Duality Cascade in the Sky

(R.Bean, X.Chen, G.Hailu, S.H.Tye and JX, to appear)

Jiajun Xu
Cornell University
02/01/2008

Our Current Understanding of the Early Universe

- to explain the local feature in WMAP data, we need local feature in the slow-roll inflaton potential.
(Adams, Ross, Sarkar 1997, Leach, Liddle, 2001
Hunt, Sakar, 2004, 2007
Adams, Creswell, Easther, 2001 Peiris et al, 2003
Covi et al, 2006, 2007)

$$
\begin{gathered}
V(\phi)(1+\delta(\phi)) \\
P_{\mathcal{R}}=\frac{H^{2}}{2 \pi \dot{\phi}}
\end{gathered}
$$

- local features in the potential also generates large non-gaussianity. (Chen, Easther, Lim, 2006)

$$
f_{N L} \sim \epsilon, \eta^{\prime}
$$

- In brane inflation, local features arise both in slowroll scenario and DBI scenario, due to gauge/gravity duality.

Brane Inflation (Dvali \& Tye)

Brane Inflation (ккцммт)

Consider D3 Branes moving in the $A d S_{5} \times X_{5}$ background

$$
d s^{2}=h^{2}(r)\left(-d t^{2}+a(t)^{2} d \mathbf{x}^{2}\right)+h^{-2}(r)\left(d r^{2}+r^{2} d s_{X_{5}}^{2}\right)
$$

in the UV region, $d s_{X 5}^{2}=d s_{T^{1,1}}^{2}$

Klebanov-Strassler Throat

$$
\begin{gathered}
\frac{1}{2 \pi \alpha^{\prime}} \int_{A} F_{3}=2 \pi M, \quad \frac{1}{2 \pi \alpha^{\prime}} \int_{B} H_{3}=-2 \pi K \\
\text { size of } \mathrm{S} 3 \text { at the bottom: } e^{-2 \pi K /\left(M g_{s}\right)}
\end{gathered}
$$

Gauge Gravity Duality

- gauge theory $\operatorname{SU}(\mathrm{N}+\mathrm{M}) \mathrm{XSU}(\mathrm{N}), \mathrm{N}=\mathrm{KM}$, with bifundamental chiral fields A1, A2, B1, B2

$$
\begin{aligned}
& T_{1}+T_{2}=\frac{2 \pi}{g_{s} e^{\Phi}}, \\
& T_{1}-T_{2}=\frac{2 \pi}{g_{s} e^{\Phi}}(\hat{b}-1)=\frac{2 \pi}{g_{s} e^{\Phi}}\left(\bar{b}_{2}(\bmod 2)\right) \\
& \\
& \quad R=\frac{1}{2}(\partial \Phi)^{2}+\frac{1}{2} g_{s}^{2} e^{2 \Phi}\left(\partial C_{0}\right)^{2}+\frac{1}{24} e^{-\Phi} H_{3}^{2}+\frac{1}{24} g_{s}^{2} e^{\Phi} \tilde{F}_{3}^{2} .
\end{aligned}
$$

The Slow-Roll Scenario with Running Dilaton

- expand the DBI action in non-relativistic limit

$$
\begin{aligned}
& -e^{-\Phi} T(\phi) \sqrt{1-\frac{\dot{\phi}^{2}}{T(\phi)}}+T(\phi)-V(\phi) \\
= & \left.\frac{1}{2} e^{-\Phi} \dot{\phi}^{2}-T(\phi)\left(e^{\Phi}-1\right)+V(\phi)\right]
\end{aligned}
$$

$T(\phi)=T_{3} h^{4}(\phi)$ sharp features in the warp factor translates into the effective potential

- $T(\phi) \sim \phi^{4} \gg \phi_{A}^{4} \sim V(\phi)$, too strong for slow-roll unless $\phi \gg M_{p l}$. However, $\frac{\Delta \phi}{M_{\mathrm{pl}}} \lesssim \frac{1}{\sqrt{K M}} \ll 1$
- Need $e^{-\Phi} \approx 1$, so that $T(\phi)\left(e^{-\Phi}-1\right) \ll V(\phi)$

the warp factor

- A series of steps in the warp factor, spaced according to

$$
\begin{aligned}
\ln \left(r_{p+1}\right)-\ln \left(r_{p}\right) & \simeq \frac{2 \pi}{3 g_{s} M} \\
h^{4}(r) & \simeq \frac{r^{4}}{R_{B}^{4}} \frac{K}{p_{l}}(1+\Delta), \quad \Delta=\sum_{p_{i}}^{K} \frac{3 g_{s} M}{16 \pi} \frac{1}{p^{3}}\left[1+\tanh \left(\frac{r-r_{p}}{d_{p}}\right)\right] \\
R_{B} & =\frac{27}{4} \pi g_{s} K M \alpha^{\prime 2}
\end{aligned}
$$

DBI Inflation

$$
S=\int d^{4} x \sqrt{-g}\left[-e^{-\Phi} T(\phi) \sqrt{1-\frac{\dot{\phi}^{2}}{T(\phi)}}+T(\phi)-V(\phi)\right]
$$

- the exact equation of motion from the DBI action is

$$
\begin{aligned}
& V(\phi)+T(\phi)\left(c_{s}^{-1}-1\right)=3 H^{2}, \\
& \ddot{\phi}-\frac{3}{2} \frac{T^{\prime}(\phi)}{T(\phi)} \dot{\phi}^{2}+3 H c_{s}^{2} \dot{\phi}+T^{\prime}(\phi)+c_{s}^{3}\left[V^{\prime}(\phi)-T^{\prime}(\phi)\right]=0 \\
& c_{s}=\gamma^{-1}=\sqrt{1-\dot{\phi}^{2} / T}
\end{aligned}
$$

- $T(\phi)$ sets the speed limit, $\dot{\phi}^{2}<T(\phi)$
- the brane moves relativistically, $c_{s} \ll 1, \gamma \gg 1$
- a sharp step in $T(\phi) \longrightarrow$ sharp change in c_{s}
- non-gaussian power spectrum $f_{N L} \sim c_{s}^{-2} \sim 10^{2}$

Observable effects (I): the power spectrum

- the power spectrum $\zeta(\tau, \mathbf{k})=u(\tau, \mathbf{k}) a(\mathbf{k})+u^{*}(\tau,-\mathbf{k}) a^{\dagger}(-\mathbf{k})$

$$
\begin{gathered}
v_{k}^{\prime \prime}+\left(k^{2} c_{s}^{2}-\frac{z^{\prime \prime}}{z}\right) v_{k}=0 \\
v_{k} \equiv z u_{k}, \quad z \equiv a \sqrt{2 \epsilon} / c_{s} \\
v_{k} \sim e^{i k \tau}, c_{s}^{2} k^{2} \gg z^{\prime \prime}\left|z \quad v_{k} \sim z, c_{s}^{2} k^{2} \ll z^{\prime \prime}\right| z
\end{gathered}
$$

- Define three parameters $\epsilon \equiv-\frac{\dot{H}}{H^{2}}, \quad \tilde{\eta} \equiv \frac{\dot{\epsilon}}{H \epsilon}, \quad s \equiv \frac{\dot{c}_{s}}{H c_{s}}$.
- the time dependent "mass" $z^{\prime \prime} / z$, encodes all the information of the background space-time

$$
\begin{array}{r}
\frac{z^{\prime \prime}}{z}=2 a^{2} H^{2}\left(1-\frac{\epsilon}{2}-\frac{3 \tilde{\eta}}{4}-\frac{3 s}{2}-\frac{\epsilon \tilde{\eta}}{4}+\frac{\epsilon s}{2}+\frac{\tilde{\eta}^{2}}{8}-\frac{\tilde{\eta} s}{2}+\frac{s^{2}}{2}+\frac{\dot{\tilde{\eta}}}{4 H}-\frac{\dot{s}}{2 H}\right) \\
\text { dominant in slow-roll } \\
\text { dominant in } \\
\text { DBI inflation }
\end{array}
$$

potential step in slow-roll

warp factor step in IR-DBI

Slow-roll power spectrum

- moving across the potential step generates efolds

$$
\Delta N_{e}=H d t=H \frac{d}{\dot{\phi}} \sim \frac{d}{\sqrt{\epsilon}}
$$

- $\frac{z^{\prime \prime}}{z}=2 a^{2} H^{2}\left(1-\frac{V^{\prime \prime}}{H^{2}}\right)$

$$
\begin{aligned}
& \sim 2 a^{2} H^{2}\left(1-\frac{c}{d^{2}} \frac{1}{H^{2}}\right) \\
& \sim 2 a^{2} H^{2}\left(1-\frac{c}{\epsilon} \frac{1}{\Delta N_{e}^{2}}\right)
\end{aligned}
$$

observable effects

- in brane inflation models, ϵ is tiny

$$
\epsilon \equiv-\frac{\dot{H}}{H^{2}}=\frac{1}{2 c_{s}} \frac{\dot{\phi}^{2}}{H^{2}} \sim\left(\frac{d \phi}{d N_{e}}\right)^{2}
$$

conservatively, take $(\Delta \phi)^{2}=\frac{1}{K M}=10^{-4}, \Delta N_{e}=10^{2}, \epsilon \sim 10^{-8}$
In KKLMMT, $\epsilon \sim 10^{-11} \rightarrow$ we are able to detect a potential step with $c \sim 10^{-11}$

Numerical power spectrum in slow-roll

$\dot{\phi}=\sqrt{V \epsilon / 3}$

$$
\begin{gathered}
P_{R}=\frac{H^{2}}{2 \pi \dot{\phi}} \\
\frac{\sqrt{c+\epsilon / 3}}{\sqrt{\epsilon / 3}}=\sqrt{1+3 c / \epsilon}
\end{gathered}
$$

IR-DBI power spectrum

- moving across the step in warp factor $\Delta N_{e} \equiv H \Delta t \approx H \frac{d}{\dot{\phi}}=\frac{d}{\sqrt{2 c_{s} \epsilon}}$
- the sound speed changes sharply upon crossing the step

$\frac{\Delta c_{s}}{c_{s}}=\frac{\Delta T}{T}=2 b$ always saturated $\Longrightarrow \begin{gathered}\text { oscillation amplitude } \\ \text { weakly depends on step width }\end{gathered}$

need $b=-0.3$, too large for steps in duality cascade

Multiple Steps

- duality cascade gives a series of " K " steps, spaced according to

$$
\ln \left(r_{p+1}\right)-\ln \left(r_{p}\right) \simeq \frac{2 \pi}{3 g_{s} M}
$$

- feature on scale k in the power spectrum, shows up on angular scale l on WMAP

$$
\frac{\pi}{l} \approx \frac{k^{-1}}{H_{0}^{-1}}
$$

$$
-d N_{e} \simeq d \ln k \simeq d \ln l \simeq H d t \simeq \frac{H}{\dot{\phi}} d \phi
$$

$$
d \ln l \propto d \phi
$$

$$
\frac{\phi_{p}}{\phi_{p+1}} \approx \frac{\phi_{p+1}}{\phi_{p+2}} \approx \frac{\phi_{p+2}}{\phi_{p+3}} \approx \exp \left(-\frac{2 \pi}{3 g_{s} M}\right) \approx 1+\delta
$$

$$
\frac{\phi_{p}-\phi_{p+1}}{\phi_{p+1}-\phi_{p+2}} \approx 1+\delta
$$

- take $\mathrm{I}=2, \mathrm{I}=20$ as two steps for example,

$$
\ln (2)-\ln (20)=\ln (20)-\ln \left(l_{3}\right) \Rightarrow l_{3}=200, l_{4}=2000
$$

Observable effects (II): non-gaussianity

- the three-point correlation function

$$
\zeta(\tau, \mathbf{k})=u(\tau, \mathbf{k}) a(\mathbf{k})+u^{*}(\tau,-\mathbf{k}) a^{\dagger}(-\mathbf{k})
$$

- in slow-roll,

$$
\begin{aligned}
&\left\langle\zeta\left(\tau_{\text {end }}, \mathbf{k}_{1}\right) \zeta\left(\tau_{\text {end }}, \mathbf{k}_{2}\right) \zeta\left(\tau_{\text {end }}, \mathbf{k}_{3}\right)\right\rangle \\
&= i\left(\prod_{i} u_{k_{i}}\left(\tau_{\text {end }}\right)\right) \int_{-\infty}^{\tau_{\text {end }}} d \tau a^{2}(\overbrace{\eta^{\prime}}^{\prime} u_{k_{1}}^{*}(\tau) u_{k_{2}}^{*}(\tau) \frac{d}{d \tau} u_{k_{3}}^{*}(\tau)+\text { perm }) \\
& \times(2 \pi)^{3} \delta^{3}\left(\sum_{i} \mathbf{k}_{i}\right)+\text { c.c. }, \\
& \text { small by construction } \\
& \text { in usual slow-roll, }
\end{aligned},
$$

- in DBI case, leading term is $\frac{a^{3} \epsilon}{2 c_{s}^{2}} \frac{d}{d t}\left(\frac{\tilde{\eta}}{c_{s}^{2}}\right) \zeta^{2} \dot{\zeta}$

$$
\begin{aligned}
\left(a^{3} \epsilon / c_{s}^{4}\right) \zeta \dot{\zeta}^{2} & \longmapsto f_{N L} \sim 1 / c_{s}^{2} \\
\frac{d}{d t}\left(\frac{\tilde{\eta}}{c_{s}^{2}}\right) & \longmapsto f_{N L}^{f e a t u r e}
\end{aligned}
$$

- slow roll case $f_{N L}=\mathcal{O}(\tilde{\eta})$

$$
\begin{aligned}
& \Delta \epsilon \approx \Delta V / H^{2} \approx 5 c \\
& \Delta t_{\text {accel }} \approx \Delta \phi / \dot{\phi} \approx d / \sqrt{c V},
\end{aligned} \quad \Delta \tilde{\eta} \approx \tilde{\eta}=\frac{\dot{\epsilon}}{H \epsilon} \approx \frac{7 c^{3 / 2}}{d \epsilon}
$$

data fitting give $c / \epsilon=0.2 \quad \sqrt{c} / d=\mathcal{O}(1) \quad f_{N L}=\mathcal{O}(1)$

- IR-DBI case $f_{N L}^{\text {feature }} \sim \frac{d}{d t}\left(\frac{\tilde{\eta}}{c_{s}^{2}}\right) \Delta t \sim \Delta\left(\frac{\tilde{\eta}}{c_{s}^{2}}\right)$

$$
\begin{gathered}
\tilde{\eta} \approx c_{s} s \\
f_{N L}^{\text {feature }} \sim \frac{\Delta s}{c_{s}} \sim \frac{1}{c_{s}} \frac{b}{\Delta N_{e}} \\
b=0.01, c_{s}=0.1, \Delta N_{e}=0.01, \Rightarrow f_{N L}^{\text {feature }}=\mathcal{O}(10)
\end{gathered}
$$

Conclusions

- Duality cascade predicts a series of steps in the warp geometry, the steps are equally spaced in $\ln (r)$. Steps are generic, with KS a calculable example.
- Generically, dilaton runs, and features in the warp geometry becomes features in slow-roll potential.
- In the slow-roll power spectrum, the sensitivity to the steps is controlled by c / ϵ. Brane inflation is highly sensitive to small features with $\epsilon \sim 10^{-11}$
- In DBI inflation, sharp features in warp factor may not be observed in the power spectrum, but gives detectable level non-guassianity.
- The steps features in the power spectrum are always accompanied by large non-guassianity on the same scale => chances to tell the feature from statistical fluctuation / cosmic variance

