Missing Energy Look-alikes at the LHC

Jay M. Hubisz Syracuse University 9/5/2008

arXiv: 0805.2398 [hep-ph] with Joseph Lykken, Maurizio Pierini, and Maria Spiropulu

Twenty Questions

* It's an old game

- * one person picks the subject (e.g. Tyco Brahe)
- rest of players ask yes/no questions
 - is it smaller than a breadbox? No
 - * did he lose part of his nose in a drunken duel with rapiers? Yes

Is he:

It's an efficient way to go from extremely large N of possibilities to the correct answer with a few well designed questions

Twenty questions @ LHC

We begin running the LHC with a very large (pseudo-infinite) number of possible extensions of the SM

Each data "release" gives another step in the game; want order 1/2 (or more) possibilities eliminated each time

Each step (set of analyses) should be designed according to the previous ones, and gain increasing focus

We want to be smart when we create our questions!

Goal: Create a strategy for the "moment of discovery" (perhaps first 100pb⁻¹ of data)

Do the most that we can (find powerful model discriminators) taking into account the limitations of what we'll have available with this first small data sample

immature detector simulation

poorly understood systematics

poor understanding of jets

primitive (at best) flavor tagging

Consider this a presentation of a "dry run" of how to manipulate the first signal data

Things will be slightly different once there's real data to tune det. sim. and Monte Carlo, but we want a strategy ready-inhand

By keeping as realistic as we can, we bolster our confidence that the strategies we develop will carry over well to the real thing

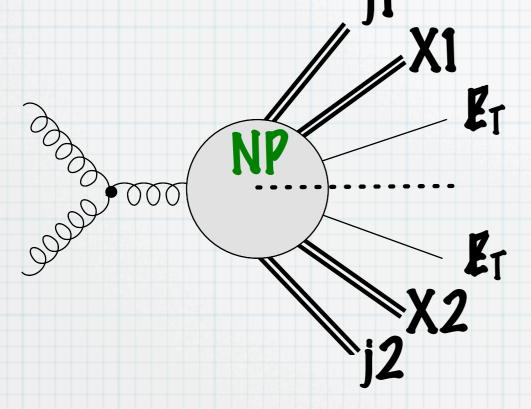
First "understood" data

Won't be well understood

- will have some handle on detector response to jets from earlier studies (2008 10 TeV run)
- won't have sophisticated jet corrections (partonic jets), just raw/uncorrected jets
- primitive flavor tagging (enrichment)
- * observables that are available will be strongly correlated by both physics and systematics
 - * want to keep these errors to a minimum
 - bad time for a global analysis

What can we do?

* **E**₁ probably comes from exotics


- 1 or more kin. accessible strongly coupled exotics
- leptons in chain that came from exotics (not W's or Z's)
- Indirect spin info! (surprising)

MET + jets @ LHC WHY?

- Park matter experimental evidence
- * Theoretical prior that hierarchy problem is solved near the TeV scale (top quark is involved)
 - * The necessity of conserving certain global symmetries
 - custodial SU(2), baryon #

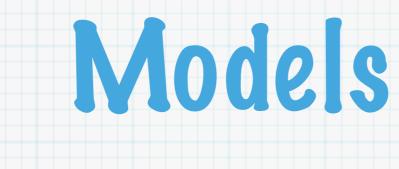
Compelling case for LHC pair production of strongly coupled exotica decaying to jets + $X + E_T(miss)$

E-Imiss) + jets @ LHC

* New Physics + Parity

* SUSY: R-parity (baryon #)

* Little Higgs: T-parity (cust. SU(2))


* Universal Extra Dim.: KK-parity

Parities keep protons from decaying, prevent gross violation of flavor constraints, keep Mw consistent with exp., and (if exact) provide dark matter

There is a 5 sigma excess in a MET+jets search with 100pb⁻¹ (N signal events)

* We don't utilize any other potential search channels (i.e. that don't trigger on MET)

Little Higgs

produce squarks + gluinos produce heavy T-odd quarks

decay to lightest R-odd particle decay to lightest T-odd particle (neutralino) (neutral vector boson)

Hierarchy problem saved by spin Hierarchy problem saved by spin statistics and SUSY coupling global symmetries relations

cancellations with opp. spin

cancellations with same spin

Group 1 and Group 2

We perform two sets of analyses - in each, 1 model plays the role of "data" and the rest are "candidate theories" or "Look-alikes"

- Look-alike: model that gives same # of events in E_T(miss) analysis path
 - Group 1
 - "Data" is SUSY

Group 2 "Data" is Little Higgs

SUSIC look-alikes

SUSIC look-alikes

Pass all models through a software chain

What data can we get? (CMSPTPR)

- Study of SUSY benchmark scenarios
- * series of cleanup/analysis/bkgd rej. cuts on E1 trigger sample
 - * up to 25% eff. on signal
- * for σ ~5pb, > 5 σ discovery in 100pb⁻¹!
- * we adopt very similar analysis path (they did bkgds for us!)
- New: we go beyond the benchmarks (even non-SUSY) and refine/develop the analysis for efficiency in model discrimination

Backgrounds for Et

- * ttbar, single top, W+jets, Z+jets, dibosons
 - most have hard lepton in association with neutrino (gives MET)
 - * generated by CMS with AlpGen and passed through full det. sim.
- * QCD
- * beam halo, cosmics, detector noise

CMSPTPR MET analysis path

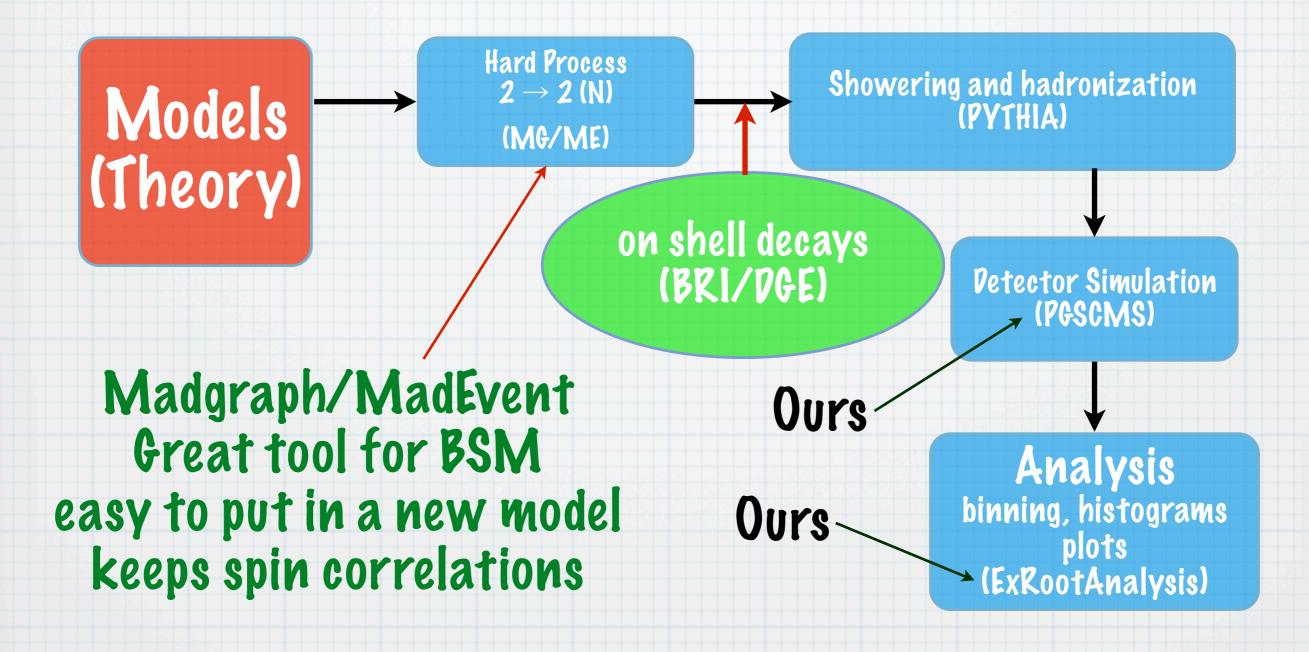
	a. 1				
Cut/Sample	Signal	$t\bar{t}$	$Z(\rightarrow \nu \bar{\nu}) + \text{ jets}$	EWK + jets	
All (%)	100	100	100	100	
Trigger	92	40	99	57	
$E_T^{\text{miss}} > 200 \text{ GeV}$	54	0.57	54	0.9	
PV	53.8	0.56	53	0.9	
$N_j \ge 3$	39	0.36	4	0.1	
$ \eta_d^{j1} \ge 1.7$	34	0.30	3	0.07	
$\text{EEMF} \ge 0.175$	34	0.30	3	0.07	
$ECHF \ge 0.1$	33.5	0.29	3	0.06	
QCD angular	26	0.17	2.5	0.04	
$Iso^{lead\ trk} = 0$	23	0.09	2.3	0.02	
$EMF(j1), \\ EMF(j2) \ge 0.9$	22	0.086	2.2	0.02	
$E_{T,1} > 180 \text{ GeV},$ $E_{T,2} > 110 \text{ GeV}$	14	0.015	0.5	0.003	
$H_T > 500 \text{ GeV}$	13	0.01	0.4	0.002	
events remaining per 1000 pb^{-1}					
	6319	54	48	33	

★ focuses on 2 WIMP final
 states (N_{jets} ≥2)

* QCD pileup, radiation often gives a third jet

* efficient for signal, strong reduction of background

245 evt./fb⁻¹ in E_1 (miss) analysis path after cuts


Error: how good is det. sim., how good was CMSPTDR SM cocktail, how well was QCD simulated, PDF's

In models we studied, can **triple** SM background count after cuts, add 15% systematics on signal and still have "discovery" in 100pb⁻¹

Early MET @ LHC

- * poor jet resolution fakes missing E_T
- muons contribute (don't deposit all energy)
- plagued by instrumental + spurious bkgds (cosmics, scattering off beam halo) primary cleanup
- use raw (uncorrected) jets in early running
 - * not much like generator level (partonic) missing E_T

Our Toolkit

PGSCMS + analysis

- needed fast (parametrized) detector simulation
- * PGS (pretty good simulation) tuned for CMS detector
- * tuned to LM1 study in CMSPTPR
- * add pileup, z-vertex, some B-field effects

* agreement good!

Cut/Software	Full	Fast
Trigger and $E_T^{\text{miss}} > 200 \text{ GeV}$	53.9%	54.5%
$N_j \ge 3$	72.1%	71.6%
$ \eta_d^{j1} \ge 1.7$	88.1%	90.0%
QCD angular	75.6%	77.6%
$Iso^{lead\ trk} = 0$	85.3%	85.5%
$E_{T,1} > 180 \text{ GeV},$ $E_{T,2} > 110 \text{ GeV}$	63.0%	63.0%
$H_T > 500 \text{ GeV}$	92.8%	93.9%
Total efficiency	12.9%	13.8%

Software Chain

Software/Models	Group 1 models	Group 2 models
Spectrum generator	Isajet v7.69 [30] or or SUSY-HIT v1.1 [31]	private little Higgs or SUSY-HIT v1.1
Matrix element calculator	Pythia v6.4 $[32]$	MadGraph v4 $[33]$
Event generator	Pythia v6.4	MadEvent v4 [34] with BRIDGE [35]
Showering and hadronization	Pythia v6.4	Pythia v6.4
Detector simulation	PGSCMS v1.2.5 plus parameterized corrections	PGSCMS v1.2.5 plus parameterized corrections

Analysis: Specifically designed - ExRootAnalysis (includes jet energy corrections)

 η and φ dependent rescaling of jet energies

50 GeV "PGS jet" = 30 GeV uncorrected (raw) jet

- * Prop primary cleanup and parts of ILV
 - * can't simulate these
- E_T(miss) not quite right need full sim.
- no electrons need full sim
 - * future study

Modified Et analysis path

Did not rescale MET - E losses, cal. response, mismeasurements decrease real MET tails while increasing fake MET tails

just raised cut: MET > 220 GeV

in full detector sim, we can avoid this compromise

How does PGSCMS do?

Cut/Software	Full	Fast
Trigger and $E_T^{\text{miss}} > 200 \text{ GeV}$	53.9%	54.5%
$N_j \ge 3$	72.1%	71.6%
$ \eta_d^{j1} \ge 1.7$	88.1%	90.0%
QCD angular	75.6%	77.6%
$Iso^{lead\ trk} = 0$	85.3%	85.5%
$E_{T,1} > 180 \text{ GeV},$ $E_{T,2} > 110 \text{ GeV}$	63.0%	63.0%
$H_T > 500 \text{ GeV}$	92.8%	93.9%
Total efficiency	12.9%	13.8%

Biggest disagreement is on QCD angular cuts (we don't accurately reproduce jet mismeasurement effects)

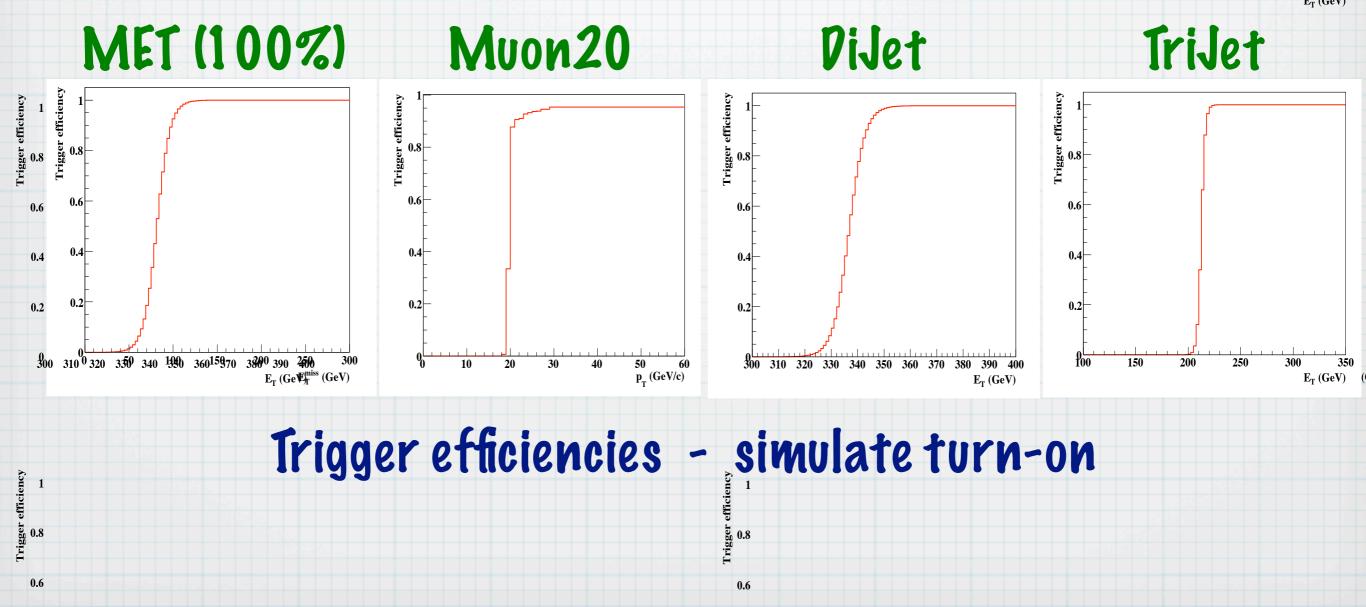
Level of agreement - we expect fast sim. look-alikes to remain look-alikes (or at least be close) with full det. sim.

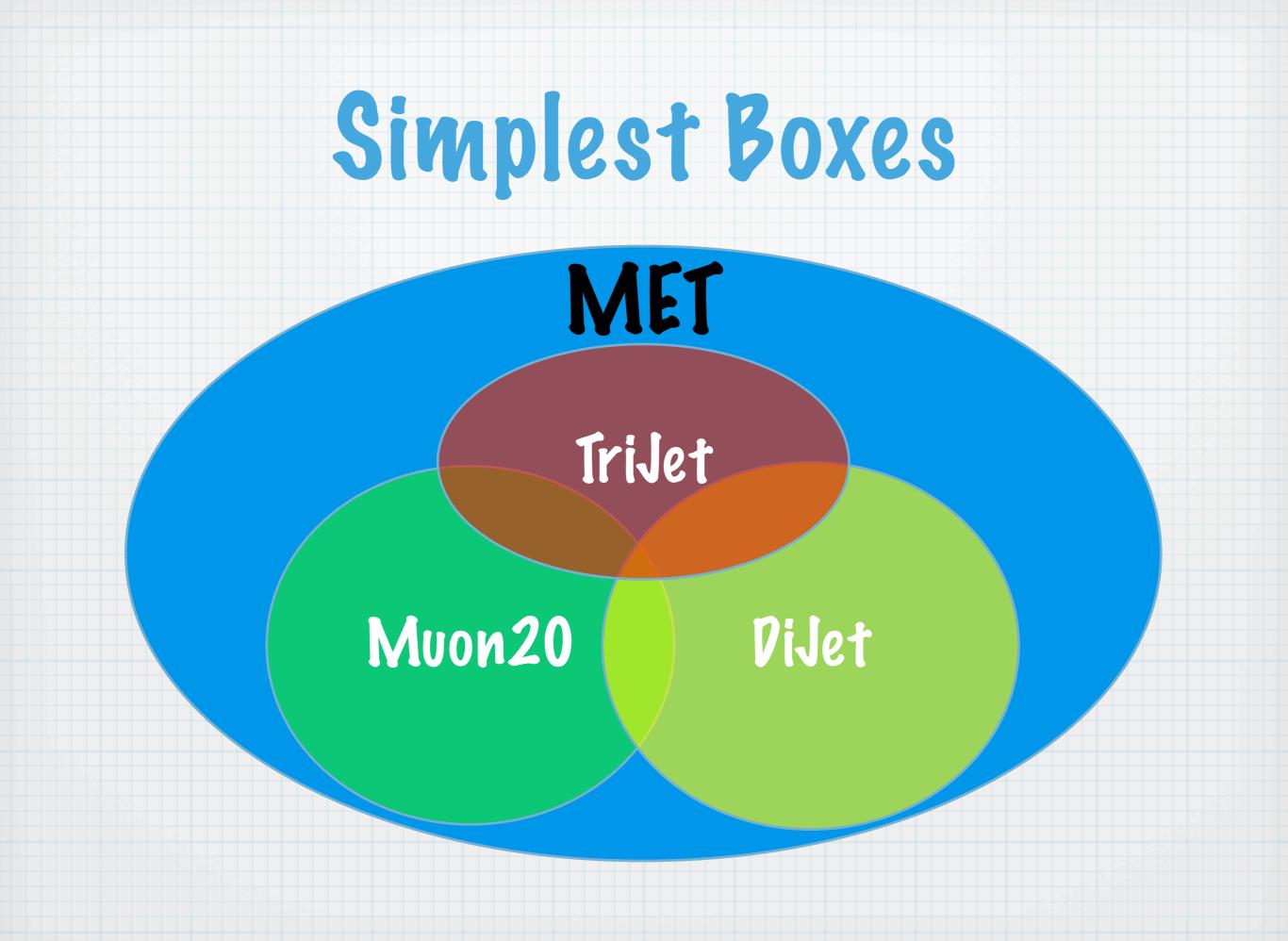
Observables

- * Want to focus on robust objects
 - shapes, distributions, too sensitive to systematics, poor simulation, etc.
 - not good for moment of discovery
- Large bins bring this problem under better control
 - * "Boxes"
- * Ratios of counts in diff. boxes
 - lower systematics since many are common to all boxes - cancel out

Observables: Ratios

- * systematics cancel effectively
 - * from about 20% down to about 5%
 - Iuminosity uncertainty completely
 - * pdf uncertainty partially
 - * higher order corrections partially


Simplest thing: Bin events in analysis path according to other trigger samples (mock-ups of CMS trigger and physics reports)


300 310 320 330 340 350 360 370 380 390 400 $<math>
 E_r (GeV)$

efficiency

Trigger

0.6

⁰0 200 400 600 800 1000 1200 1400 1600 1800 2000

total invariant mass (GeV/c²)

$$M_{\text{eff}} = E_T^{\text{miss}} + \sum_{i=1,4} p_T^j$$

Has often been used to get estimate of mass scale of new physics

Create one new box for events with large Meff.

- N(Meff1400)

Stransverse mass (M12)

- Ignoring neutrinos, assuming perfect hemisphere separation, can construct each set of visible particles into 4-vector
- * If know p_T and mass of WIMPs, can reconstruct transverse mass for each hemisphere

$$m_T^2 = m_X^2 + m_{dm}^2 + 2(E_T^X E_T^{dm} - \mathbf{p}_T^X \cdot \mathbf{p}_T^{dm})$$

But we don't know those things

 $m_{T2}^2(m_{\rm dm}) \equiv \min_{p_T^{(1)} + p_T^{(2)} = p_T^{\rm miss}} \left[\max\left\{ m_{T2}^2(m_{\rm dm}; p_T^{(1)}), m_{T2}^2(m_{\rm dm}; p_T^{(2)}) \right\} \right]$

Kink at mdm(guess) = mdm(actual) !

Won't be able to use this to our advantage for a while, though

Stransverse mass

We don't know WIMP mass except in our candidate explanations of the "data"

Use m_{dm} of candidate theory for both data and MC of candidate

Stransverse mass boxes:

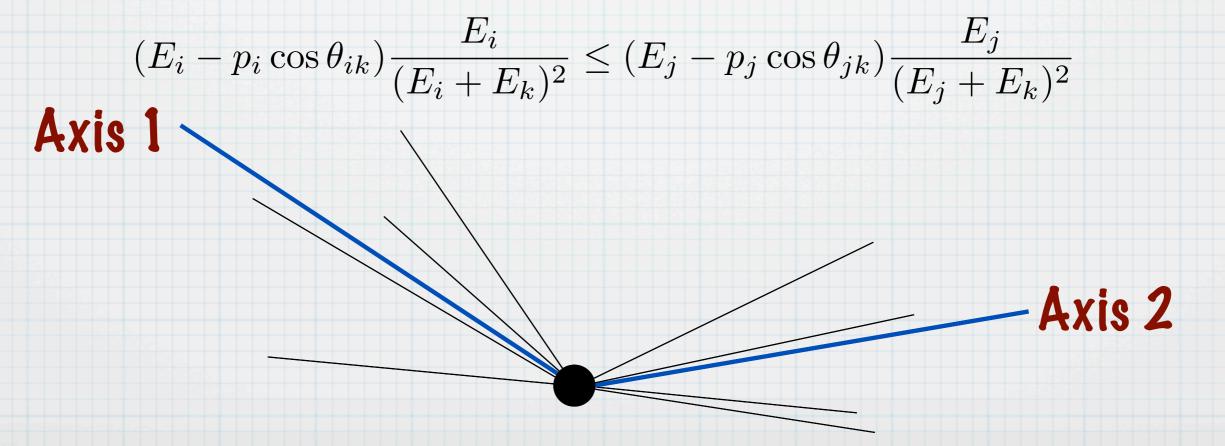
- N(mT2-300) the number of events after selection with $m_{T2} > 300 \text{ GeV/c}^2$,
- N(mT2-400) the number of events after selection with $m_{T2} > 400 \text{ GeV/c}^2$,
- N(mT2-500) the number of events after selection with $m_{T2} > 500 \text{ GeV/c}^2$.
- N(mT2-600) the number of events after selection with $m_{T2} > 600 \text{ GeV/c}^2$.

Hemispheres and Cones

Event shape: extract info about scattering subprocess and resulting decay chains

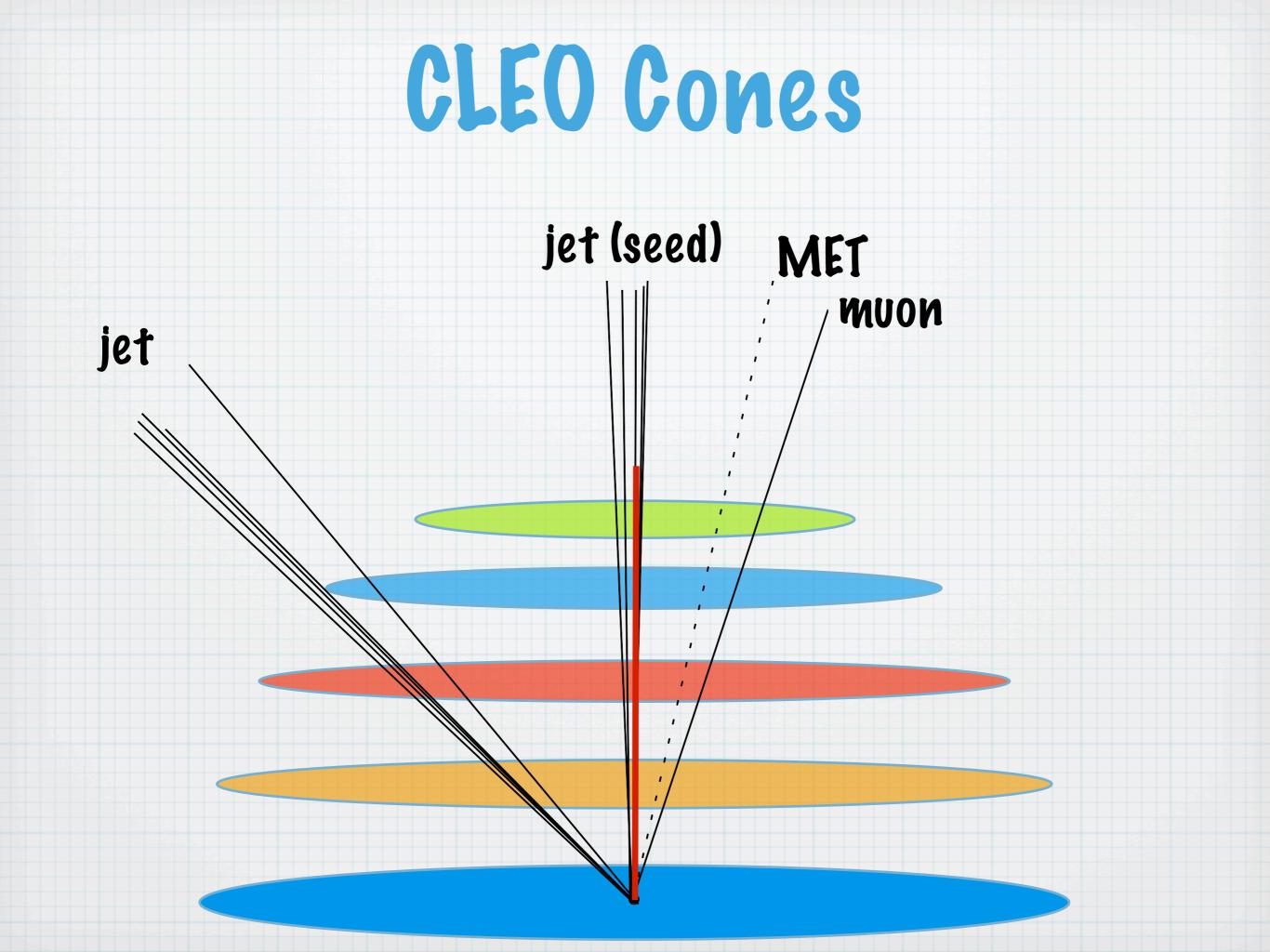
Our Signal: pair production of exotics - each event has natural separation into halves (hemispheres)

Each hemisphere (ideally) has 1 wimp and visible decay products of parent exotic (+ neutrinos)


Algorithms: 2 steps - seeding + association

Hemispheres

Moortgat, Pape


Seeding: two hemisphere axes given by angular directions of pair of reconstructed objects with largest invariant mass

Association: reconstructed objects assigned to hemisphere that minimizes the Lund distance

- from central axes of hemispheres, generate cones
 - * opening angles 2α = 2x(30, 45, 60, 75, 90)
 degrees
- CLEO used them to dist. between QCD bkgd and isotropic decays of B meson

Cone observables

How "jet-like" are the decay products?

* events w/ n or more tracks in cone of opening angle 2α N(nt-c α)

* events w/ diff. of n or more tracks between cone of opening angle 2α and any other cone $N(ntdiff-c\alpha)$

Flavor Enrichment

Very low level "tagging"

* tau enrichment

- * for each jet, .375 cone, count tracks > 2 GeV, if only one, and > 15 GeV, call tau
- * b enrichment
 - if muon within .2 of jet axis, call b

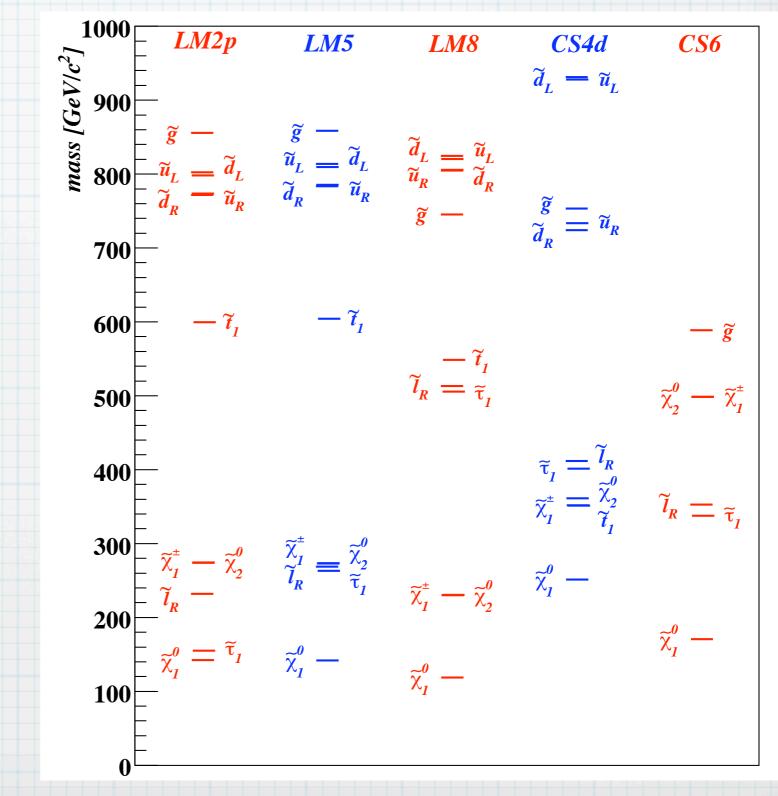
	LM2p	LM5	LM8	CS4d	CS6
au jets per fb ⁻¹	409	144	171	112	34
tags per fb^{-1}	157	110	122	102	59
correct tags per fb^{-1}	86	25	21	14	5
efficiency	21%	18%	12%	13%	16%
purity	55%	23%	17%	14%	8%

and the set of the set					
	LM2p	LM5	LM8	CS4d	CS6
b jets per fb ⁻¹	1547	1693	2481	1596	748
tags per fb^{-1}	115	112	148	105	106
correct tags per fb^{-1}	82	81	112	75	41
efficiency	5%	5%	5%	5%	5%
purity	72%	72%	75%	71%	39%

Our Ratios

- r(nj)(3j), with n=4,5
- r(MET320)
- r(MET420)
- r(MET520)
- r(HT900)
- r(Meff1400)
- r(M1400)
- r(M1800)
- r(Hemj) with j=1,2,3
- $r(2\mu$ -nj)(1 μ -nj) with n=3,4
- $r(\tau tag)$
- r(b-tag)
- r(mT2-300) with the theory LSP mass
- r(mT2-400) with the theory LSP mass
- r(mT2-500) with the theory LSP mass
- r(mT2-600) with the theory LSP mass

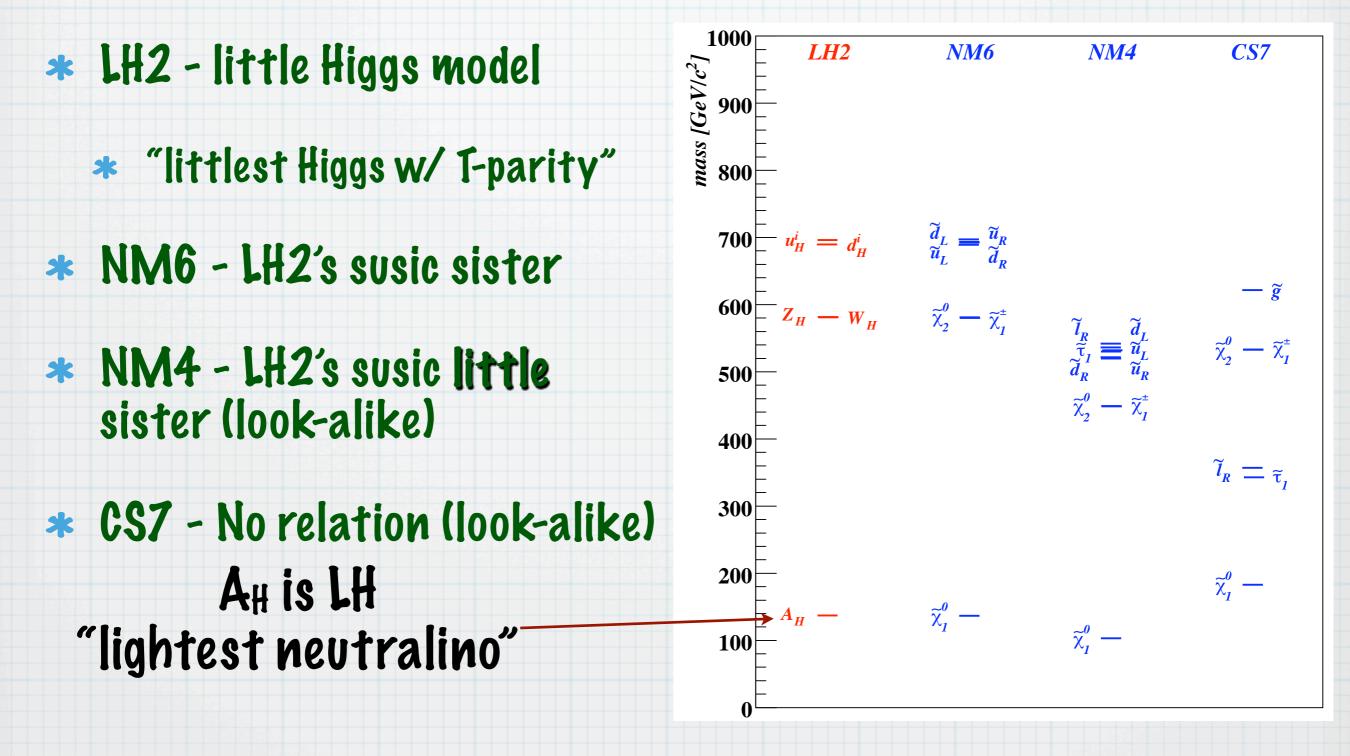
- r(DiJet)
- r(TriJet)
- r(Muon20)
- r(mT2-400/300) with the theory LSP mass
- r(mT2-500/300) with the theory LSP mass
- r(mT2-600/300) with the theory LSP mass
- r(nt-c α) for n=10,20,30,40 and $\alpha = 30^{\circ},45^{\circ}, 60^{\circ}$ 75°, 90°
- r(ntdiff-c α) for for n=10,20,30,40 and $\alpha = 30^{\circ}$, 45° 60°, 75°, 90°



Group 1 spectra

"Data" is LM2p

Low mass points and compact SUSY models are candidates


	LM2p	LM5	LM8	CS4d	CS6
$qq~ ilde{\chi}^0_1~ ilde{\chi}^0_1$	57%	61%	34%	38%	98%
$qqq\; ilde{\chi}^0_1\; ilde{\chi}^0_1$	20%	19%	3%	4%	79%
$qqqq~ ilde{\chi}^0_1~ ilde{\chi}^0_1$	1%	1%	1%	1%	77%
$ au \; u_{ au} \; q \; ilde{\chi}^0_1 \; ilde{\chi}^0_1$	39%	1%	-		1%
$ au au \; q \; ilde{\chi}^0_1 \; ilde{\chi}^0_1$	25%	1%		-	1%
$b \ q \ ilde{\chi}^0_1 \ ilde{\chi}^0_1$	30%	25%	33%	69%	19%
$b~t~W~q~ ilde{\chi}^0_1~ ilde{\chi}^0_1$	10%	19%	31%	67%	-
$W \ q \ ilde{\chi}^0_1 \ ilde{\chi}^0_1$	25%	52%	56%	93%	-
$h \ q \ ilde{\chi}^0_1 \ ilde{\chi}^0_1$	3%	20%	-	-	-
$tt \; q \; ilde{\chi}^0_1 \; ilde{\chi}^0_1$	9%	4%	40%	11%	2%
$Z \; q \; ilde{\chi}^0_1 \; ilde{\chi}^0_1$	10%	8%	35%	11%	-
$Z \ W \ q \ ilde{\chi}^0_1 \ ilde{\chi}^0_1$	2%	6%	23%	6%	-
bb tt WW $ ilde{\chi}^0_1 ilde{\chi}^0_1$		-	2%	18%	-

Results (Group 1)

	LM2p		LM5		LM8		CS4d		CS6	
LM2p										
100			r(5j)(3j)		r(5j)(3j)		r(MET520)		r(mT2-600/300)	
			r(mT2-300)		r(MET520)		r(HT900)		r(MET520)	10.6σ
			$r(\tau$ -tag)	1.2σ	r(10t-c45)	2.9σ	r(Meff1400)	3.0σ	r(HT900)	6.8σ
1000			$r(\tau$ -tag)	3.1σ	r(MET520)	8.2σ	r(MET520)	9.4σ	r(mT2-600/300)	33.0σ
			r(5j)(3j)	2.8σ	r(mT2-500)	6.7σ	r(HT900)		r(MET520)	26.6σ
			r(mT2-400)	2.6σ	r(5j)(3j)	6.5σ	r(mT2-600)	6.0σ	r(HT900)	14.6σ
LM5									8 3 1 1	
100	r(5j(3j))	1.8σ			r(5j)(3j)	2.9σ	r(HT900)	3.6σ	r(mT2-600/300)	11.6σ
	r(mT2-300)	1.5σ			r(MET520)	2.7σ	r(Meff1400)	3.2σ	r(MET520)	9.2σ
	r(10t-c30)	1.4σ			r(Muon20)	2.5σ	r(MET520)	3.1σ	r(HT900)	6.8σ
1000	r(5j)(4j)	3.4σ			r(MET520)	6.0σ	r(MET520)	7.1σ	r(mT2-600/300)	33.7σ
	$r(\tau-tag)$	2.7σ			r(Muon20)		r(HT900)		r(MET520)	22.9σ
	r(mT2-400)	2.6σ			r(5j)(3j)		r(mT2-600/400)		r(HT900)	14.6σ
LM8										
100	r(5j)(3j)	5.5σ	r(5j)(3j)	3.3σ			r(5j)(3j)	3.1σ	r(Muon20)	10.1σ
100	r(10t-c30)		r(Muon20)	3.1σ			r(mT2-400)		r(mT2500/300)	5.2σ
	r(Muon20)		r(MET520)	2.4σ			r(20t-c45)		r(Hem3)	4.1σ
1000	r(5j)(3j)	10.1σ	r(Muon20)	7.2σ			r(5j)(3j)	5.4σ	r(Muon20)	25.8σ
1000	r(Muon20)		r(Hem3)	5.7σ			r(Hem3)		r(mT2-600/300)	20.0σ
	r(Hem3)		r(5j)(3j)	5.6σ			r(Muon20)		r(Hem3)	14.2σ
CS4d	· · ·						, , , , , , , , , , , , , , , , , , ,		· · ·	
100	r(MET520)	3.5σ	r(HT900)	3.0σ	r(5j)(3j)	2.8σ			r(Muon20)	6.8σ
100	r(HT900)		r(MET520)		r(mT2-300)	2.1σ			r(MET420)	5.5σ
	r(Meff1400)		r(Meff1400)		r(10t-c30)	1.9σ			r(mT2-500/300)	
1000	r(MET520)		r(MET520)		r(5j)(3j)	4.2σ			r(Muon20)	17.3σ
1000	r(mT2-600)		r(mT2-600/400)		r(10tdiff-c30)				r(mT2-500)	17.3σ 12.8σ
	r(HT900)		r(HT900)		r(Hem3)	3.6σ			r(MET520)	11.5σ
CICC	1(111000)	0.20	1(111000)	1.00	-(0.00				11.00
CS6	r(MET490)	7.0~	r(MFT490)	60-	$r(h + nc)^*$	650	r(MET490)	12-		
100	r(MET420) r(mT2-500/300)		r(MET420) r(mT2-500/300)		$r(b-tag)^*$ r(Muon20)		r(MET420) r(Muon20)	4.3σ 4.0σ		
	r(HT900)		r(HT900)		r(MET420)		r(mT2-500/300)	2.9σ		
1000		_	× /	_	· · ·		× / /			
1000	r(MET520)		$r(b-tag)^*$		$r(b-tag)^*$		$r(b-tag)^*$	14.9σ		
	$r(b-tag)^*$		r(MET520)		r(Muon20)		r(Muon20)	8.4σ		
	r(mT2-500)	10.2σ	r(mT2-500)	9.2σ	r(MET520)	1.0σ	r(MET420)	7.6σ		

Group 2 spectra

Group 2 Analysis No "gluino" in LH models

LH2 (6.5 pb LO x-sec)

 $Q_i \bar{Q}_i$

before cuts after cuts 55%64% $u^i_H d^i_H,\, u^i_H u^i_H,\, d^i_H d^i_H$ 16%14% $d_H^i W_H^+, \, u_H^i W_H^-$ 7%12% $u_H^i Z_H, u_H^i A_H, d_H^i Z_H, d_H^i A_H$ 9%5% $Q_i \bar{Q}_j, i \neq j$ 3%3%5%other 7%CS7NM6 NM4 $qq \; ilde{\chi}^0_1 \; ilde{\chi}^0_1$ 84% 83% 100% $qqq \; { ilde \chi}^0_1 \; { ilde \chi}^0_1$ 8% 16%100% $qqqq~ ilde{\chi}^0_1~ ilde{\chi}^0_1$ 95%- $bb \ q \ ilde{\chi}_1^0 \ ilde{\chi}_1^0$ 11% 2%5%SUSY: $W \ qq \ ilde{\chi}^0_1 \ ilde{\chi}^0_1$ 26%35% $h q \tilde{\chi}_1^0 \tilde{\chi}_1^0$ 14%19% $tt \ q \ ilde{\chi}^0_1 \ ilde{\chi}^0_1$ 1% 1% 11% $Z \ q \ \tilde{\chi}_1^0 \ \tilde{\chi}_1^0$ 4%5% $WW \; q \; ilde{\chi}^0_1 \; ilde{\chi}^0_1$ 4%9%

$qq A_H A_H$	64%
$W qq A_H A_H$	39%
$h qq A_H A_H$	22%
$bb A_H A_H$	14%
$WW \ qq \ A_H A_H$	8%
$\frac{WW \ qq \ A_H A_H}{hh \ bb \ A_H A_H}$	8% 4%
-	

	NM6		NM4		CS7	
LO cross section (pb)	2.3		10.3		5.0	
	before cuts	after cuts	before cuts	after cuts	before cuts	after cuts
$ ilde{q}_iar{ ilde{q}}_i$	31%	29%	34%	26%	-	-
$ ilde{u} ilde{d}, ilde{u} ilde{u}, ilde{d} ilde{d}$	32%	28%	29	23%	-	-
squark-gluino	3%	10%	5%	23%	4%	8%
gluino–gluino	-	-	-	-	96%	91%
squark-chargino	2%	2%	3%	1%		-
squark-neutralino	4%	1%	4%	-	- 12 61	-
$\tilde{q}_i \bar{\tilde{q}}_j, i \neq j$	15%	17%	17%	14%	-	-
other	13%	13%	8%	13%	-	-

Results (Group 2)

	LH2		NM4		CS7	
LH2						
100			r(mT2-500)	4.9σ	r(mT2-500)	6.7σ
			r(Meff1400)	3.0σ	r(MET420)	6.5σ
			r(M1400)	2.7σ	r(4j)(3j)	4.0σ
1000			r(mT2-500)	14.1σ	r(mT2-500)	18.9σ
			r(mT2-300) [TriJet]	11.0σ	r(MET420)	16.7σ
			r(mT2-400) [DiJjet]	7.9σ	r(mT2-500) [TriJet]	8.8σ
			r(Meff1400)	7.2σ	r(4j)(3j) [DiJet]	7.3σ
			r(M1400)	6.6σ	r(mT2-300) [DiJet]	6.7σ
NM4				222		
100	r(Meff1400)	4.2σ			r(Meff1400)	4.3σ
	r(M1400)	4.0σ			r(DiJet)	4.1σ
	r(mT2-400)	3.8σ			r(MET420)	4.0σ
1000	r(Meff1400)	10.8σ			r(Meff1400)	11.2σ
	r(TriJet)	10.4σ			r(MET520)	10.6σ
	r(M1400)	9.8σ			r(DiJet)	10.6σ
	r(DiJet	8.2σ			r(HT900)	9.0σ
	r(HT900)	8.0σ			r(4j)(3j)	6.1σ
CS7						
100	r(MET420)	4.9σ	r(4j)(3j)	4.4σ		
	r(4j)(3j)	4.6σ	r(MET420)	3.3σ		
	r(mT2-400)	4.1σ	r(Hem1)	3.2σ		
1000	r(5j)(3j) [DiJet]	16.8σ	r(4j)(3j)	9.4σ		
	r(TriJet)	10.4σ	r(5j)(3j) [DiJet]	7.4σ		
	r(MET420)	9.6σ	r(Meff1400)	7.4σ		
	r(4j)(3j)	9.5σ	r(DiJet)	6.9σ		
	r(mT2-500)	8.3σ	r(HT900)	6.2σ		

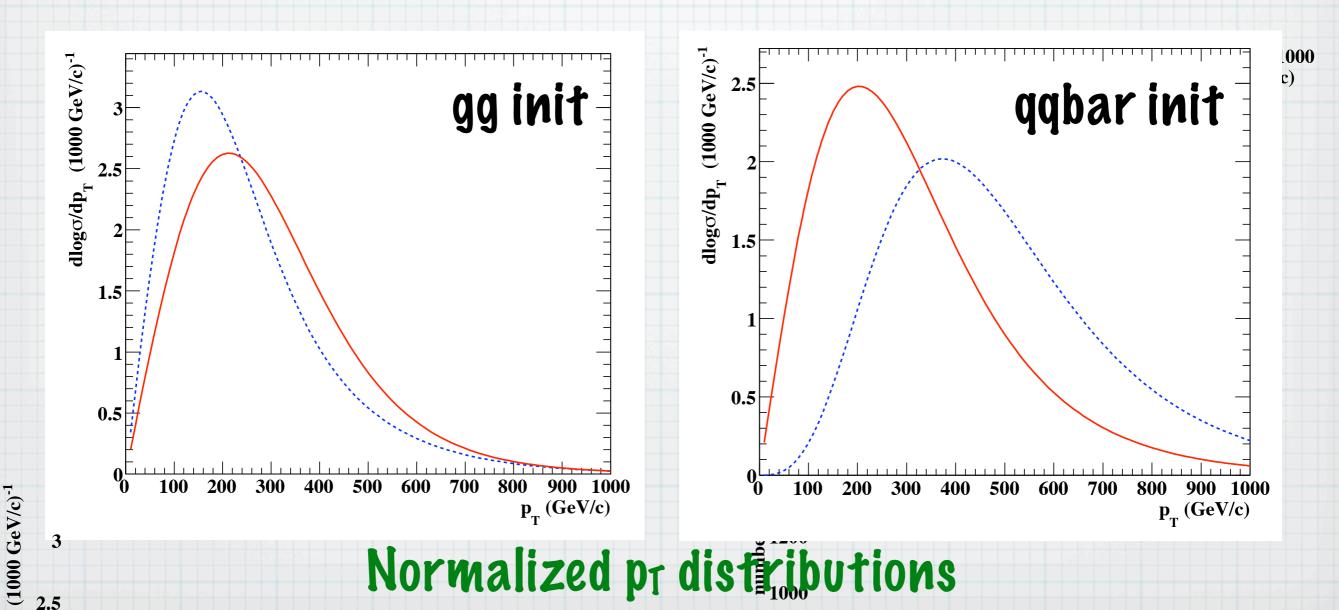
Huh? I thought you couldn't do spin at the LHC...

Spin statistics

Little Higgs vs SUSY

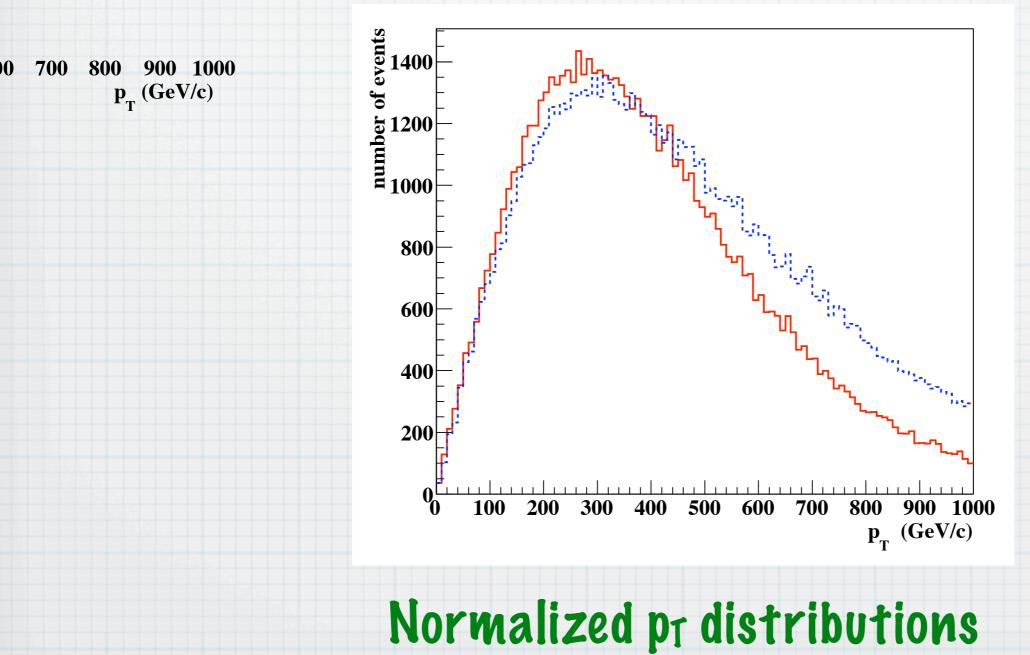
Boson cancels boson Fermion cancels fermion Boson cancels fermion and v.v.

"Ancient wisdom" - models differing only by spin have very different cross sections


Lesser Known: different p₁ spectra!

ADOUT S 1.5 red solid) ve and

Heavy quarks (red solid) vs. colored scalars (blue dashed)


(e.g. T-odd quarks)

0.5 (e.g. squarks)

Actual Models

LH2 (red) vs susy model NM6 (blue)

Distinguish spins:

1) Start with initial sample (analysis path)

2) Create box with higher p_T events

ratio of counts in high p_T box to total # in path should be a discriminating variable

LH2NM46.5pb10.3pb14%9.4%

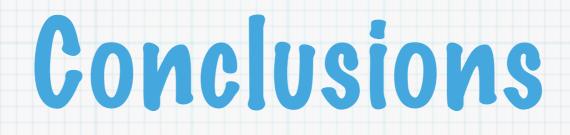
Lookalikes, but already discriminated at 100pb⁻¹!

Spindone in first 100pb⁻¹ Exp. Statistical Error

LH2 vs. NM4 $[100 \text{ pb}^{-1}]$							
Variable	LH2	NM4	Separation				
	MET	1					
r(mT2-500)	0.16	0.05	4.87				
r(mT2-400)	0.44	0.21	4.84				
r(mT2-300)	0.75	0.54	3.49				
r(Meff1400)	0.11	0.25	2.99				
r(mT2-500/300)	0.21	0.09	2.98				
r(M1400)	0.07	0.19	2.69				
r(mT2-400/300)	0.58	0.40	2.48				
r(HT900)	0.13	0.24	2.34				
r(MET420)	0.48	0.37	2.00				
r(mT2-500/400)	0.36	0.22	1.47				

Exp. Systematic Error 50 Vieo. Systematic Error

MT2 at high piese strong discriminator


If this holds up under closer examination, will overturn a lot of conventional wisdom

10

Most techniques rely on detailed shapes of complicated distributions (lots of data)

Future Study

- This was a "dry-run"/exploration of what the best things are to do with the first 100pb⁻¹ of data given a signal in the E₁(miss) analysis path
 - primitive sim, left out a few details, but stayed realistic enough to flesh out a grand master plan
- * Next:
 - Full sim, including electrons, better E₁(miss), more lookalikes (UED? More LH models?), NLO
 - Spin discrimination in model comparisons
 - * what do we learn about dark matter?
 - other analysis paths?

- We will hopefully have 5 sigma discovery by the end of '09 (first 100pb⁻¹)
 - * we've developed techniques to discriminate models efficiently with this small amount of data
 - set of robust observables (ratios of inclusive counts)
 - "realistic" in that we minimize systematics, and stick to things that are (or should be) achievable in first year
- Compelling evidence for spin discrimination at moment of discovery