

15 i1l
11y M\ ~ 1026 soc Mpy \ McuT i
“\l6r2Mi,r ) 1TeV 5 % 1015 GeV

|Eichler, 19891
e To ensure longevity: In Mgyt — oo limit, DM is completely stable due
to a global (discrete) symmetry.

e Dimension-5 decays are ruled out. Simple to prevent through
symmetries.




Decaying DM works better—

e Correct lifetime to explain PAMELA+FERMI+HESS is obtained if DM
decays through dimension-6 operators suppressed by the GUT scale:

11y M\ fli ~ 1026 soc Mpy \ McuT i
“\tereMiy, ) 1 TeV 5 % 1015 GeV

|Eichler, 19891
e To ensure longevity: In Mgyt — oo limit, DM is completely stable due
to a global (discrete) symmetry.

e Dimension-5 decays are ruled out. Simple to prevent through
symmetries.

e Simpler than annihilating: does not require large enhancement of
thermal cross-section.

e Usual WIMP cosmology apply: Thermal relic.




Decaying DM:

DM life-time 1 in sec
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[Meade,Papucci,Strumia, TV 2009]

Dependence on DM density is weaker at the Galactic Center.

Decaying DM fits well and is not constrained by photons or neutrinos.

May be probed by FERMI as in the annihilating case.

Can, in principle, be differentiated from annihilating case if hard
spectrum is measured. This is excluded for annihilating models.
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We now argue:

Low energy spectrum of
hidden sector can be probed
in the decaying DM case.




Models of Decaying Dark Matter




Decaying into Hidden V

e Models of decaying DM have problems explaining the absence of
anti-protons and photons from the GC.

e Typically require significant fine tuning or complicated and ad hoc
structure.

e Can be naturally achieved if DM decays into a hidden ”dark” sector.

X

A\
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Decaying into Hidden Vaﬂu

e Models of decaying DM have problems explaining the absence of
anti-protons and photons from the GC.

e Typically require significant fine tuning or complicated and ad hoc
structure.

e Can be naturally achieved if DM decays into a hidden ”dark” sector.

X

e The DM, x, does not have to be charged under the dark sector.

e GeV scale explains the leptonic activity, through kinematics.
[Cholis,Goodenough,Weiner 2008]




A Model

e Assume:

— GUT.
— SUSY (natural with GUT and stable GeV scale).

— Gauge mediation.

e To demonstrate:

Gdark X GSM = U(l)d X SU(5)
X +x=(0,5+5)




Scales B

Mgur Decay I ILRTERL L
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Scales

TeV

Mass WpmMm = SxXx




Scales

Mpaxx

GeV SSRIa /dQQWdWY = €, B" + eDyDy

[Dienes et. al. 1996; Baumgard et. al. 2009]
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e Simplest mechanism to break SUSY without destabilizing the GeV scale:
gauge mediation.

e SUSY breaking spectrum is model dependent.




Supersymmetry Breakin_

e Simplest mechanism to break SUSY without destabilizing the GeV scale:
gauge mediation.

e SUSY breaking spectrum is model dependent.

e If D-term mixing is the dominant mechanism for
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Supersymmetry Breaking ,'

e Simplest mechanism to break SUSY without destabilizing the GeV scale:
gauge mediation.

e SUSY breaking spectrum is model dependent.

e [f D-term mixing is the dominant mechanism for

Yd generating GeV scale = Dark sector is approximately

oF TR BN supersymmetric,
2 2 9621 2
onpll=lle =5- M= =
9y
2 2
oms, <K omy, 1
e I e If there are bi-fundamentals at the TeV
or 1 (messengers), SUSY breaking is large (of order GeV).

(oo




Direct Detection

e There are also strong limits from direct detection (CDMS, XENON) on
DM that couples elastically to the Z.

e Mass eigenstates, x+ = (x £ X)/v2 couple to Z:

X+ il

N N

e As is, above model is excluded by 2-3 orders of magnitude.




Direct Detection G_—_—

e There are also strong limits from direct detection (CDMS, XENON) on
DM that couples elastically to the Z.

e Mass eigenstates, x+ = (x £ X)/v2 couple to Z:

X+ X—

N N

e As is, above model is excluded by 2-3 orders of magnitude.

e Bounds can easily be evaded by splitting the DM multiplets:

’U2

Weptit = MN? + xHyN = §Mpy = 77 ~ 10 GeV

e DM interacts inelastically, thereby evading bounds.




Tiplet Decay

The triplet which resides in the DM multiplet must decay fast to evade
constraints from exotic atom searches and BBN.

e Dimension 5 operators can induce fast decay, 73 ~ 1 sec:

1 —9 1 1 !
d20 25 /d29 1025 /d49 v5 s
MguT / it MgcuT il McuT it

e sis a singlet, m,, < ms; < m,,.

e Assumes m,, > m,, which is typically true due to RG running.




Decay Modes

e The operator: [ d?6 \5;V7 has several decay modes, with branching
fractions depending on whether the DM is fermion or scalar.

e Example:

Vd
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fractions depending on whether the DM is fermion or scalar.

e Example:

Dark Sector:

GeV Scale SUSY.
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Decay Modes

e The operator: [ d?6 x5V has several decay modes, with branching
fractions depending on whether the DM is fermion or scalar.

e Example: G
Yd y Dark Sector:
Approximate SUSY.
X = 1%
€ l—|—
Vd
l_

e If DM is charged under SM, there is always a primary (hard) spectrum
of neutrinos.

e If dark sector is approximately supersymmetric, there is a primary
(hard) spectrum of photons.

e Primary photons will be generically produced if the lightest state in the
dark sector is a fermion.
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TyTyTYeE

TIIWTF T EEIS

IceCube/DeepCore

SuperK

Photon Energy [GeV]

Photon Energy [GeV]

107 ! AMANDA 11077 3.x1071F
— E DeepCore 1
| r 7 —
7] - ] T
P * 2
g 1078¢ 3 vear 110-8 o 2.x 10714 annihilating
o E |
| E 7
I + z 5
S r ] =
m L 1 =
% total + = 1.% 10—14,
% 1079+ 1107° §
e o : p=
decaying
Ll L oo ObY0——— . .
10° 10° 0 5 10 15 20 25 30
Neutrino Energy [GeV] Cone Half Angle [deg]
Diffuse Photons HESS Galactic Ridge
—: 107 : lcd (1077 = HESS
5 B AGIS (Projected)
g FERM® T
2 ' ;
~ n f -
';‘j 10 - s O
5 E Py
% 107 7 > 107 s N 10"
o - .
—_— !- Se.
o
= —_—
510" X = o
5 Z )
o o~ . \ prumary
= = / ]
107 0 / .
0% 107! I [ CLRNS [ LR (1 10 10




Is FERMI Seeing
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Is FERMI Seeing Decay%_

e Fermi released a 1-year sky map.

e A template analysis shows an excess of photons at the center of the Galaxy.

Haslam 408 MMz

W e ————
"~

Haze semplate

180 oc 20

[Dobler et. al. 2009]
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The Hidden Sector at Neutrino
Telescopes




Long Lived Particles (LC_

e For sufficiently small €, hidden sector is expected to have long lived parti-
cles which decay to SM.

e Examples:

e4ozda]23Mmh m?c II3 107 k ( € )—4< Tt ! )
CT ~ ~ m -
S T T 2R 2 ot 1 GeV

Yd




Production of LoLi;;_

e If DM annihilates into hidden sector, signals can be measured at regions
with high DM densities: Sun, Earth.
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e If DM annihilates into hidden sector, signals can be measured at regions
with high DM densities: Sun, Earth.
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Production of LoLi

e If DM annihilates into hidden sector, signals can be measured at regions
with high DM densities: Sun, Earth.

e Probability to decay inside detector:

12

iy o—d/L (1 ul e—s/L)

L = ~ver.
s = Size of detector.




Event lTypes

e Neutrino telescopes are typical arrays of photomultiplier tubes.
e Roughly two types of signatures:

1. Track-like signature, mostly Cherenkov radiation. (Mostly u®).

2. Localized source of light (e.g. e® or 7).




Event lTypes

e Neutrino telescopes are typical arrays of photomultiplier tubes.
e Roughly two types of signatures:

1. Track-like signature, mostly Cherenkov radiation. (Mostly u®).

+

2. Localized source of light (e.g. e™ or 7).

e Decay from LOLIPs may produce highly boosted di-muons. Typical sep-
aration is a few meters at most.

e Cherenkov radiation is doubled.
e Monte-Carlo simulations show an increase of x3 in effective area.

e Thus di-muons are recognized as single muons above critical energy (which

is O(700 GeV) in water).
e Good handle for background:

— Atmospheric neutrino flux is drops rapidly.

— Differential light yield along track is different.




Event Rate

e Rate of events depends on:

# of events >~ I'ynpn X dQ X Pecay(cT)

A A 2 (equilibrium)

e Capture rate can vary by many orders of magnitude, depending on whether
DM interacts elastically or inelastically with nucleons, as well as on DM-
nucleon cross-section and DM mass. For elastic case:

: Ny iy
g 1019 —1 Pe Udisp ( Oxn ) ( My )
i f i (0.3 GeV cm™° 270 km s~ * 1043 cm?/ \100 GeV

e Measurement is therefore sensitive to c7, 0, m,.
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e Lightest state is scalar, h.
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i

e Lightest state is scalar, h.
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ITIb:

e Lightest state is the vector, v4.

e Interacting with SM and dark sector.
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Conclusions s

e Exciting time for DM physics!

e Motivates the existence of low scale hidden sectors.
e Hidden sectors could be probed in the near future.

e If related to DM, indirect measurements are very sensitive to such sectors:
e > 10710,

e Photon measurement can also differentiate between DM models.

e To be continued...




