

Inverse See-saw in Supersymmetry

Kai Wang IPMU, the University of Tokyo

Cornell Particle Theory Seminar September 15, 2010

hep-ph/1009.xxxx with Seong-Chan Park

+ 다 > < 쿱 > < 흔 > < 흔 > < 흔 > < 흔</p>

900

See-saw is perhaps the most elegant mechanism for neutrino mass generation, n_R is well motivated from SO(10) and $SU(3)_H$. but..

$$y_{\nu}\overline{\ell_L}n_RH_u + M_R\overline{n_R^c}n_R + M_S\overline{s_L}n_R$$

Then, in the basis of (ν_L, s_L, n_R^c)

$$\mathcal{M} = \left(\begin{array}{ccc} 0 & 0 & M_D \\ 0 & 0 & M_S \\ M_D & M_S & M_R \end{array}\right)$$

Lightest mass eigenstate remain massless.....

- Is there any exact chiral symmetry to protect m_ν?
- Why is there an additional singlet? *E*₆?
- What is the Lepton number violation scale Λ_{χ} ?

< D > < P > < E > < E > <</p>

In this talk...

Two examples that tree-level masses are suppressed but only arise radiatively.

- generate neutrino mass in a modified Wyler-Wolfenstein model from radiative corrections. (with Seong-chan Park, hep-ph/1009.xxxx)
- generate charged lepton masses m_e and down-type quark masses m_d radiatively from $\langle H_u \rangle$ in MSSM (large $\tan \beta$ limit, see for example, Dobrescu-Fox, upper-lifted MSSM, hep-ph/1001.3147)

So no unbroken chiral symmetry....

Lessons from Upper-lifted MSSM Dobrescu-Fox, 1001.3147 $\langle H_u \rangle \gg \langle H_d \rangle, m_e, m_d \text{ from } \langle H_u \rangle$

Accidental symmetries in SM lagrangian

$$i\bar{Q}_L^i \not\!\!\!\! \mathcal{D} Q_L^i + i\bar{u}_R^i \not\!\!\!\! \mathcal{D} u_R^i + i\bar{d}_R^i \not\!\!\!\! \mathcal{D} d_R^i + \dots$$

 $Q_L^i \to U_O^{ij} Q_L^j, \ u_R^i \to U_u^{ij} u_R^j, \ d_R^i \to U_d^{ij} d_R^j$

With three generations, $U(3)_Q \times U(3)_u \times U(3)_d \times U(3)_\ell \times U(3)_e$

$$-y_u^{ij}\bar{Q}_L^i\epsilon H^{\dagger}u_R^j - y_d^{ij}\bar{Q}_L^iHd_R^j + \dots$$

break the above $[U(3)]^5$ into $U(1)_{\rm B} \times U(1)_{\rm Lep}$

$$Q_L^i \rightarrow e^{i\theta/3}Q_L^i, \ u_R^i \rightarrow e^{i\theta/3}u_R^i, \ d_R^i \rightarrow e^{i\theta/3}d_R^i$$

$$\ell_L^i \to e^{i\phi} \ell_L^i, \ e_R^i \to e^{i\phi} e_R^i$$

Inverse Seesaw in SUSY

Kai Wang, IPMU, U-Tokyo

+ = > + # > + = > + = > = =

Fermion mass is not only a electroweak symmetry breaking (EWSB) effect .

- If y → 0, U(3) symmetry will be restored and the corresponding fermion will be massless up to all loops.
- $m_t(\text{ or } m_u) \neq 0 \rightarrow m_d, m_e \text{ must break the } U(3)$ s. (for instance, topcolor model)

To eliminate the tree-level contribution, tune the vevpossible in 2HDM (large $\tan \beta$)

 $\langle H_u \rangle \gg \langle H_d \rangle$

Non-zero Yukawa couplings ensure that the chiral symmetries have been broken. The masses can be generated radiatively.

+ = > + # > + = > + = > = =

MSSM is a natural 2HDM

- Superpotential is holomorphic and ϵH^* is forbidden in superpotential.
- \tilde{H}_u , \tilde{H}_d contributes to anomaly $[SU(2)_L]^2 U(1)_Y$,.... and Witten Anomaly

$$W = y_u Q u^c H_u + y_d Q d^c H_d + y_e \ell e^c H_d + \mu H_u H_d$$

2HDM has Peccei-Quinn symmetry (DFSZ axion, 1981).

$$\begin{aligned} A_{[SU(3)_C]^2U(1)} &= 3\alpha + \frac{3}{2}(2(q-\alpha) + (u-\alpha) + (d-\alpha)) \\ &= 3\alpha - \frac{3}{2}(h_u + h_d) \\ q + u + h_u &= 2\alpha, q + d + h_d = 2\alpha \end{aligned}$$

 $M_{\rm PQ} \sim M_{\rm Intermediate},$ Kim-Nilles

イロト 不得 トイヨト イヨト

3

nan

Inverse Seesaw in SUSY Kai W

 $10 \cdot 10H_u + 10 \cdot \bar{5}H_d$

Field	10	$\bar{5}$	H_u	H_d	θ
R-charge	$\frac{1}{5}$	$\frac{3}{5}$	$\frac{4}{5}$	$\frac{6}{5}$	1
PQ	Ŏ	-1	Ŏ	ľ	0

 $\mathbf{10} \cdot \bar{\mathbf{5}} H_u^*: \ \mathcal{R}: \frac{1}{5} + \frac{3}{5} - \frac{4}{5} = 0 \neq 2, \ \mathcal{PQ}$

Inverse Seesaw in SUSY

$$W = \mu H_u H_d \qquad \not P \not Q$$

$$\begin{aligned} \mathcal{L}_{\text{soft}} & \ni \quad m_{\tilde{f}}^2 \mid \tilde{f} \mid^2 \qquad R - \text{invariant} \\ &+ \quad M_{\frac{1}{2}} \lambda \lambda + A_u \tilde{Q} \tilde{u} H_u + \dots \qquad \not R \\ &+ \quad B \mu H_u H_d \qquad \not R, \not P \not Q \end{aligned}$$

If PQ, \mathcal{R} and $[U3]^5$,

$$\mathbf{10} \cdot \mathbf{\bar{5}} H_u^* \to m_e, m_d \neq 0$$

Another \underline{PQ} source, (proportional to μ)

$$F_{H_d} = \frac{\partial W}{\partial H_d} = y_d Q d^c + y_e \ell e^c + \mu H_u$$

$$V \ni |F_{H_d}|^2 = y_d \mu^* H_u^* \tilde{Q}\tilde{d} + y_e \mu^* H_u^* \tilde{\ell}\tilde{e}$$

東京大学 のへで

Inverse Seesaw in SUSY

Kai Wang, IPMU, U-Tokyo

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Inverse Seesaw in SUSY K

Inverse Seesaw in SUSY

Physics Implications

• If all Yukawa couplings in MSSM are perturbative at $M_{\rm GUT}$, $2 \lesssim \tan \beta \lesssim 50$.

But what if m_b arise from $\langle H_u \rangle$ radiatively.....

 ν_L does not carry any unbroken gauge symmetry $(SU(3)_C \times U(1)_{\rm EM})....$

$$-\frac{1}{2}M_{\nu}^{ij}\nu_{L}^{iT}Cv_{L}^{j}$$

Type-I see-saw

$$y_{\nu}\overline{\ell_L}n_RH_u + M_R\overline{n_R^c}n_R + h.c.$$
,

For one generation y_{ν} break $U(1)_{\ell} \times U(1)_n \to U(1)_{\text{Lep}}$ $M_R \to U(1)_{\text{Lep}}$ $m_{\nu} = M_D^T M_B^{-1} M_D$

- Without tuning dimensionless y_{ν} , tiny m_{ν} from $M_{\rm GUT}$
- $U(1)_{B-L}$ becomes anomaly free, easily embedded into SO(10)

イロト 不得 トイヨト イヨト 三日

Inverse Seesaw in SUSY Kai Wang, IPMU, U-Tokyo

Pati-Salam(Wyler-Wolfenstein)

$$y_
u \overline{\ell_L} n_R H_u + M_S \overline{s_L} n_R + h.c.$$
 In basis $(
u_L, s_L, n_R^c)$

$$\mathcal{M} = \begin{pmatrix} 0 & 0 & M_D \\ 0 & 0 & M_S \\ M_D & M_S & 0 \end{pmatrix}$$
$$m_{\nu} = 0$$

Inverse Seesaw in SUSY

Inverse see-saw (Mohapatra, Valle)

$$y_{\nu}\overline{\ell_L}n_RH_u+M_S\overline{s_L}n_R+\epsilon\overline{s_L^c}s_L$$
 In basis (ν_L,s_L,n_R^c)

$$\mathcal{M} = \left(\begin{array}{ccc} 0 & 0 & M_D \\ 0 & \epsilon & M_S \\ M_D & M_S & 0 \end{array}\right)$$

$$m_{\nu} \simeq \epsilon \frac{M_D^2}{M_D^2 + M_S^2}$$

Inverse Seesaw in SUSY

Tuning: Dimensionless y_{ν} or dimension-one M

$$y_e \sim 10^{-6}, y_\nu \sim 10^{-12}$$
?

Dimension One: see-saw vs inverse

- In see-saw, M_R breaks $U(1)_{B-L}$ gauge symmetry at ultra-high scale, for instance, M_{GUT} .
- Now n, s are both SM gauge singlet...., the scale vanishes to restore the $U(1)_{\text{Lep}}$, can be identified as soft breaking of $U(1)_{\text{Lep}}$.

$y_{\nu}\overline{\ell_L}n_RH_u+M_S\overline{s_L}n_R+M_R\overline{n_R^c}n_R$ In basis (ν_L,s_L,n_R^c)

$$\mathcal{M} = \left(\begin{array}{ccc} 0 & 0 & M_D \\ 0 & 0 & M_S \\ M_D & M_S & M_R \end{array}\right)$$

$$\nu = -\frac{M_S}{\sqrt{M_D^2 + M_S^2}} \nu_L + \frac{M_D}{\sqrt{M_D^2 + M_S^2}} s_L$$
$$N_{\pm} = \frac{1}{\sqrt{M_{\pm}^2 + M_D^2 + M_S^2}} (M_D \nu_L + M_S s_L - M_{\pm} n_R^c)$$

with mass eigenvalues as

$$m_{\nu} = 0, \quad M_{\pm} = \frac{1}{2} \left(M_R \pm \sqrt{4M_D^2 + M_R^2 + 4M_S^2} \right)$$

Inverse Seesaw in SUSY

Why no $M_R^* \overline{s_L^c} s_L$? SUSY

$$W = y_{\nu} \ell n^c H_u + M_S s n^c + M_R n^c n^c$$

Field	ℓ	e^{c}	n^c	s	H_u	H_d	θ
<i>R</i> -charge	$\frac{1}{5}$	$\frac{3}{5}$	1	1	$\frac{4}{5}$	$\frac{6}{5}$	1
$U(1)_L$	Ĭ	-1	-1	1	Ŏ	Ŏ	0

$W_{\rm eff}$	m	R-charge of m	$U(1)_L$ charge
$n^c n^c$	$\overline{n_R^c}n_R$	$1 + 1 - 2\theta = 0$	-2
$\ell s H_u$	$\overline{\nu_L^c} s_L$	$\frac{1}{5} + 1 + \frac{4}{5} - 2\theta = 0$	2
$\ell\ell H_u H_u$	$\overline{\nu_L^c} \nu_L$	$\frac{1}{5} + \frac{1}{5} + \frac{4}{5} + \frac{4}{5} - 2\theta = 0$	2
ss	$\overline{s_L^c}s_L$	$\ddot{1} + \ddot{1} - \ddot{2\theta} = 0$	2

Inverse Seesaw in SUSY

Kai Wang, IPMU, U-Tokyo

イロト イロト イモト イモト 三日

New gauge interaction?

Under E_6

$$27 = 16 + 10 + 1$$

 s_L is completely gauge singlet and any term involving s_L will be only gravitationally induced in

- Kähler potential
- Lepton number violation *B*-terms in soft-breaking lagrangian

R-invariant piece

 $U(1)_{B-L}$ becomes anomalous so the leading is Yukawa interaction induced $\ell\ell\ell H_u H_u$ Non-SUSY contribution

$$\begin{split} (M_{\nu}^{1-\text{loop}})_{ij} &= \sum_{k=1}^{3} \frac{1}{16\pi^2} M_R^k \sum_{\phi=h,H} \frac{Y_{ik}^* Y_{jk}^* M_{\phi}^2}{M_{\phi}^2 - M_R^{k^2}} \ln\left(\frac{M_{\phi}^2}{M_R^{k^2}}\right) \\ &- \frac{Y_{ik}^* Y_{jk}^* M_A^2}{M_A^2 - M_R^{k^2}} \ln\left(\frac{M_A^2}{M_R^{k^2}}\right) \end{split}$$

Inverse Seesaw in SUSY

Kai Wang, IPMU, U-Tokyo

$$M_R rac{M_\phi^2}{M_\phi^2 - M_R^2} \ln \left(rac{M_\phi^2}{M_R^2}
ight)$$

M_R ≫ M_{h,H} restore the see-saw, M_R < 10¹² GeV
 M_R ≪ M_{h,H}, inverse see-saw limit, M_R ~ KeV
 We take the inverse see-saw limit (non-canonical Kälher potential) to ensure light neutrino mass.

$$V = |\frac{\partial W}{\partial n_R}|^2 = |(\ell H_u + M_s s_L + M_R n_R)|^2$$
$$= M_R^* \tilde{n}_R^* \tilde{\ell} H_u + M_R^* M_s \tilde{n}_R^* \tilde{s}_L$$

After M_{susy} ,

$$m_{\tilde{n}}^2 \sim M_{\rm susy}^2 + M_R^2$$

M_R ≫ M_{susy}
M_R ≪ M_{susy}

Inverse Seesaw in SUSY

R Contribution

The effective operators do not break *R*-symmetry

 $\mathcal{L}_{soft} \ni B_R M_R \tilde{n}_R \tilde{n}_R + B_S \epsilon_s \tilde{s}_L \tilde{s}_L + A_s M_R \tilde{\ell}_L \tilde{s}_L H_u + B_\nu M_\nu \tilde{\nu}_L \tilde{\nu}_L$

 m_{ν} only arise with gaugino mass insertion. Soft SUSY breaking terms that also violate $U(1)_{\rm Lep}$ but $1/M_{\rm Pl}$ suppression.

Conclusions

 I present two examples that the fermion masses arise from radiative correction where the tree level masses are suppressed but all the chiral symmetries are broken.

