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Our Current Understanding of the Early Universe

- Homogeneous and isotropic 

- Pretty flat 

- Primordial perturbations are:  

 nearly Gaussian 

 nearly adiabatic 

 nearly scale invariant

- Tensor perturbation 

δ2
H = 10−10

ΩK < O(0.02)

fNL < O(100)

S/R < O(0.2)

|ns − 1| < O(0.05), |dns/d ln k| < O(0.05)
r < O(0.5)



• to explain the local feature in WMAP data, we need 
local feature in the slow-roll inflaton potential.
(Adams, Ross, Sarkar 1997, 
Leach, Liddle, 2001
Hunt, Sakar, 2004, 2007
Adams, Creswell, Easther, 2001
Peiris et al, 2003
Covi et al, 2006, 2007)

• local features in the potential also generates large 
non-gaussianity. (Chen, Easther, Lim, 2006)

• In brane inflation, local features arise both in slow-
roll scenario and DBI scenario, due to gauge/gravity 
duality.

V (φ)(1 + δ(φ))

PR = H2

2πφ̇

fNL ∼ ε, η′
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Fig. 9. The KS throat glued to the larger Calabi-Yau manifold where the radial coordinate r ∼ R.

the combination of gravitational and gauge forces—they cancel for D3 but add for D3. To understand how

this comes about, recall that the D3 brane is the source of the F(5) field strength, which comes from the C(4)

gauge potential. The fluxes create a background of C(4) or F(5) because there is contribution to the F(5)

equation of motion (which we did not previously mention) of the form

dF5 ∼ H3 ∧ F3 (2.34)

Thus the complete action for a brane or an antibrane located at r = r1(xµ) is

S = −τ3

∫

d 4x
1

h(r1)

√

1 − h(r1)(∂r1)2 ± τ3

∫

d 4x(C4)0123 (2.35)

where the sign is + for D3 and − for D3. The form of the DBI part of the action can be understood from the
more general definition,

SDBI = −τ3

∫

d 4x
√
−G (2.36)

where the induced metric on the D3-brane is given by

Gµν = GAB
∂XA

∂xµ

∂XB

∂xν
=

1√
h

ηµν −
√

h∂µr ∂νr (2.37)

in the case where r is the only one of the 6 extra dimensions which depends on xµ. Furthermore the equation

of motion for the RR field has the solution

(C4)αβγδ =
1

h(r1)
εαβγδ (2.38)

Consider the case where the transverse fluctuations of the brane vanish, ∂r1 = 0. Then the two contribu-
tions to the action cancel for D3, but they add for D3, to give

S = −2τ3

(r1

R

)4
∫

d 4x = −2τ3a
4(r1)

∫

d 4x (2.39)

Notice that τ3a4 is the warped brane tension, and V = τ3a4 is the 4D potential energy associated with this

tension. Because of the warp factor, V is minimized at the bottom of the throat. This is why the antibrane

sinks to the bottom of the throat, whereas the D3 is neutrally buoyant—it will stay wherever one puts it.

anti-D3 D3

φ



Consider D3 Branes moving in the              background

in the UV region, 

AdS5 ×X5

from example to example. In Section 6 we make some remarks on some broader aspects of

brane inflation. A number of details are contained in the appendices.

2. The Model

First it is useful to define a basis of coordinates and a metric. The ten dimensional metric

which describes the throat is that of AdS5 × X5, where X5 has the T 1,1 geometry in the

UV region. Including the expansion of the universe, the metric has the form

ds2 = h2(r)(−dt2 + a(t)2dx2) + h−2(r)(dr2 + r2ds2
X5

), (2.1)

Far away from the bottom of the throat, dsX5 = ds2
T 1,1 is the metric that describes a base

of the conifold T 1,1 which is an S3 fibered over S2. Here h(r) is the warp factor, that is, a

generic mass m → mh(r) in the presence of h(r).

The inflaton φ is related to the position of nB 4-dimensional space-time filling D3-

branes. In IR DBI inflation, they are moving out of the B throat into the bulk and then

falling into the A throat. Inflation takes place while the branes are moving out of the B

throat. In UV DBI inflation or the KKLMMT scenario, inflation takes place when they are

moving down the A throat. Specifically, we use a single coordinate to describe collectively

the motion of the branes,

φ ≡
√

nBT3r . (2.2)

The edge of the throat is identified with φR ≡
√

nBT3R, with

R4 =
27

4
πgsNα′2, N = KM . (2.3)

In regions where several kinds of backreactions from the 4d expanding background

[34, 36], the stringy effects [34, 29] and the probe-branes [10, 37] can be ignored, the

following DBI-CS action describes the radial motion of the D3 branes,

S =

∫

d4x
√
−g



−e−ΦT (φ)

√

1 − φ̇2

T (φ)
+ T (φ) − V (φ)



 . (2.4)

The warped D3 brane tension T (φ) and the inflaton potential is given by

T (φ) = nBT3h
4(φ) , (2.5)

V (φ) =
β

2
H2φ2 + VDD̄(φ) , (2.6)

VDD̄(φ) = V0

(

1 − nBV0

4π2v

1

(φ − φA)4

)

. (2.7)

Here v is the volume ratio; one may take v = 16/27. For our purpose here, the Coulomb

term is negligible so VDD̄(φ) = V0 = 2nAT3h4(φA) is the effective vacuum energy. We

expect |β| ∼ 1. Positive β ' 1 for UV DBI model while negative β ∼ −1 for IR DBI

model. Slow-roll inflation requires |β| ( 1.

– 6 –

ds2
X5 = ds2

T 1,1

from example to example. In Section 6 we make some remarks on some broader aspects of

brane inflation. A number of details are contained in the appendices.

2. The Model

First it is useful to define a basis of coordinates and a metric. The ten dimensional metric

which describes the throat is that of AdS5 × X5, where X5 has the T 1,1 geometry in the

UV region. Including the expansion of the universe, the metric has the form

ds2 = h2(r)(−dt2 + a(t)2dx2) + h−2(r)(dr2 + r2ds2
X5

), (2.1)

Far away from the bottom of the throat, dsX5 = ds2
T 1,1 is the metric that describes a base

of the conifold T 1,1 which is an S3 fibered over S2. Here h(r) is the warp factor, that is, a

generic mass m → mh(r) in the presence of h(r).

The inflaton φ is related to the position of nB 4-dimensional space-time filling D3-

branes. In IR DBI inflation, they are moving out of the B throat into the bulk and then

falling into the A throat. Inflation takes place while the branes are moving out of the B

throat. In UV DBI inflation or the KKLMMT scenario, inflation takes place when they are

moving down the A throat. Specifically, we use a single coordinate to describe collectively

the motion of the branes,

φ ≡
√

nBT3r . (2.2)

The edge of the throat is identified with φR ≡
√

nBT3R, with

R4 =
27

4
πgsNα′2, N = KM . (2.3)

In regions where several kinds of backreactions from the 4d expanding background

[34, 36], the stringy effects [34, 29] and the probe-branes [10, 37] can be ignored, the

following DBI-CS action describes the radial motion of the D3 branes,

S =

∫

d4x
√
−g



−e−ΦT (φ)

√

1 − φ̇2

T (φ)
+ T (φ) − V (φ)



 . (2.4)

The warped D3 brane tension T (φ) and the inflaton potential is given by

T (φ) = nBT3h
4(φ) , (2.5)

V (φ) =
β

2
H2φ2 + VDD̄(φ) , (2.6)

VDD̄(φ) = V0

(

1 − nBV0

4π2v

1

(φ − φA)4

)

. (2.7)

Here v is the volume ratio; one may take v = 16/27. For our purpose here, the Coulomb

term is negligible so VDD̄(φ) = V0 = 2nAT3h4(φA) is the effective vacuum energy. We

expect |β| ∼ 1. Positive β ' 1 for UV DBI model while negative β ∼ −1 for IR DBI

model. Slow-roll inflation requires |β| ( 1.

– 6 –

T (φ) = T3h
4(φ)

T3 ∼ m4
s

gs
=

m4
s

〈gs〉
e−Φ(r)

V (φ) =
β

2
H2φ2 + VDD̄(φ)

VDD̄(φ) = V0

(
1− V0

4π2v

1
φ4

)

V0 = 2T3h
4
A

Brane Inflation (KKLMMT)



Klebanov-Strassler Throat
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3-cycles mentioned above, similar to turning on an electric field along the 1-cycle (a circle) in the Schwinger

model (electrodynamics in 1+1 dimensions). The lines of flux circulate and so obey Gauss’s law in this way.

In a similar way to the 4-form flux of heterotic M-theory discussed in the previous section, these fluxes are

also quantized, due to the generalized Dirac quantization argument. There are integersM andK such that

1

2πα′

∫

A
F3 = 2πM,

1

2πα′

∫

B
H3 = −2πK (2.29)

where the slope parameter α′ is related to the string mass scale by α′ = 1/M2
s , and A,B label the 3-cycles

mentioned above. It can be shown that these 3-cycles are specified by the conditions
∑4

i=1 x2
i = z for the

A-cycle and x2
4−

∑3
i=1 y2

i = z if wn = xn + iyn. The size of the S3 at the tip of the conifold gets stabilized

by the presence of the fluxes; the complex structure modulus takes the value

z = e−2πK/(Mgs) ≡ a3(r0) (2.30)

We will discuss the meaning of a(r0) shortly.
When the fluxes are turned on, they also warp the geometry of the conifold. The line element for the full

10D geometry is

ds2 =
dxµdxµ
√

h(r)
+

√

h(r)
(

dr2 + r2ds2
T1,1

)

(2.31)

which is approximately AdS5×T1,1. The factor T1,1 is the 5D base of the cone, known as an Einstein-Sasaki

space, which for our purposes is some compact angular space whose details will not be important. The warp

factor h(r) is approximately of the form

h(r) =
R4

r4

(

1 + gs
M

K
× (ln r correction)

)

∼=
R4

r4
, R4 =

27

4
πgsNα′2, N = MK (2.32)

This is a stringy realization of the Randall-Sundrum (RS) model [27], known as the Klebanov-Strassler

throat, where the bottom of the throat (the tip of the conifold) is at r = r0, such that

r0

R
= z1/3 = a(r0) = warp factor (2.33)

This explains the introduction of a3(r0) in (2.30). The approximation h = (R/r)4 gives the simple AdS5

geometry for 4D Minkowski space times radial direction, and R is the curvature scale of the AdS5. The

AdS part of the metric (2.31) can be converted to the RS form ds2 = e±2kydx2 + dy2 through the change

of variables dy = ∓(R/r)dr, y = ∓R ln r, r = e∓ky , where k = 1/R. As shown in fig. 9, the top of the
throat is understood to be smoothly glued onto the bulk of the greater Calabi-Yau manifold, whose geometry

could be quite different from that of (2.31). The gluing is done at some radius r ∼ R where h(r) ∼ 1.
Let us take stock of what the fluxes have done for us before we continue with the search for inflation.

First, they stabilized the complex structure modulus z, which without the fluxes was a massless field, with
an undetermined value. In a similar way, they stabilize the dilaton, which is essential for any realistic string

model since it determines the string coupling, and would give a ruled-out 5th force if massless. Second,

they have given us warping, which introduces interesting possibilities for generating hierarchies of scales

and generally having another parameter to tune.

Now we consider how the KS throat can be relevant for brane-antibrane inflation. We will see that a D3

brane by itself feels no force in the throat, whereas the D3 antibrane sinks to the bottom. This is because of
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Gauge Gravity Duality

• gauge theory SU(N+M)XSU(N), N=KM, with bi-
fundamental chiral fields A1, A2, B1, B2

•
T
2 (2) SU(N

)

ln(r/r0)

b̂ = 2

b̂ = 0

T = 8π2

g2

ln(r1/r0)ln(r2/r0)

SU(N
+ M

)

0

SU(N
)

T1(
1)

T
2 (1)

T1(2
)

SU(N −
M

)

Figure 1: A schematic comparison of the flows of the couplings in SU(N + M)× SU(N)

without the corrections (dashed lines) versus that with the corrections to the anomalous

mass dimension (solid lines). Note that a Seiberg duality transition occurs when the flow

of T−(1) = T1(1) − T2(1) reaches a period in b2.

The variable b̄2 measures the deviation of T− from zero due to the backreaction B2

potential from where the two gauge couplings have equal magnitude in r1 < r < r0.
Therefore, the flow is such that b̄2 = 0 at the first point where the two couplings are
equal. We will arrange the supergravity flow such that b2(r) vanishes at the edge of

the throat, r = r0, and 0 ≤ b̂ ≤ 2. Following from the quantization condition on H3,
πb2 must be a periodic variable with period 2π. This periodicity is crucial for the

cascade phenomenon. Note that b2 decreases as the theory flows towards the infrared
(smaller r) and Seiberg duality takes place when b̂ − 1 reaches −1. For r1 ≤ r < r0,

we label the couplings as Ti(1), where “1” labels the fact that the flow is in the first
region, i.e., the couplings are for the SU(N + M) × SU(N) gauge theory. We see
from (3.12) and (3.13) that the running of T1(1) and T2(1),

µ
∂T1(1)

∂µ
= 3M − 3

2

M2

N + M
, (4.18)

µ
∂T2(1)

∂µ
= −3M − 3

2

M2

N
, (4.19)

µ
∂T−(1)

∂µ
= 6M +

3

2

M3

N(N + M)
. (4.20)

The flows are illustrated in Figure 1. Let us first consider the KS case without
the corrections to the anomalous mass dimension. Let us start at the value of r < r0
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one of the objects (AiBj) made out of the bifundamental chiral superfields, which

contains one A and one B superfields and which must have the same anomalous
dimension because of SU(2) global flavor symmetry in the theory. Let us denote the

gauge coupling of the larger group, which is SU(N + M) in the 1st region, by g1,
and that of the smaller group, which is SU(N) in the 1st region, by g2, and define
T1 ≡ −2πiτ1 = 8π2/g2

1 and T2 ≡ −2πiτ2 = 8π2/g2
2. Suppose we start with taking one

gauge group as a weakly coupled gauge theory relative to the other, then we can treat
that weaker group as a flavor symmetry. The running of the physical couplings [23]

with appropriate normalization of the gauge chiral superfields can then be written
as

β1 = µ
dT1(1)

dµ
= 3(N + M) − 2N(1 − γ1(1)), (3.1)

β2 = µ
dT2(1)

dµ
= 3N − 2(N + M)(1 − γ2(1)), (3.2)

and

βη = µ
dη(1)

dµ
= 1 + 2γη(1), (3.3)

where we have not yet identified the γs. We have put different indices on γ1(l) in

(3.1), on γ2(l) in (3.2) and on γη(l) in (3.3) since the two gauge groups have different
ranks and “see” different numbers of flavors and would tend to flow with different

anomalous dimensions. The number “1” in the parentheses denotes the l = 1st

region, in the UV region just before the first duality transformation in the cascade.

According to Seiberg duality, N = 1 supersymmetric SU(N) electric gauge
theory with Nf ∈ (3N/2, 3N) flavors, which becomes strongly coupled in the IR, flows
to a nontrivial conformal IR fixed point where it joins a dual SU(Nf −N) magnetic

gauge theory with Nf flavors. Now if we consider the SU(N + M) gauge theory
and think of the other SU(N) gauge group as a weakly gauged flavor symmetry,

we have N = 1 supersymmetric SU(N + M) gauge theory with 2N flavors; its
running is faster than the running of an SU(N) gauge theory with 2(N +M) flavors.
Therefore, the SU(N + M) gauge theory would get strongly coupled faster in the

IR and following Seiberg duality the appropriate description of the theory in this
region is in terms of a weaker dual magnetic theory. The question of interest to us

is the effective value of the anomalous dimension which dictates the flow. Although
it is the SU(N + M) factor that undergoes duality transformation in the first step

of the cascade, the flow cannot be dictated simply by the fixed point of SU(N + M)
gauge theory with 2N flavors for two reasons. First, the SU(N) group factor which
gives a flavor symmetry to SU(N + M) would itself get strongly coupled during

part of the flow. Second, the running of the tree level coupling has a fixed point for
anomalous dimension γη = −1/2. In fact, if we consider the two flows separately, the

SU(N + M) factor tends to make γ < −1/2 while the SU(N) factor tends to make
γ > −1/2, and the strengths are slightly different and that is where the corrections

– 7 –

this case with N = 1 supersymmetry was obtained by Maldacena and Nunez (MN)

[28]. The KS solution on the deformed conifold with F5 and F3 fluxes turned on
and the MN solution on the conifold with the H3 flux turned on are two well-known

regular solutions on type IIB background with N = 1 supersymmetry. A natural
question was whether there existed a flow between them. The possibility for this was
analyzed and a metric and a flux ansatz for it given by Papadopoulos and Tseytlin

[29]. This issue was further investigated by Gubser, Herzog and Klebanov [21] who
found a leading order perturbative solution around the KS solution. Butti, Grana,

Minasian, Petrini, and Zaffaroni used SU(3) structures to find a one parameter set
of numerical solutions which flow in a direction from KS to MN [24].

4.2 Mapping gauge coupling running to supergravity flow

In this section we want to apply the gauge/gravity duality to map the renormalization
group flow of the gauge couplings to the running of the dilaton and the backreaction

NS-NS 2-form potential. We discuss how, with the inclusion of the corrections, the
gauge couplings in their renormalization flow may stay finite throughout the duality

cascade.

The stack of M D5-branes wrapping S2 of the AdS5 × T 1,1 background creates

3-form flux through S3 which induces a backreaction 2-form potential B2 in the S2

cycle. The sum of the two gauge coupling coefficients T+ ≡ T1 + T2, which can

be taken as the effective gauge coupling, is related to the effective string coupling
containing the dilaton in the dual gravity theory. The difference between the two
gauge coupling coefficients T− ≡ T1 − T2 is nonzero because the ranks of the two

gauge groups are different and it describes the nonconformal nature of the theory.
Indeed, T− must dictate the flows in both the gauge and the gravity theories. We

note that the supergravity equation of motion in the presence of nonzero R-R F3 and
F5 fluxes from the D3- and D5- branes could have a consistent set of solutions only

if the NS-NS 2-form potential B2 is nonzero. Indeed, the two parameters T+ and T−

on the gauge theory side are mapped to the effective string coupling and the 2-form
potential B2 through the relations [19, 30],

T1 + T2 =
2π

gseΦ
, (4.14)

T1 − T2 =
2π

gseΦ
(b̂ − 1) =

2π

gseΦ
(b̄2(mod 2)) (4.15)

where

b̂ − 1 = b̄2 (mod 2), b̄2 = b2 − 1, (4.16)

and

b2 ≡
1

2π2α′

∫

S2

B2. (4.17)
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The corresponding equations of motion are

RMN =
1

2
∂MΦ∂NΦ +

1

2
g2

se
2Φ∂MC0∂NC0 +

1

4
e−Φ(H3)MOP (H3)

OP
N

+
1

4
g2

se
Φ(F̃3)MOP (F̃3)

OP
N +

1

96
g2

s(F̃5)MOPQR(F̃5)
OPQR
N

−GMN

( 1

48
e−ΦH2

3 +
1

48
g2

se
ΦF̃ 2

3 +
1

960
g2

s F̃
2
5

)

, (4.7)

d " dΦ = g2
se

2ΦF1 ∧ "F1 −
1

2
e−ΦH3 ∧ "H3 +

1

2
g2

se
ΦF̃3 ∧ "F̃3, (4.8)

d " (e2ΦF1) = −eΦH3 ∧ "F̃3, (4.9)

d " (eΦF̃3) = F5 ∧ H3, (4.10)

d " (e−ΦH3 − g2
sC0e

ΦF̃3) = −g2
sF5 ∧ F3. (4.11)

dF̃5 = H3 ∧ F3. (4.12)

The uppercase indices M, N, . . . above are for the ten dimensional spacetime coor-

dinates and GMN is the metric. Multiplying both sides of (4.7) by GMN gives

R =
1

2
(∂Φ)2 +

1

2
g2

se
2Φ(∂C0)

2 +
1

24
e−ΦH2

3 +
1

24
g2

se
ΦF̃ 2

3 . (4.13)

We note a few general features of the theory from the above equations of motion.
From (4.9) we see that the H3 and the F3 fluxes are perpendicular when C0 = 0, which

is the case in KS and we will set C0 = 0 in our analysis from now on unless when we
explicitly state otherwise. From (4.8) we see that the dilaton would be constant for
a precise matching of the H3 and F3 fluxes such that e−ΦH3 ∧ "H3 = g2

se
ΦF3 ∧ "F3.

In the case when the dilaton is taken constant, the equations of motion simplify and
the solution on a singular conifold was found by Klebanov and Tseytlin [20], with

the singularity at tip of the conifold where the radius of AdS5 (or T 1,1) vanishes.
However, with the KS picture in terms of Seiberg duality cascade, confinement via
gaugino condensation at the end of the cascade on the gauge theory side leads to a

deformed conifold with the tip being S3. In this case, the tip of the cone is smoothed
out and cut off at some finite r whose size depends of the magnitude of the ’t Hooft

coupling in the confining gauge group, gsM , which is related to the glueball superfield
[27] with expectation value related to the scale of the confining gauge theory. Thus

one needs a metric and flux ansatz which takes into account the interpolation between
S3 at the tip and the asymptotically S2 × S3 geometry at large r. With a metric
ansatz, one computes the Ricci scalar, and then equate it to (4.13) to determine the

geometry and obtain the Klebanov-Tseytlin solution [20]. A second special case is
where the NS-NS flux H3 is turned on by wrapping NS5-branes on S2 while both

R-R fluxes F5 and F3 vanish and the equations are simplified. Now we cannot have
a constant dilaton, since the right hand side of (4.8) is nonzero. The solution to
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• expand the DBI action in 
non-relativistic limit
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unless           . However, 

• Need           , so that  

The Slow-Roll Scenario with Running Dilaton

−e−ΦT (φ)

√

1− φ̇2

T (φ)
+ T (φ)− V (φ)

=
1
2
e−Φφ̇2 −

[
T (φ)(eΦ − 1) + V (φ)

]

φ!Mpl

T (φ)(e−Φ − 1) is generically bad for slow-roll inflation. Since T (φ) ∼ φ4, effectively we

have introduced a quartic term in the potential. It is well known that λφ4 type potential

requires a trans-Planckian φ to generate inflation. However, in the KS throat (and other

GKP type compactifications), trans-Planckian φ is impossible [38, 30] and we have a strong

bound on the largest inflaton field value

∆φ

Mpl
!

1√
KM

$ 1 . (2.15)

In order to get slow-roll inflation, the dominant term in the potential has to be the uplifting

term from D̄3 at the bottom of the throat, so we require

V0 % T (φ)(e−Φ − 1) . (2.16)

Since V0 ∼ h4(φA) $ T (φ) ∼ h4(φ), the above relation is true only when

e−Φ ≈ 1 . (2.17)

Note that if V0 dominates the inflaton potential, the step height in the inflaton potential is

not given by ∆ as defined in Eq.(2.9), but is suppressed by a factor (e−Φ − 1)φ4/φ4
A $ 1,

i.e.
∆V

V
= (e−Φ − 1)

φ4

φ4
A

∆ . (2.18)

So far, we have argued that even if the dilaton runs generically, slow-roll inflation can only

occur within the region where e−Φ stays close to 1. Thus when we discuss slow-roll scenario

in this paper, we will ignore the e−Φ modification to the kinetic term, and set e−Φφ̇2 ≈ φ̇2,

but we keep the term T (φ)(e−Φ −1) in the potential. This approximation should be pretty

good, since e−Φ only exhibits mild features like kinks, while T (φ) has sharp features like

steps. When both of them are present, the sharp features in T (φ) definitely dominate.

3. The Power Spectrum and Bispectrum in General

The gauge invariant scalar perturbation ζ(τ,k) can be decomposed into mode functions

ζ(τ,k) = u(τ,k)a(k) + u∗(τ,−k)a†(−k) . (3.1)

The mode function uk(τ) is given by the equation of motion

v′′k +

(

k2c2
s −

z′′

z

)

vk = 0 , (3.2)

where

vk ≡ zuk , z ≡ a
√

2ε/cs , (3.3)

and prime denotes derivative with respect to the conformal time τ (defined as dt ≡ adτ).

In the absence of any features in either potential or warp factor, the power spectrum is

given by

PR(k) ≡ k3

2π2
|uk|2 (3.4)

=
H2

8π2M2
plεcs

, (3.5)
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T (φ) ∼ φ4 " φ4
A ∼ V (φ)

e−Φ ≈ 1 T (φ)(e−Φ − 1)" V (φ)

                  sharp features in the warp factor 
translates into the effective potential
T (φ) = T3h

4(φ)



the warp factor

• A series of steps in the warp factor, spaced according to

It is convenient to introduce the inflationary parameter ε ≡ −Ḣ/H2, so that

ä

a
= H2(1 − ε) . (2.8)

The universe is inflating when ε < 1. In all the scenarios that we consider here, ε never

grows to 1, so inflation ends by DD̄ annihilation.

For simplicity, let us assume that the B throat is a KS throat. The warped factor for

the B throat around the plth duality transition (starting from the bottom of the throat)

is simplified to (see Appendix A) [17]

h4(r) # r4

R4
B

K

pl
(1 + ∆) , ∆ =

K
∑

pi

3gsM

16π

1

p3

[

1 + tanh

(

r − rp

dp

)]

, (2.9)

where h(r = RB) # 1 at the edge of the throat. Here φp are the positions of the steps, the

initial pi $ 1 so that the warped factor formula is approximately good, and dp controls

the width of the step. The steps has a constant separation in ln φ, that is, ln rp+1 − ln rp #
2π/3gsM . As one moves down the throat (r and p decreasing), note that the step in the

warped factor h4(r) of the KS throat is going down. See Figure 1. This stepping down

happens at each Seiberg duality transition. Together, they form a cascade [16]. For large

K, one encounters K − 1 steps as one approaches the infrared. Note that we are ignoring

smooth corrections to the shape of the warp factor even though they may be larger than

the step size. This is a reasonable approximation since it is the sharp features that will

show up as distinctive features in the CMBR.

This is a generic feature. Consider another throat whose gauge dual has nG gauge

factors, with appropriate bi-fundamentals [18]. As the gauge coupling of the gauge factor

with the fastest running towards large coupling in the infrared (decreasing r) gets strong,

Seiberg duality transition applies. This happens for each gauge group factor sequentially

until we reach the same structure as the original gauge model. Typically, it takes nG/ns

number of transitions to complete this cycle, where ns is a factor in nG (the KS throat has

nG = ns = 2 so each cycle has only 1 transition). Because of the jump in the corresponding

anomalous mass dimension, steps in the warp factor is very generic. It is also likely that

for another throat with a different geometry, some steps may show up with an opposite

sign. To be general, we shall discuss each of these scenarios. If the throat has relatively

few steps, or if the steps are well separated, the impact of individual step on CMBR may

be observable. Otherwise, the steps may be too close for them to show up in the power

spectrum.

In the original KS throat solution, they have taken the approximation where the dilaton

is constant. Here the dilaton factor e−Φ runs in general and is φ dependent. However, for

the IR DBI inflation model we discuss in this paper, most of the DBI e-folds are generated

at the tip of the throat where HR2
B/Ne < r < HR2

B . At the same time, the brane moves

across roughly gsM steps [33]. The running of the dilaton can be ignored if gsM % pl,

which is most easily satisfied with a small gs. Furthermore, the WMAP data only covers

a few e-folds, which corresponds to 3gsM/Ne steps, so we only need pl ! gsM to safely

ignore the dilaton modification to the kinetic term. In this paper, when we discuss the IR

– 7 –

ln(rp+1)− ln(rp) "
2π

3gsM

RB =
27
4

πgsKMα′2

95898273
r

0.80

0.85

0.90

0.95

1.00
h

we expect sharp step features 
in the slow roll potential too

c ≡ ∆V

V

=
T (φ)(e−Φ − 1)

V0
∆

# ∆



DBI Inflation

• the exact equation of motion from the DBI action is 

•        sets the speed limit,

• the brane moves relativistically,

• a sharp step in                sharp change in   

• non-gaussian power spectrum 

from example to example. In Section 6 we make some remarks on some broader aspects of

brane inflation. A number of details are contained in the appendices.

2. The Model

First it is useful to define a basis of coordinates and a metric. The ten dimensional metric

which describes the throat is that of AdS5 × X5, where X5 has the T 1,1 geometry in the

UV region. Including the expansion of the universe, the metric has the form

ds2 = h2(r)(−dt2 + a(t)2dx2) + h−2(r)(dr2 + r2ds2
X5

), (2.1)

Far away from the bottom of the throat, dsX5 = ds2
T 1,1 is the metric that describes a base

of the conifold T 1,1 which is an S3 fibered over S2. Here h(r) is the warp factor, that is, a

generic mass m → mh(r) in the presence of h(r).

The inflaton φ is related to the position of nB 4-dimensional space-time filling D3-

branes. In IR DBI inflation, they are moving out of the B throat into the bulk and then

falling into the A throat. Inflation takes place while the branes are moving out of the B

throat. In UV DBI inflation or the KKLMMT scenario, inflation takes place when they are

moving down the A throat. Specifically, we use a single coordinate to describe collectively

the motion of the branes,

φ ≡
√

nBT3r . (2.2)

The edge of the throat is identified with φR ≡
√

nBT3R, with

R4 =
27

4
πgsNα′2, N = KM . (2.3)

In regions where several kinds of backreactions from the 4d expanding background

[34, 36], the stringy effects [34, 29] and the probe-branes [10, 37] can be ignored, the

following DBI-CS action describes the radial motion of the D3 branes,

S =

∫

d4x
√
−g



−e−ΦT (φ)

√

1 − φ̇2

T (φ)
+ T (φ) − V (φ)



 . (2.4)

The warped D3 brane tension T (φ) and the inflaton potential is given by

T (φ) = nBT3h
4(φ) , (2.5)

V (φ) =
β

2
H2φ2 + VDD̄(φ) , (2.6)

VDD̄(φ) = V0

(

1 − nBV0

4π2v

1

(φ − φA)4

)

. (2.7)

Here v is the volume ratio; one may take v = 16/27. For our purpose here, the Coulomb

term is negligible so VDD̄(φ) = V0 = 2nAT3h4(φA) is the effective vacuum energy. We

expect |β| ∼ 1. Positive β ' 1 for UV DBI model while negative β ∼ −1 for IR DBI

model. Slow-roll inflation requires |β| ( 1.
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Figure 1: The warp factor h(r) in the KS throat, including the steps. Here r is measured in
√

α′

with RB " 100, gs = 2, M=20, K = 10 and N = 200. The width d = 10−3. In this figure, there
are actually 4 steps, located at r " 73, r " 82, r " 89 and r " 95, although the step at r " 95
is too small to show up. Here, the parameters (in particular, a large gsM) are chosen so that at
least 3 steps are big enough to show up in the figure. This leads to relatively large corrections
to the positions of the steps. Other parameters should be used in more realistic situations and in
comparison with data.

DBI inflation, we always absorb eΦ into gs as a constant, so it will never appear in our

analysis of IR DBI inflation.

The energy density and pressure from the DBI action are given by

ρ = V (φ) + T (φ)(c−1
s − 1), p = −V (φ) + T (φ)(1 − cs) , (2.10)

where the sound speed is defined as the inverse of the Lorentz factor γ

cs = γ−1 =
√

1 − φ̇2/T . (2.11)

The background equation of motion is given by

V (φ) + T (φ)(c−1
s − 1) = 3H2 , (2.12)

φ̈ − 3

2

T ′(φ)

T (φ)
φ̇2 + 3Hc2

s φ̇ + T ′(φ) + c3
s[V

′(φ) − T ′(φ)] = 0 . (2.13)

On the other hand, the running dilaton is more relevant for the UV DBI or the

KKLMMT scenario, because here inflationary e-folds are generated by the D3 brane mov-

ing all the way from the UV to the IR end of the throat. For the KKLMMT scenario, we

expand the DBI action in the φ̇2 $ T (φ) limit, and get the slow-roll action,

SSR =

∫

d4x
√
−g

[

1

2
e−Φφ̇2 − T (φ)(e−Φ − 1) − V (φ)

]

. (2.14)
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Figure 1: The warp factor h(r) in the KS throat, including the steps. Here r is measured in
√

α′

with RB " 100, gs = 2, M=20, K = 10 and N = 200. The width d = 10−3. In this figure, there
are actually 4 steps, located at r " 73, r " 82, r " 89 and r " 95, although the step at r " 95
is too small to show up. Here, the parameters (in particular, a large gsM) are chosen so that at
least 3 steps are big enough to show up in the figure. This leads to relatively large corrections
to the positions of the steps. Other parameters should be used in more realistic situations and in
comparison with data.

DBI inflation, we always absorb eΦ into gs as a constant, so it will never appear in our

analysis of IR DBI inflation.

The energy density and pressure from the DBI action are given by

ρ = V (φ) + T (φ)(c−1
s − 1), p = −V (φ) + T (φ)(1 − cs) , (2.10)

where the sound speed is defined as the inverse of the Lorentz factor γ

cs = γ−1 =
√

1 − φ̇2/T . (2.11)

The background equation of motion is given by

V (φ) + T (φ)(c−1
s − 1) = 3H2 , (2.12)

φ̈ − 3

2

T ′(φ)

T (φ)
φ̇2 + 3Hc2

s φ̇ + T ′(φ) + c3
s[V

′(φ) − T ′(φ)] = 0 . (2.13)

On the other hand, the running dilaton is more relevant for the UV DBI or the

KKLMMT scenario, because here inflationary e-folds are generated by the D3 brane mov-

ing all the way from the UV to the IR end of the throat. For the KKLMMT scenario, we

expand the DBI action in the φ̇2 $ T (φ) limit, and get the slow-roll action,

SSR =

∫

d4x
√
−g

[

1

2
e−Φφ̇2 − T (φ)(e−Φ − 1) − V (φ)

]

. (2.14)
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cs ! 1, γ " 1

T (φ) cs

fNL ∼ c−2
s ∼ 102



• the power spectrum 

• Define three parameters

• the time dependent “mass”      , encodes all the 
information of the background space-time

      

Observable effects (I): the power spectrumand prime denotes derivative with respect to the conformal time τ (defined as dt ≡ adτ).

In the absence of any features in either potential or warp factor, the power spectrum is

given by

PR(k) ≡ k3

2π2
|uk|2 (3.4)

=
H2

8π2M2
plεcs

, (3.5)

where uk is u(τ,k) evaluated after each mode crosses the horizon.

To study the effects of features, we define the inflationary parameters as below

ε ≡ − Ḣ

H2
, η̃ ≡ ε̇

Hε
, s ≡ ċs

Hcs
. (3.6)

We can express z′′/z exactly as,

z′′

z
= 2a2H2

(

1 − ε

2
+

3η̃

4
− 3s

2
− εη̃

4
+

εs

2
+

η̃2

8
− η̃s

2
+

s2

2
+

˙̃η

4H
− ṡ

2H

)

. (3.7)

The z′′/z encodes all the information from the inflationary background, and determines

the evolution of u(τ,k). In the absence of sharp features, ε, η and s remains much smaller

than 1, so z′′/z ∼ 2a2H2. However, a sharp feature in the inflation potential or the warp

factor will induce a sharp local change in ε, η̃ and s, and z′′/z has a nontrivial behavior

deviating strongly from 2a2H2 around the feature. In this paper, we have analyzed two

cases. First, the slow roll brane inflation with a step feature in the inflaton potential V (φ).

Due to the small field nature of brane inflation, ε is negligible, which greatly simplifies z′′/z

to (See Appendix B)

z′′

z
≈ 2a2H2

(

1 − V ′′(φ)

2H2

)

= 2a2H2

(

1 − 3

2

V ′′

V

)

. (3.8)

Second, the IR DBI brane inflation scenario with a sharp step appearing in the warp

factor. In Section 5.2.2, we show that the sharp change of the sound speed is the major

contribution to z′′/z, and we have

z′′

z
≈ 2a2H2

(

1 − T ′′

2H2

)

= 2a2H2

(

1 − csε
T ′′

T

)

, (3.9)

where T is the warped brane tension defined in Eq.(2.5). To avoid confusion, we emphasize

that the primes on z or uk (functions of time) denote the derivative with respect to the

conformal time τ , while the primes on T or V (functions of φ) denote the derivatives with

respect to the field φ.

Among all the terms in the exact cubic action for the general single field inflation [39],

the 3pt for sharp features receives dominant contribution from the term proportional to
d
dτ ( η̃

c2s
) in most interesting cases,

〈ζ3〉 = i

(

∏

i

uki
(τend)

)

∫ τend

−∞

dτa2 ε

c2
s

d

dτ
(
η̃

c2
s
)

(

u∗
k1

(τ)u∗
k2

(τ)
d

dτ
u∗

k3
(τ) + perm

)

× (2π)3δ3(
∑

i

ki) + c.c. . (3.10)
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We see explicitly that the effective inflaton potential Veff(φ) = T (φ)(e−Φ − 1) + V (φ)

now exhibits the step feature from T (φ). In the original KS solution, e−Φ = 1, and

the steps in the warp factor does not affect the inflaton potential. However, the term

T (φ)(e−Φ − 1) is generically bad for slow-roll inflation. Since T (φ) ∼ φ4, effectively we

have introduced a quartic term in the potential. It is well known that λφ4 type potential

requires a trans-Planckian φ to generate inflation. However, in the KS throat (and other

GKP type compactifications), trans-Planckian φ is impossible [38, 30] and we have a strong

bound on the largest inflaton field value

∆φ

Mpl
!

1√
KM

$ 1 . (2.15)

In order to get slow-roll inflation, the dominant term in the potential has to be the uplifting

term from D̄3 at the bottom of the throat, so we require

V0 % T (φ)(e−Φ − 1) . (2.16)

Since V0 ∼ h4(φA) $ T (φ) ∼ h4(φ), the above relation is true only when

e−Φ ≈ 1 . (2.17)

Note that if V0 dominates the inflaton potential, the step height in the inflaton potential is

not given by ∆ as defined in Eq.(2.9), but is suppressed by a factor (e−Φ − 1)φ4/φ4
A $ 1,

i.e.
∆V

V
= (e−Φ − 1)

φ4

φ4
A

∆ . (2.18)

So far, we have argued that even if the dilaton runs generically, slow-roll inflation can only

occur within the region where e−Φ stays close to 1. Thus when we discuss slow-roll scenario

in this paper, we will ignore the e−Φ modification to the kinetic term, and set e−Φφ̇2 ≈ φ̇2,

but we keep the term T (φ)(e−Φ −1) in the potential. This approximation should be pretty

good, since e−Φ only exhibits mild features like kinks, while T (φ) has sharp features like

steps. When both of them are present, the sharp features in T (φ) definitely dominate.

3. The Power Spectrum and Bispectrum in General

The gauge invariant scalar perturbation ζ(τ,k) can be decomposed into mode functions

ζ(τ,k) = u(τ,k)a(k) + u∗(τ,−k)a†(−k) . (3.1)

The mode function uk(τ) is given by the equation of motion

v′′k +

(

k2c2
s −

z′′

z

)

vk = 0 , (3.2)

where

vk ≡ zuk , z ≡ a
√

2ε/cs , (3.3)
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bound on the largest inflaton field value

∆φ

Mpl
!

1√
KM

$ 1 . (2.15)

In order to get slow-roll inflation, the dominant term in the potential has to be the uplifting

term from D̄3 at the bottom of the throat, so we require

V0 % T (φ)(e−Φ − 1) . (2.16)

Since V0 ∼ h4(φA) $ T (φ) ∼ h4(φ), the above relation is true only when

e−Φ ≈ 1 . (2.17)
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So far, we have argued that even if the dilaton runs generically, slow-roll inflation can only

occur within the region where e−Φ stays close to 1. Thus when we discuss slow-roll scenario

in this paper, we will ignore the e−Φ modification to the kinetic term, and set e−Φφ̇2 ≈ φ̇2,

but we keep the term T (φ)(e−Φ −1) in the potential. This approximation should be pretty

good, since e−Φ only exhibits mild features like kinks, while T (φ) has sharp features like

steps. When both of them are present, the sharp features in T (φ) definitely dominate.

3. The Power Spectrum and Bispectrum in General

The gauge invariant scalar perturbation ζ(τ,k) can be decomposed into mode functions

ζ(τ,k) = u(τ,k)a(k) + u∗(τ,−k)a†(−k) . (3.1)

The mode function uk(τ) is given by the equation of motion

v′′k +

(

k2c2
s −

z′′

z

)

vk = 0 , (3.2)

where

vk ≡ zuk , z ≡ a
√

2ε/cs , (3.3)
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and prime denotes derivative with respect to the conformal time τ (defined as dt ≡ adτ).

In the absence of any features in either potential or warp factor, the power spectrum is

given by

PR(k) ≡ k3

2π2
|uk|2 (3.4)

=
H2

8π2M2
plεcs

, (3.5)

where uk is u(τ,k) evaluated after each mode crosses the horizon.

To study the effects of features, we define the inflationary parameters as below

ε ≡ − Ḣ

H2
, η̃ ≡ ε̇

Hε
, s ≡ ċs

Hcs
. (3.6)

We can express z′′/z exactly as,

z′′

z
= 2a2H2
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1 − ε

2
+

3η̃

4
− 3s
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− εη̃

4
+

εs

2
+

η̃2
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− η̃s
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+

s2
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+

˙̃η

4H
− ṡ

2H

)

. (3.7)

The z′′/z encodes all the information from the inflationary background, and determines

the evolution of u(τ,k). In the absence of sharp features, ε, η and s remains much smaller

than 1, so z′′/z ∼ 2a2H2. However, a sharp feature in the inflation potential or the warp

factor will induce a sharp local change in ε, η̃ and s, and z′′/z has a nontrivial behavior

deviating strongly from 2a2H2 around the feature. In this paper, we have analyzed two

cases. First, the slow roll brane inflation with a step feature in the inflaton potential V (φ).

Due to the small field nature of brane inflation, ε is negligible, which greatly simplifies z′′/z
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V ′′

V

)

. (3.8)
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factor. In Section 5.2.2, we show that the sharp change of the sound speed is the major

contribution to z′′/z, and we have
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2H2

)

= 2a2H2

(

1 − csε
T ′′

T

)

, (3.9)

where T is the warped brane tension defined in Eq.(2.5). To avoid confusion, we emphasize

that the primes on z or uk (functions of time) denote the derivative with respect to the

conformal time τ , while the primes on T or V (functions of φ) denote the derivatives with

respect to the field φ.

Among all the terms in the exact cubic action for the general single field inflation [39],

the 3pt for sharp features receives dominant contribution from the term proportional to
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We see explicitly that the effective inflaton potential Veff(φ) = T (φ)(e−Φ − 1) + V (φ)

now exhibits the step feature from T (φ). In the original KS solution, e−Φ = 1, and

the steps in the warp factor does not affect the inflaton potential. However, the term

T (φ)(e−Φ − 1) is generically bad for slow-roll inflation. Since T (φ) ∼ φ4, effectively we

have introduced a quartic term in the potential. It is well known that λφ4 type potential

requires a trans-Planckian φ to generate inflation. However, in the KS throat (and other

GKP type compactifications), trans-Planckian φ is impossible [38, 30] and we have a strong

bound on the largest inflaton field value

∆φ

Mpl
!

1√
KM

$ 1 . (2.15)

In order to get slow-roll inflation, the dominant term in the potential has to be the uplifting

term from D̄3 at the bottom of the throat, so we require

V0 % T (φ)(e−Φ − 1) . (2.16)

Since V0 ∼ h4(φA) $ T (φ) ∼ h4(φ), the above relation is true only when

e−Φ ≈ 1 . (2.17)

Note that if V0 dominates the inflaton potential, the step height in the inflaton potential is

not given by ∆ as defined in Eq.(2.9), but is suppressed by a factor (e−Φ − 1)φ4/φ4
A $ 1,

i.e.
∆V

V
= (e−Φ − 1)

φ4

φ4
A

∆ . (2.18)

So far, we have argued that even if the dilaton runs generically, slow-roll inflation can only

occur within the region where e−Φ stays close to 1. Thus when we discuss slow-roll scenario

in this paper, we will ignore the e−Φ modification to the kinetic term, and set e−Φφ̇2 ≈ φ̇2,

but we keep the term T (φ)(e−Φ −1) in the potential. This approximation should be pretty

good, since e−Φ only exhibits mild features like kinks, while T (φ) has sharp features like

steps. When both of them are present, the sharp features in T (φ) definitely dominate.

3. The Power Spectrum and Bispectrum in General

The gauge invariant scalar perturbation ζ(τ,k) can be decomposed into mode functions

ζ(τ,k) = u(τ,k)a(k) + u∗(τ,−k)a†(−k) . (3.1)

The mode function uk(τ) is given by the equation of motion

v′′k +

(

k2c2
s −

z′′

z

)

vk = 0 , (3.2)

where

vk ≡ zuk , z ≡ a
√

2ε/cs , (3.3)
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Hcs
. (3.6)

We can express z′′/z exactly as,

z′′

z
= 2a2H2

(

1 − ε

2
+

3η̃

4
− 3s

2
− εη̃

4
+

εs

2
+

η̃2

8
− η̃s

2
+

s2

2
+

˙̃η

4H
− ṡ
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• moving across the step in warp factor

• the sound speed changes sharply upon crossing the step

IR-DBI power spectrum

Because the width of step is very small, such a small change of cs happens in a short

period. This gives rise to large s ≡ ċs/(csH) and ṡ/H. This turns out to be the primary

sources to various observable signatures in power spectrum and non-Gaussianities.

5.2.2 The Power Spectrum

The power spectrum is determined by the mode equation Eq.(3.2). We now estimate

various parameters in Eq. (3.7) in terms of the size b and width d of the step feature in

the warp factor. It is convenient to write the width d in terms of the e-fold that the brane

spends moving across it,

∆Ne ≡ H∆t ≈ H
d

φ̇
=

d√
2csε

. (5.16)

Note this is not the e-folds that the feature on CMB spans (denoted as ∆l previously)

which typically includes the oscillations and spreads much wider.

Using the continuity equation ρ̇ = −3H(ρ + p), together with the energy density and

pressure Eq.(2.10), we can solve for the evolution of s,

s =
ċs

Hcs
= 3(1 − c2

s) +
csV̇

TH
+

Ṫ

TH
(1 − cs) . (5.17)

Here we can make more explicit the conditions under which the sharp features in warp

factor dominate. On the right hand side of (5.17), to make the 3rd term larger than the

first, i.e. to ignore the spatial expansion, we require 3 < ∆T/(TH∆t) ≈ 2b/∆Ne; to ignore

the 2nd term, i.e. the sharp features in potential, we require csV ′ < T ′. Since the duality

cascade leaves sharp steps on T (φ) but not V (φ), this condition is easily satisfied. Under

these conditions, the last terms in the above equation dominates, so we can approximate

s ≈ Ṫ

TH
∼ b

d

√
2εcs ∼ O

(

b

∆Ne

)

. (5.18)

This is consistent with (5.14).

Denote X ≡ φ̇2/2, so ε = X/(M2
plH

2cs) for DBI inflation. We get

η̃ =
ε̇

Hε
=

Ẋ

HX
+ 2ε − s . (5.19)

On the other hand, from the definition cs =
√

1 − 2X/T (φ), we get

Ẋ

XH
=

Ṫ

TH
− 2c2

ss

H(1 − c2
s)

. (5.20)

Plug (5.20) into (5.19), and use (5.17) to get rid of Ṫ /TH, we have

η̃ =
cs

1 + cs
s − 3(1 + cs) −

V̇ cs

HT (1 − cs)
+ 2ε

≈ css − (3 +
V̇ cs

HT
) . (5.21)
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Figure 1: The warp factor h(r) in the KS throat, including the steps. Here r is measured in
√

α′

with RB " 100, gs = 2, M=20, K = 10 and N = 200. The width d = 10−3. In this figure, there
are actually 4 steps, located at r " 73, r " 82, r " 89 and r " 95, although the step at r " 95
is too small to show up. Here, the parameters (in particular, a large gsM) are chosen so that at
least 3 steps are big enough to show up in the figure. This leads to relatively large corrections
to the positions of the steps. Other parameters should be used in more realistic situations and in
comparison with data.

DBI inflation, we always absorb eΦ into gs as a constant, so it will never appear in our

analysis of IR DBI inflation.

The energy density and pressure from the DBI action are given by

ρ = V (φ) + T (φ)(c−1
s − 1), p = −V (φ) + T (φ)(1 − cs) , (2.10)

where the sound speed is defined as the inverse of the Lorentz factor γ

cs = γ−1 =
√

1 − φ̇2/T . (2.11)

The background equation of motion is given by

V (φ) + T (φ)(c−1
s − 1) = 3H2 , (2.12)

φ̈ − 3

2

T ′(φ)

T (φ)
φ̇2 + 3Hc2

s φ̇ + T ′(φ) + c3
s[V

′(φ) − T ′(φ)] = 0 . (2.13)

On the other hand, the running dilaton is more relevant for the UV DBI or the

KKLMMT scenario, because here inflationary e-folds are generated by the D3 brane mov-

ing all the way from the UV to the IR end of the throat. For the KKLMMT scenario, we

expand the DBI action in the φ̇2 $ T (φ) limit, and get the slow-roll action,

SSR =

∫

d4x
√
−g

[

1

2
e−Φφ̇2 − T (φ)(e−Φ − 1) − V (φ)

]

. (2.14)
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Except for the first term, the r.h.s. of this expression is affected little, O(b), by the feature.

We use (5.21) to further estimate ˙̃η/H. Keeping the time derivatives on cs, φ̇ and T , while

ignoring those on V ′ and H, we get

˙̃η

H
≈ 3

2
s + css

2 + cs
ṡ

H
. (5.22)

We have used the fact that the brane always tracks the speed-limit,

φ̇ ≈
√

T (φ) , φ̈ ≈ 1

2

T ′(φ)

T (φ)
φ̇2 , (5.23)

since cs " 1 even at the sharp feature as we know from Sec. 5.2.1. Eq. (5.18) is also used.

We further estimate ṡ/H,

ṡ

H
=

(

T ′(φ)

T (φ)

)′ φ̇2

H2
+

T ′(φ)

T (φ)

(

1

H

d

dt

φ̇

H

)

≈
(

T ′′

T
− T ′2

T 2

)

φ̇2

H2
+

T ′

T

φ̈

H2
. (5.24)

Using Eq.(5.23) to eliminate the φ̈ in Eq.(5.24), we get

ṡ

H
≈ 2csε

(

T ′′

T
− 1

2

T ′2

T 2

)

≈ 2csε

(

T ′′

T

)

∼ b
csε

d2
∼ O

(

b

∆Ne
2

)

, (5.25)

where we have dropped the term T ′2/T 2, since T ′′/T % T ′2/T 2 as long as b " 1.

We now can compare the amplitudes of various terms. Because both b and ∆Ne are

small, from (5.18) and (5.25), we have

ṡ

H
% s, s2 . (5.26)

From (5.21) and (5.22),

s % η̃ ,
ṡ

H
%

˙̃η

H
. (5.27)

So the only important contribution to z′′/z is from ṡ/H, and we have

z′′

z
≈ 2a2H2

(

1 − ṡ

2H

)

≈ 2a2H2

(

1 − T ′′

T
csε

)

. (5.28)

If we take T to be the form Eq.(5.13), we can evaluate

z′′

z
≈ 2a2H2

[

1 − b
csε

d2
sech2

(

φ − φs

d

)

tanh

(

φ − φs

d

)]

∼ 2a2H2

[

1 − b

∆N2
e

sech2

(

φ − φs

d

)

tanh

(

φ − φs

d

)]

. (5.29)

The feature in z′′/z is dictated by the sech2 tanh term, and will affect the evolution of

certain perturbation modes vk. As moving across the step only generates ∼ NDBI
e /M
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Because the width of step is very small, such a small change of cs happens in a short

period. This gives rise to large s ≡ ċs/(csH) and ṡ/H. This turns out to be the primary

sources to various observable signatures in power spectrum and non-Gaussianities.

5.2.2 The Power Spectrum

The power spectrum is determined by the mode equation Eq.(3.2). We now estimate

various parameters in Eq. (3.7) in terms of the size b and width d of the step feature in

the warp factor. It is convenient to write the width d in terms of the e-fold that the brane

spends moving across it,

∆Ne ≡ H∆t ≈ H
d

φ̇
=

d√
2csε

. (5.16)

Note this is not the e-folds that the feature on CMB spans (denoted as ∆l previously)

which typically includes the oscillations and spreads much wider.

Using the continuity equation ρ̇ = −3H(ρ + p), together with the energy density and

pressure Eq.(2.10), we can solve for the evolution of s,

s =
ċs

Hcs
= 3(1 − c2

s) +
csV̇

TH
+

Ṫ

TH
(1 − cs) . (5.17)

Here we can make more explicit the conditions under which the sharp features in warp

factor dominate. On the right hand side of (5.17), to make the 3rd term larger than the

first, i.e. to ignore the spatial expansion, we require 3 < ∆T/(TH∆t) ≈ 2b/∆Ne; to ignore

the 2nd term, i.e. the sharp features in potential, we require csV ′ < T ′. Since the duality

cascade leaves sharp steps on T (φ) but not V (φ), this condition is easily satisfied. Under

these conditions, the last terms in the above equation dominates, so we can approximate

s ≈ Ṫ

TH
∼ b

d

√
2εcs ∼ O

(

b

∆Ne

)

. (5.18)

This is consistent with (5.14).

Denote X ≡ φ̇2/2, so ε = X/(M2
plH

2cs) for DBI inflation. We get

η̃ =
ε̇

Hε
=

Ẋ

HX
+ 2ε − s . (5.19)

On the other hand, from the definition cs =
√

1 − 2X/T (φ), we get

Ẋ

XH
=

Ṫ

TH
− 2c2

ss

H(1 − c2
s)

. (5.20)

Plug (5.20) into (5.19), and use (5.17) to get rid of Ṫ /TH, we have

η̃ =
cs

1 + cs
s − 3(1 + cs) −

V̇ cs

HT (1 − cs)
+ 2ε

≈ css − (3 +
V̇ cs

HT
) . (5.21)
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Except for the first term, the r.h.s. of this expression is affected little, O(b), by the feature.

We use (5.21) to further estimate ˙̃η/H. Keeping the time derivatives on cs, φ̇ and T , while

ignoring those on V ′ and H, we get

˙̃η

H
≈ 3

2
s + css

2 + cs
ṡ

H
. (5.22)

We have used the fact that the brane always tracks the speed-limit,

φ̇ ≈
√

T (φ) , φ̈ ≈ 1

2

T ′(φ)

T (φ)
φ̇2 , (5.23)

since cs " 1 even at the sharp feature as we know from Sec. 5.2.1. Eq. (5.18) is also used.
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+
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(
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dt
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H

)
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T ′′

T
− T ′2

T 2

)

φ̇2
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+

T ′

T
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H2
. (5.24)
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b = 0.1, ∆Ne = 0.01

95898273

r

0.80
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1.00

h

Figure 1: The warp factor h(r) in the KS throat, including the steps. Here r is measured in
√

α′

with RB " 100, gs = 2, M=20, K = 10 and N = 200. The width d = 10−3. In this figure, there
are actually 4 steps, located at r " 73, r " 82, r " 89 and r " 95, although the step at r " 95
is too small to show up. Here, the parameters (in particular, a large gsM) are chosen so that at
least 3 steps are big enough to show up in the figure. This leads to relatively large corrections
to the positions of the steps. Other parameters should be used in more realistic situations and in
comparison with data.

DBI inflation, we always absorb eΦ into gs as a constant, so it will never appear in our

analysis of IR DBI inflation.

The energy density and pressure from the DBI action are given by

ρ = V (φ) + T (φ)(c−1
s − 1), p = −V (φ) + T (φ)(1 − cs) , (2.10)

where the sound speed is defined as the inverse of the Lorentz factor γ

cs = γ−1 =
√

1 − φ̇2/T . (2.11)

The background equation of motion is given by

V (φ) + T (φ)(c−1
s − 1) = 3H2 , (2.12)

φ̈ − 3

2

T ′(φ)

T (φ)
φ̇2 + 3Hc2

s φ̇ + T ′(φ) + c3
s[V

′(φ) − T ′(φ)] = 0 . (2.13)

On the other hand, the running dilaton is more relevant for the UV DBI or the

KKLMMT scenario, because here inflationary e-folds are generated by the D3 brane mov-

ing all the way from the UV to the IR end of the throat. For the KKLMMT scenario, we

expand the DBI action in the φ̇2 $ T (φ) limit, and get the slow-roll action,

SSR =

∫

d4x
√
−g

[

1

2
e−Φφ̇2 − T (φ)(e−Φ − 1) − V (φ)

]

. (2.14)
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and the acceleration from the potential. So across the step, the behavior of the branes

is approximated by the Lagrangian L = −T (r)
√

1 − φ̇2/T (r). The corresponding energy

Tγ = const, where γ = 1/cs = (1 − φ̇2/T )−1/2. Hence a sharp change in T results in a

sharp change in cs, and both changes are small,

∆cs

cs
=

∆T

T
= 2b . (5.14)

A small change in cs also means that the velocity of the branes will closely track the change

of the speed-limit in step.

The second stage is at the end of the step, where the previous change in cs results in

a deviation from the attractor solution. To see this, we note that in IR DBI inflation, the

attractor solutions have γ ≈ βNeDBI/3 and NeDBI ≈ HR/h, so cs ≈ 3h/βHR. A fractional

change in the warp factor h = r/R means ∆R/R = −b/2, which implies that the attractor

solutions has a fractional change
∆cs

cs
= b . (5.15)

So the increase in cs due to the first stage (5.14) over-shoots the new attractor solution,

the branes will have to quickly relax to the new attractor solution. The Hubble expansion

plays an important role here, so the energy Tγ is no longer conserved.
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Figure 3: Evolution of cs. Parameters are b = 0.1, step width ∆Ne = 0.05, β = 3, gsm−4
s = 1039,

NB = 109, nB = 104, nAh4
A

= 16.

In summary, the behavior of cs can be approximated by two step-functions side by

side. In the first one, it jumps up from the original cs to cs + 2bcs, during which the

branes quickly fall down the step in warp geometry. The time scale is determined by d

and is typically much smaller than 1/H. The second one comes immediately afterwards,

it jumps down from cs + 2bcs to cs + bcs, during which the branes quickly approach the

new attractor solution. The time scale is of order O(1/H). The width of the second step

function is much larger than the first for narrower step (i.e. smaller d). Note that in both

stages, the velocity of branes increases. This evolution is illustrated in Fig. 3.
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Figure 5: In the IR DBI scenario, we show the power spectrum when there is a sharp step in the
warp factor. For the same step width ∆Ne, we show three cases with different step size b. The
amplitude of the first dip and bump increases as we increase the step height b. A bump appears
first for b < 0 while a dip appears first for b > 0.

when stretched out of the sound horizon (c2
sk

2 ! z′′/z), and evaluate the power spectrum

numerically using Eq.(3.4). The numerical calculation also has the advantage that it is not

necessary to assume certain simplification conditions in Sec. 5.2, such as b/∆Ne " 1. Our

major results are shown in Fig. 5 and Fig. 6.

Fig. 5 shows the step feature in the power spectrum PR for steps with different height

b, but same width ∆Ne. We see clearly that in the power spectrum, a dip appears first

with positive b and a bump appears first with negative b, which agrees with our analytic

result Eq.(5.49). However such a sequence gets less clear after projecting from k-space to

l-space.

In Fig. 6 we explore the step feature with different step width ∆Ne. We see that the

oscillation amplitude in PR is quite insensitive to the step width d. By the same argument

in our slow-roll analysis, the steps are sharp so that ∆Ne ! 1. The cs and ċs have reached

their maximum values and so is the amplitude of the oscillation which is controlled by b as

in (5.49).

In Fig. 7 we perform a χ2 fit to the WMAP data. With one single step in the warp

factor, we try to fit the l ∼ 20 dip in WMAP temperature anisotropy. Here, instead

of performing a full MCMC search for the best fit model, we only show an example to

illustrate how the local step feature improves the quality of data fit. The example we

show in Fig. 7 has the IR DBI model parameters nB = 6761, NB = 4.315 × 109, nAh4
A =
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PR =
H2

2πφ̇
φ̇ =

√
T (φ)
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Figure 6: Same as Fig. 5, with the step size b fixed, we show two cases with different step width
∆Ne. Since in IR DBI model, the typical step width corresponds to ∆Ne ! 1, the dip and bump in
the power spectrum is not sensitive to d. The width of the step affects only the range of oscillation
in PR.

0.01035,ms/g
1/4
s = 2.567 × 10−9Mp,β = 4.021, and the step parameters are ∆Ne = 0.105

and b = −0.35. The step model, with likelihood L, −2 lnL = 5347.16 when compared to

WMAP 3-year temperature and polarization data [4, 43, 44, 45], has a better fit to the

data, ∆χ2 = −2.76, over the best-fit scenario with constant running of the spectral index,

also shown. In light of the four extra degrees of freedom3 determining the cascade power

spectrum in comparison to the fiducial running model, however, this improvement in χ2 is

not statistically significant.

We also find that a positive b is not favored by data, so the first dip in the k-space

does not necessarily transform into a clear dip in the l-space. Numerically we find that to

fit the l ∼ 20 dip, we need |b| ∼ 0.3. However, if we take b = +0.3, it gives too much power

on large scale, more than that is allowed by data.

The reason that the glitch appears to be less sharper than that in slow-roll case is

the following. In DBI inflation, a step in warp factor not only causes oscillation in power

spectrum, but also changes the asymptotic speed-limit of the inflaton. So in addition to

glitches, it also introduces a step in the power spectrum. Both amplitudes are controlled by

the relative height of the step b. It is more difficult to generate a sharp glitch while keeping

the latter effect compatible with data. While in slow-roll case, asymptotic velocities of the

3Three of them specify the location, height and width of the step, another one is from IR DBI (versus

LCDM).
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kmax
kmin

=
√

z′′

z ∼ b
∆Ne

and the acceleration from the potential. So across the step, the behavior of the branes

is approximated by the Lagrangian L = −T (r)
√

1 − φ̇2/T (r). The corresponding energy

Tγ = const, where γ = 1/cs = (1 − φ̇2/T )−1/2. Hence a sharp change in T results in a

sharp change in cs, and both changes are small,

∆cs

cs
=

∆T

T
= 2b . (5.14)

A small change in cs also means that the velocity of the branes will closely track the change

of the speed-limit in step.

The second stage is at the end of the step, where the previous change in cs results in

a deviation from the attractor solution. To see this, we note that in IR DBI inflation, the

attractor solutions have γ ≈ βNeDBI/3 and NeDBI ≈ HR/h, so cs ≈ 3h/βHR. A fractional

change in the warp factor h = r/R means ∆R/R = −b/2, which implies that the attractor

solutions has a fractional change
∆cs

cs
= b . (5.15)

So the increase in cs due to the first stage (5.14) over-shoots the new attractor solution,

the branes will have to quickly relax to the new attractor solution. The Hubble expansion

plays an important role here, so the energy Tγ is no longer conserved.
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Figure 3: Evolution of cs. Parameters are b = 0.1, step width ∆Ne = 0.05, β = 3, gsm−4
s = 1039,

NB = 109, nB = 104, nAh4
A

= 16.

In summary, the behavior of cs can be approximated by two step-functions side by

side. In the first one, it jumps up from the original cs to cs + 2bcs, during which the

branes quickly fall down the step in warp geometry. The time scale is determined by d

and is typically much smaller than 1/H. The second one comes immediately afterwards,

it jumps down from cs + 2bcs to cs + bcs, during which the branes quickly approach the

new attractor solution. The time scale is of order O(1/H). The width of the second step

function is much larger than the first for narrower step (i.e. smaller d). Note that in both

stages, the velocity of branes increases. This evolution is illustrated in Fig. 3.
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1 10 100
0

1000

2000

1 10 100 1000
0

2000

4000

6000

0.0001 0.001 0.01 0.1
8
9
10

20

30

need b=-0.3, too large for steps
in duality cascade



Multiple Steps

• duality cascade gives a series of “K” steps, spaced 
according to 

• feature on scale    in the power spectrum, shows up on 
angular scale   on WMAP
 

• take l=2, l=20 as two steps for example, 

ln(rp+1)− ln(rp) "
2π

3gsM

l
k

π
l ≈

k−1

H−1
0

Using l ∼ 104(k/Mpc−1), we find

− dNe # d ln k # d ln l # Hdt # H

φ̇
dφ , (4.2)

Since both H and φ̇ are slowly varying during inflation, we have

d ln l ∝ dφ . (4.3)

Suppose φ is decreasing (going down a throat), also suppose that the step at l = 2 is at

φm0 and that at l = 20 is at φm0+1, we have

φm0

φm0+1
# φm0+1

φm0+2
# ... # e2π/3gsM (4.4)

For large gsM , this ratio is close to unity, e2π/3gsM # 1 + δ, so φm0 − φm0+1 # φm0+1 −
φm0+2 # φm0+1δ. Due to (4.3), equal spacing in φ implies equal spacing in ln l. So we

find that the next 2 steps are at around l # 200 and l # 2000 respectively. In addition,

the effect of the step at l-th multiple moments should span over ∆l number of multiple

moments with ∆l ∝ l.

4.2 The Power Spectrum

In the slow-roll scenario without features, we have the attractor solution, in units of MP ,

H2 = V (φ)/3, 3Hφ̇ = −V ′ , (4.5)

where ′ is derivative with respect to the inflaton φ(t) and dot is derivative with respect to

time. Here,

ε = − Ḣ

H2
= 2

(

H ′

H

)2

=
1

2

(

V ′

V

)2

= εSR (4.6)

It is convenient to introduce another inflationary parameter

η̃ = ε̇/Hε = −2ηSR + 4εSR (4.7)

where the usual slow-roll version is given by

ηSR =
V ′′

V
(4.8)

This yields ns − 1 = −η̃ − 2ε = 2ηSR − 6εSR. We emphasize that the above relations

between ε, η̃ and εSR, ηSR only hold for the attractor solution in absence of sharp features.

We will use the parameters ε and η̃ in our analyses for the sharp feature case.

To see the full details of the effect of a step in potential, numerical calculation is

necessary. However, the qualitative behavior can be estimated as follows. The step in

the potential is typically characterized by two numbers: the depth which we describe as

the ratio ∆V/V ≈ 2c, and the width ∆φ = 2d in unit of Planck mass. We can divide the

motion of inflaton into two parts: acceleration and relaxation. First, the inflaton, originally

moving in its attractor solution, momentarily gets accelerated by the step. The potential
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φp

φp+1
≈ φp+1

φp+2
≈ φp+2

φp+3
≈ exp(− 2π

3gsM ) ≈ 1 + δ

φp−φp+1
φp+1−φp+2

≈ 1 + δ

ln(2)− ln(20) = ln(20)− ln(l3)⇒ l3 = 200, l4 = 2000





Observable effects (II): non-gaussianity

• the three-point correlation function

• in slow-roll, 

• in DBI case, leading term is 

Although the above discussion indicates that the depth of the dip is relatively inde-

pendent of d, the peak of the first bump will. When the inflaton moves across the step,

energy conservation requires that 1
2∆φ̇2 ≤ ∆V , with the bound saturated when the Hubble

friction is negligible. This will result in an upper bound in the change of ε

∆ε ≈ ∆V/H2 ! 5c . (4.10)

We expect that the effect of decreasing d will first enhance the bump, since smaller d leads

to more deviation from the attractor (larger ∆ε), and will enhance the bumps in PR during

the relaxation period. However, as long as ∆ε saturates the upper bound (when d is small

enough to ignore the Hubble friction), further decreasing d will not affect the bumps in

PR any more, since the relaxation period essentially starts with the same φ̇ no matter how

small d is. So we expect the bump to depend sensitively on d if moving across the step

takes O(1) e-folds, and it becomes relatively insensitive to d when the step is so sharp

that moving across it takes only # 1 e-folds. In the latter situation, reducing d will only

increase the extension of the oscillations in PR,

∆k ∼
√

z′′

z
∼ k0

√
c

d
, (4.11)

where k0 is the starting point of the feature, and (3.8) is used.

Ref. [24, 25] fit the l ∼ 20 feature in the WMAP data introducing a step feature in the

large field slow-roll model and gives the best fit power spectrum. Here we have numerically

reproduced a similar power spectrum for the small field case. We are not performing a

complete data analysis to find the best fit model here, our major emphasis is to show how

the width d comes into play. Fig. 2 shows the power spectrum and ε for four different

values of d. The black solid line represents the power spectrum close to the best fit model

given in Ref. [24, 25], with c = 8 × 10−12, we find that d = 1.7 × 10−6Mpl.

4.3 Non-Gaussianities

Now let us look at the bispectrum. For slow-roll inflation, the 3-point function of the scalar

perturbation ζ(τend,k) includes terms proportional to ε2, ε3, and εη̃′ [41]. For the slow-roll

potential without any features, the first terms dominate. Comparing to WMAP’s ansatz,

it gives the non-Gaussianities estimator fNL = O(ε).

In the presence of sharp features, from (4.10) we see that ε still remains small, !

O(0.01). But η̃′ can be much larger. Therefore, the leading three-point correlation function

is given by the term proportional to εη̃′ [26],

〈ζ(τend,k1)ζ(τend,k2)ζ(τend,k3)〉

= i

(

∏

i

uki
(τend)

)

∫ τend

−∞

dτa2εη̃′
(

u∗
k1

(τ)u∗
k2

(τ)
d

dτ
u∗

k3
(τ) + perm

)

× (2π)3δ3(
∑

i

ki) + c.c. , (4.12)

where the “perm” stands for two other terms that are symmetric under permutations of the

indices 1, 2 and 3. The details of such an integration are quite complicated. Nonetheless we
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We see explicitly that the effective inflaton potential Veff(φ) = T (φ)(e−Φ − 1) + V (φ)

now exhibits the step feature from T (φ). In the original KS solution, e−Φ = 1, and

the steps in the warp factor does not affect the inflaton potential. However, the term

T (φ)(e−Φ − 1) is generically bad for slow-roll inflation. Since T (φ) ∼ φ4, effectively we

have introduced a quartic term in the potential. It is well known that λφ4 type potential

requires a trans-Planckian φ to generate inflation. However, in the KS throat (and other

GKP type compactifications), trans-Planckian φ is impossible [38, 30] and we have a strong

bound on the largest inflaton field value

∆φ

Mpl
!

1√
KM

$ 1 . (2.15)

In order to get slow-roll inflation, the dominant term in the potential has to be the uplifting

term from D̄3 at the bottom of the throat, so we require

V0 % T (φ)(e−Φ − 1) . (2.16)

Since V0 ∼ h4(φA) $ T (φ) ∼ h4(φ), the above relation is true only when

e−Φ ≈ 1 . (2.17)

Note that if V0 dominates the inflaton potential, the step height in the inflaton potential is

not given by ∆ as defined in Eq.(2.9), but is suppressed by a factor (e−Φ − 1)φ4/φ4
A $ 1,

i.e.
∆V

V
= (e−Φ − 1)

φ4

φ4
A

∆ . (2.18)

So far, we have argued that even if the dilaton runs generically, slow-roll inflation can only

occur within the region where e−Φ stays close to 1. Thus when we discuss slow-roll scenario

in this paper, we will ignore the e−Φ modification to the kinetic term, and set e−Φφ̇2 ≈ φ̇2,

but we keep the term T (φ)(e−Φ −1) in the potential. This approximation should be pretty

good, since e−Φ only exhibits mild features like kinks, while T (φ) has sharp features like

steps. When both of them are present, the sharp features in T (φ) definitely dominate.

3. The Power Spectrum and Bispectrum in General

The gauge invariant scalar perturbation ζ(τ,k) can be decomposed into mode functions

ζ(τ,k) = u(τ,k)a(k) + u∗(τ,−k)a†(−k) . (3.1)

The mode function uk(τ) is given by the equation of motion

v′′k +

(

k2c2
s −

z′′

z

)

vk = 0 , (3.2)

where

vk ≡ zuk , z ≡ a
√

2ε/cs , (3.3)
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small by construction
in usual slow-roll, 

can be large locally at sharp features

e-folds (See Appendix C), typically b/∆N2
e ! 1. The mode vk will first see a dip in z′′/z

followed by a bump. Let us assume that the feature in z′′/z shows up around conformal

time τs, then modes with c2
sk

2 ! (z′′/z)|τs or c2
sk

2 " (z′′/z)|τs will not be affected, because

they are either oscillating well inside the sound horizon or have already crossed the sound

horizon and got frozen. The major effect will be on the modes with c2
sk

2 ∼ (z′′/z)|τs . The

range of k affected by the sharp feature is determined by b/∆N2
e . If PR starts seeing the

feature at k0, the feature will disappear at

∆k ∼ k0

√
b/∆Ne . (5.30)

5.2.3 Non-Gaussianities

Although Ref. [39, 41, 42] are only interested in non-Gaussianities without sharp features,

the cubic expansion of the perturbations is exact and does not rely on the assumption that

various inflationary parameters ε, η̃ and s are small. For DBI inflation, among all the terms

in Ref. [39], the leading term in the cubic action that is responsible for sharp features in

non-Gaussianity is

a3ε

2c2
s

d

dt

(

η̃

c2
s

)

ζ2ζ̇ . (5.31)

In the absence of sharp features, a term such as (a3ε/c4
s)ζζ̇2 contributes to the non-

Gaussianity estimator fNL ∼ 1/c2
s . Therefore as a rough estimate the term (5.31) con-

tributes

f feature
NL ∼ d

dt

(

η̃

c2
s

)

∆t ∼ ∆

(

η̃

c2
s

)

. (5.32)

The cases with large s are most interesting for non-Gaussianities. Using (5.21),

η̃ ≈ css , (5.33)

so

f feature
NL ∼ ∆s

cs
∼ 1

cs

b

∆Ne
. (5.34)

There is another term

−2
aε

c2
s
sζ(∂ζ)2 (5.35)

in the cubic action of Ref. [39] that contributes

f feature
NL ⊃ s

c2
s
∆tH ∼ ∆cs

c3
s

∼ b

c2
s

, (5.36)

which is also possibly observable. The term (5.34) dominates for the most interesting cases.

The net observable effect will be a nearly-scale-invariant large non-Gaussianity of order

O(1/c2
s) plus the scale-dependent (oscillatory) modulation of order O(∆s/cs). Similar to

the slow-roll case, we can write f feature
NL ∼ (

√
b/cs)(

√
b/∆Ne). As we have shown, the

– 22 –

e-folds (See Appendix C), typically b/∆N2
e ! 1. The mode vk will first see a dip in z′′/z

followed by a bump. Let us assume that the feature in z′′/z shows up around conformal

time τs, then modes with c2
sk

2 ! (z′′/z)|τs or c2
sk

2 " (z′′/z)|τs will not be affected, because

they are either oscillating well inside the sound horizon or have already crossed the sound

horizon and got frozen. The major effect will be on the modes with c2
sk

2 ∼ (z′′/z)|τs . The

range of k affected by the sharp feature is determined by b/∆N2
e . If PR starts seeing the

feature at k0, the feature will disappear at

∆k ∼ k0

√
b/∆Ne . (5.30)

5.2.3 Non-Gaussianities

Although Ref. [39, 41, 42] are only interested in non-Gaussianities without sharp features,

the cubic expansion of the perturbations is exact and does not rely on the assumption that

various inflationary parameters ε, η̃ and s are small. For DBI inflation, among all the terms

in Ref. [39], the leading term in the cubic action that is responsible for sharp features in

non-Gaussianity is

a3ε

2c2
s

d

dt

(

η̃

c2
s

)

ζ2ζ̇ . (5.31)

In the absence of sharp features, a term such as (a3ε/c4
s)ζζ̇2 contributes to the non-

Gaussianity estimator fNL ∼ 1/c2
s . Therefore as a rough estimate the term (5.31) con-

tributes

f feature
NL ∼ d

dt

(

η̃

c2
s

)

∆t ∼ ∆

(

η̃

c2
s

)

. (5.32)

The cases with large s are most interesting for non-Gaussianities. Using (5.21),

η̃ ≈ css , (5.33)

so

f feature
NL ∼ ∆s

cs
∼ 1

cs

b

∆Ne
. (5.34)

There is another term

−2
aε

c2
s
sζ(∂ζ)2 (5.35)

in the cubic action of Ref. [39] that contributes

f feature
NL ⊃ s

c2
s
∆tH ∼ ∆cs

c3
s

∼ b

c2
s

, (5.36)

which is also possibly observable. The term (5.34) dominates for the most interesting cases.

The net observable effect will be a nearly-scale-invariant large non-Gaussianity of order

O(1/c2
s) plus the scale-dependent (oscillatory) modulation of order O(∆s/cs). Similar to

the slow-roll case, we can write f feature
NL ∼ (

√
b/cs)(

√
b/∆Ne). As we have shown, the

– 22 –

e-folds (See Appendix C), typically b/∆N2
e ! 1. The mode vk will first see a dip in z′′/z

followed by a bump. Let us assume that the feature in z′′/z shows up around conformal

time τs, then modes with c2
sk

2 ! (z′′/z)|τs or c2
sk

2 " (z′′/z)|τs will not be affected, because

they are either oscillating well inside the sound horizon or have already crossed the sound

horizon and got frozen. The major effect will be on the modes with c2
sk

2 ∼ (z′′/z)|τs . The

range of k affected by the sharp feature is determined by b/∆N2
e . If PR starts seeing the

feature at k0, the feature will disappear at

∆k ∼ k0

√
b/∆Ne . (5.30)

5.2.3 Non-Gaussianities

Although Ref. [39, 41, 42] are only interested in non-Gaussianities without sharp features,

the cubic expansion of the perturbations is exact and does not rely on the assumption that

various inflationary parameters ε, η̃ and s are small. For DBI inflation, among all the terms

in Ref. [39], the leading term in the cubic action that is responsible for sharp features in

non-Gaussianity is

a3ε

2c2
s

d

dt

(

η̃

c2
s

)

ζ2ζ̇ . (5.31)

In the absence of sharp features, a term such as (a3ε/c4
s)ζζ̇2 contributes to the non-

Gaussianity estimator fNL ∼ 1/c2
s . Therefore as a rough estimate the term (5.31) con-

tributes

f feature
NL ∼ d

dt

(

η̃

c2
s

)

∆t ∼ ∆

(

η̃

c2
s

)

. (5.32)

The cases with large s are most interesting for non-Gaussianities. Using (5.21),

η̃ ≈ css , (5.33)

so

f feature
NL ∼ ∆s

cs
∼ 1

cs

b

∆Ne
. (5.34)

There is another term

−2
aε

c2
s
sζ(∂ζ)2 (5.35)

in the cubic action of Ref. [39] that contributes

f feature
NL ⊃ s

c2
s
∆tH ∼ ∆cs

c3
s

∼ b

c2
s

, (5.36)

which is also possibly observable. The term (5.34) dominates for the most interesting cases.

The net observable effect will be a nearly-scale-invariant large non-Gaussianity of order

O(1/c2
s) plus the scale-dependent (oscillatory) modulation of order O(∆s/cs). Similar to

the slow-roll case, we can write f feature
NL ∼ (

√
b/cs)(

√
b/∆Ne). As we have shown, the

– 22 –

e-folds (See Appendix C), typically b/∆N2
e ! 1. The mode vk will first see a dip in z′′/z

followed by a bump. Let us assume that the feature in z′′/z shows up around conformal

time τs, then modes with c2
sk

2 ! (z′′/z)|τs or c2
sk

2 " (z′′/z)|τs will not be affected, because

they are either oscillating well inside the sound horizon or have already crossed the sound

horizon and got frozen. The major effect will be on the modes with c2
sk

2 ∼ (z′′/z)|τs . The

range of k affected by the sharp feature is determined by b/∆N2
e . If PR starts seeing the

feature at k0, the feature will disappear at

∆k ∼ k0

√
b/∆Ne . (5.30)

5.2.3 Non-Gaussianities

Although Ref. [39, 41, 42] are only interested in non-Gaussianities without sharp features,

the cubic expansion of the perturbations is exact and does not rely on the assumption that

various inflationary parameters ε, η̃ and s are small. For DBI inflation, among all the terms

in Ref. [39], the leading term in the cubic action that is responsible for sharp features in

non-Gaussianity is

a3ε

2c2
s

d

dt

(

η̃

c2
s

)

ζ2ζ̇ . (5.31)

In the absence of sharp features, a term such as (a3ε/c4
s)ζζ̇2 contributes to the non-

Gaussianity estimator fNL ∼ 1/c2
s . Therefore as a rough estimate the term (5.31) con-

tributes

f feature
NL ∼ d

dt

(

η̃

c2
s

)

∆t ∼ ∆

(

η̃

c2
s

)

. (5.32)

The cases with large s are most interesting for non-Gaussianities. Using (5.21),

η̃ ≈ css , (5.33)

so

f feature
NL ∼ ∆s

cs
∼ 1

cs

b

∆Ne
. (5.34)

There is another term

−2
aε

c2
s
sζ(∂ζ)2 (5.35)

in the cubic action of Ref. [39] that contributes

f feature
NL ⊃ s

c2
s
∆tH ∼ ∆cs

c3
s

∼ b

c2
s

, (5.36)

which is also possibly observable. The term (5.34) dominates for the most interesting cases.

The net observable effect will be a nearly-scale-invariant large non-Gaussianity of order

O(1/c2
s) plus the scale-dependent (oscillatory) modulation of order O(∆s/cs). Similar to

the slow-roll case, we can write f feature
NL ∼ (

√
b/cs)(

√
b/∆Ne). As we have shown, the

– 22 –

ffeature
NL



• slow roll case  

data fitting give
 

• IR-DBI case

can estimate the order of magnitude of the non-Gaussianity estimator fNL by comparing

it to the slow-roll case. The most important difference is that here we replace a factor of

ε by η̃′, and also η̃′ only gets large momentarily. Hence we estimate f feature
NL = O(η̃′∆τ) =

O(∆η̃), where ∆τ is the conformal time that the inflaton spends crossing the step.

To estimate the level of this non-Gaussianities, we now give a qualitative estimate for

η̃′ [26]. During the acceleration period, the ε is increased by

∆ε ≈ ∆V/H2 ≈ 5c . (4.13)

The duration of this period is

∆taccel ≈ ∆φ/φ̇ ≈ d/
√

cV , (4.14)

where we used φ̇ estimated in Sec. 4.2. These can be further used to estimate

∆η̃ ≈ η̃ =
ε̇

Hε
≈ 7c3/2

dε
, (4.15)

The time scale for the relaxation period is of order H−1, during which η̃ is O(1) and ˙̃η are

of order O(H).

We sum over the contributions from both the acceleration and relaxation periods. The

former gives faccel
NL ≈ 7c3/2/(dε), the latter gives f relax

NL = O(1). So for most interesting

cases where non-Gaussianities are large enough to be observed, it can be estimated by the

first contribution,

f feature
NL ∼ 7c3/2

dε
. (4.16)

We note that this is only crude order of magnitude estimation on the amplitude of this

non-Gaussianity, since the integration (4.12) also involve mode functions uk which will

be modulated by the presence of the sharp feature, and the shape and running of such

non-Gaussianities are very important. Details have to be done numerically as in [26].

Qualitatively since we have argued in Sec. 4.2 that for a specific observed feature the c/ε

is hold fixed model-independently, (4.16) implies that the value of d is very crucial to the

level of the non-Gaussianities. There are two major constraints on d. First, in the power

spectrum, as shown in Fig. 2 the bump in PR may depend sensitively on d. Second, the

range of oscillation in PR(k) is also controlled by d. If d is too small, the oscillation in

PR(k) might spread over to the well measured first acoustic peak in WMAP Cl curve.

Numerically, we have found that
√

c/d ∼ O(1), consistent with (4.11), so the magnitude of

(4.16) should be close to that in Ref. [26].

It is instructive to split this expression to f feature
NL ∼ 7c/ε ·

√
c/d. The first factor is

determined by the amplitude of the glitch from (4.9), while the second factor the extension

of the glitch from (4.11). Note both are in the k-space not the CMB multipole l-space.

Therefore in principle a sharp feature can also appear only in 3pt. This is clear from our

estimation (4.9) and (4.16), where one can reduce c/ε while increase c3/2/(dε).

Our analyses so far do not depend on the whether the inflation is caused by large field

or small field. But when it comes to the numerical numbers the differences are interesting.
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c/ε = 0.2

fNL = O(η̃)

√
c/d = O(1) fNL = O(1)

e-folds (See Appendix C), typically b/∆N2
e ! 1. The mode vk will first see a dip in z′′/z

followed by a bump. Let us assume that the feature in z′′/z shows up around conformal

time τs, then modes with c2
sk

2 ! (z′′/z)|τs or c2
sk

2 " (z′′/z)|τs will not be affected, because

they are either oscillating well inside the sound horizon or have already crossed the sound

horizon and got frozen. The major effect will be on the modes with c2
sk

2 ∼ (z′′/z)|τs . The

range of k affected by the sharp feature is determined by b/∆N2
e . If PR starts seeing the

feature at k0, the feature will disappear at

∆k ∼ k0
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5.2.3 Non-Gaussianities

Although Ref. [39, 41, 42] are only interested in non-Gaussianities without sharp features,

the cubic expansion of the perturbations is exact and does not rely on the assumption that

various inflationary parameters ε, η̃ and s are small. For DBI inflation, among all the terms

in Ref. [39], the leading term in the cubic action that is responsible for sharp features in

non-Gaussianity is

a3ε

2c2
s

d

dt

(

η̃

c2
s

)

ζ2ζ̇ . (5.31)

In the absence of sharp features, a term such as (a3ε/c4
s)ζζ̇2 contributes to the non-

Gaussianity estimator fNL ∼ 1/c2
s . Therefore as a rough estimate the term (5.31) con-

tributes

f feature
NL ∼ d

dt

(

η̃

c2
s

)

∆t ∼ ∆

(

η̃

c2
s

)

. (5.32)

The cases with large s are most interesting for non-Gaussianities. Using (5.21),

η̃ ≈ css , (5.33)

so

f feature
NL ∼ ∆s

cs
∼ 1

cs

b

∆Ne
. (5.34)

There is another term

−2
aε

c2
s
sζ(∂ζ)2 (5.35)

in the cubic action of Ref. [39] that contributes

f feature
NL ⊃ s

c2
s
∆tH ∼ ∆cs

c3
s

∼ b

c2
s

, (5.36)

which is also possibly observable. The term (5.34) dominates for the most interesting cases.

The net observable effect will be a nearly-scale-invariant large non-Gaussianity of order

O(1/c2
s) plus the scale-dependent (oscillatory) modulation of order O(∆s/cs). Similar to

the slow-roll case, we can write f feature
NL ∼ (

√
b/cs)(

√
b/∆Ne). As we have shown, the

– 22 –

e-folds (See Appendix C), typically b/∆N2
e ! 1. The mode vk will first see a dip in z′′/z

followed by a bump. Let us assume that the feature in z′′/z shows up around conformal

time τs, then modes with c2
sk

2 ! (z′′/z)|τs or c2
sk

2 " (z′′/z)|τs will not be affected, because

they are either oscillating well inside the sound horizon or have already crossed the sound

horizon and got frozen. The major effect will be on the modes with c2
sk

2 ∼ (z′′/z)|τs . The

range of k affected by the sharp feature is determined by b/∆N2
e . If PR starts seeing the

feature at k0, the feature will disappear at

∆k ∼ k0

√
b/∆Ne . (5.30)

5.2.3 Non-Gaussianities

Although Ref. [39, 41, 42] are only interested in non-Gaussianities without sharp features,

the cubic expansion of the perturbations is exact and does not rely on the assumption that

various inflationary parameters ε, η̃ and s are small. For DBI inflation, among all the terms

in Ref. [39], the leading term in the cubic action that is responsible for sharp features in

non-Gaussianity is
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In the absence of sharp features, a term such as (a3ε/c4
s)ζζ̇2 contributes to the non-
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The cases with large s are most interesting for non-Gaussianities. Using (5.21),

η̃ ≈ css , (5.33)

so

f feature
NL ∼ ∆s

cs
∼ 1

cs

b

∆Ne
. (5.34)

There is another term

−2
aε

c2
s
sζ(∂ζ)2 (5.35)
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which is also possibly observable. The term (5.34) dominates for the most interesting cases.

The net observable effect will be a nearly-scale-invariant large non-Gaussianity of order

O(1/c2
s) plus the scale-dependent (oscillatory) modulation of order O(∆s/cs). Similar to

the slow-roll case, we can write f feature
NL ∼ (

√
b/cs)(

√
b/∆Ne). As we have shown, the
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e-folds (See Appendix C), typically b/∆N2
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2 ! (z′′/z)|τs or c2
sk

2 " (z′′/z)|τs will not be affected, because
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sk
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range of k affected by the sharp feature is determined by b/∆N2
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in the cubic action of Ref. [39] that contributes
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∆tH ∼ ∆cs

c3
s
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s

, (5.36)

which is also possibly observable. The term (5.34) dominates for the most interesting cases.

The net observable effect will be a nearly-scale-invariant large non-Gaussianity of order

O(1/c2
s) plus the scale-dependent (oscillatory) modulation of order O(∆s/cs). Similar to

the slow-roll case, we can write f feature
NL ∼ (

√
b/cs)(

√
b/∆Ne). As we have shown, the

– 22 –

b = 0.01, cs = 0.1,∆Ne = 0.01, ⇒ ffeature
NL = O(10)



Conclusions

• Duality cascade predicts a series of steps in the warp 
geometry, the steps are equally spaced in ln(r). Steps are 
generic, with KS a calculable example.

• Generically, dilaton runs, and features in the warp geometry 
becomes features in slow-roll potential. 

• In the slow-roll power spectrum, the sensitivity to the steps is 
controlled by      . Brane inflation is highly sensitive to small 
features with

• In DBI inflation, sharp features in warp factor may not be 
observed in the power spectrum, but gives detectable level 
non-guassianity.

• The steps features in the power spectrum are always 
accompanied by large non-guassianity on the same scale 
=> chances to tell the feature from statistical fluctuation / 
cosmic variance

c/ε
ε ∼ 10−11


