f_{Ds} – Lattice QCD vs Experiment

G. Peter Lepage (for the HPQCD Collaboration) Cornell University

History

Lattice QCD

1975 Ken Wilson invents lattice $QCD \Rightarrow confinement!$

1976-2000 Field stuck \Rightarrow little interaction with experiment.

- quark vacuum polarization too expensive
- m_u , $m_d = m_s$ or larger (∞)
- implies 30-∞% systematic errors

2001- Improved staggered-quark discretization for light quarks.

- Lattice spacings a = 0.06 0.18 fm.
- *u*, *d*, s vacuum polarization.
- $m_u = m_d = m_s/10$ to $m_s/2.5$ (small enough to extrapolate).
- Same (relativistic) discretization for *u*, *d*, *s*, and *c*.

Cornell Workshop: Jan. 2001

- Few % precision now for dozens of "gold-plated" calculations.
 - Masses, decay constants, mixing amplitudes, form factors, etc.
 - "Gold-plated" process for every CKM matrix element but V_{tb} .
- Two challenges:
 - I. Validate/calibrate precision of new lattice methods; need %-accurate theory and experiment.
 - 2. Do new physics:
 - Std. Model failures in D, B physics?
 - CLEO-c
 - Racing with experiment.

D Decay Constants (2008)

HPQCD Errors Reliable?

Need to check:

- Light-quark vacuum polarization.
- c-quark discretization ($m_c = 0.43/a$ to 0.85/a too large?).
- Implementation of axial-vector current.
- $m_u = m_d$, *a* extrapolations.

What is lattice QCD?

Lattice Approximation

 \Rightarrow Fields $A_{\mu}(x)$, $\Psi(x)$ specified only at grid sites; interpolate for other points.

 \Rightarrow QCD \rightarrow multidimensional integral (millions of dimensions):

$$\int \mathscr{D}A_{\mu} \dots e^{-\int L dt} \longrightarrow \int \prod_{x_j \in \text{grid}} dA_{\mu}(x_j) \dots e^{-a \sum L_j}.$$

Lattice Simulations

- I. Tune five free parameters bare $m_u = m_d$, m_s , m_c , m_b and α_s using $m(\pi)$, m(K), $m(\eta_c)$, m(Y) and $\Delta E_Y(2S-IS)$.
- 2. Generate results for multiple values of lattice spacing a and $m_{u,d}$ (and lattice volume). Extrapolate to physical values.
- 3. Use vacuum expectation values of numerous operators to extract physics. No free parameters!

Light-Quark Vacuum Polarization

Lattice QCD/Experiment (no free parameters):

Davies et al, Phys. Rev. Lett. 92:022001, 2004. (HPQCD, MILC, Fermilab, UKQCD)

QCD Coupling

- Tuned LQCD = real QCD.
- "Measure" 22 short-distance quantities Y⁽ⁱ⁾ (nonperturbatively) in simulation.
- Extract coupling α_s by comparing with perturbative expansions:

$$Y^{(i)} = \sum_{n=1}^{\infty} c_n^{(i)} \, \alpha_s^n (d^{(i)}/a)$$

LQCD vs continuum QCD:

Davies et al, arXiv:0807.1687 (HPQCD, 2008); PDG (2004)

Without quark vacuum polarization:

c-Quark Discretization

Lorentz Symmetry Restoration

Lorentz invariance implies:

$$c^{2}(\mathbf{p}) \equiv \frac{E^{2}(\mathbf{p}) - m^{2}}{\mathbf{p}^{2}} = 1 \qquad \forall \mathbf{p}$$

Spectrum

HPQCD

Follana et al, Phys.Rev.Lett.100:062002, 2008 (HPQCD).

Relativistic Detail in Spectrum

Hyperfine mass splittings for mesons with c quarks:

N.B. Few MeV precision with no free parameters.

Pseudoscalar Current

Follana et al, Phys.Rev.Lett.100:062002, 2008 (HPQCD).

Heavy-Quark Meson (ψ) Decay Const. (Prelim.)

Pseudoscalar Correlator

Compute

$$\begin{aligned}
\overline{\psi}_c \gamma_5 \psi_c \\
for all box{} f(t) &\equiv a^6 \sum_{\mathbf{x}} (am_{0c})^2 \langle 0|j_5(\mathbf{x},t)j_5(0,0)|0 \rangle
\end{aligned}$$

- Mass factors imply UV finite (PCAC because HISQ)
- Implies:

$$G_{\text{cont}}(t) = G_{\text{lat}}(t) + \mathcal{O}(a^2)$$
 for all t

Follana et al, Phys.Rev.D78:054513, 2008 (HPQCD).

Moments

Low *n* moments perturbative $(E_{\text{threshold}} = 2m_c)$:

$$G_n = \sum_t (t/a)^n G(t)$$

 $\rightarrow \frac{\partial^n}{\partial E^n} \Pi(E=0)$

Implies:

Results

	R_6	R_8	R_{10}
a^2 extrapolation	0.2%	0.3%	0.2%
pert'n theory	0.4	0.3	1.3
$\alpha_{\overline{\mathrm{MS}}}$ uncertainty	0.3	0.4	1.0
gluon condensate	0.3	0.0	0.3
statistical errors	0.0	0.0	0.0
relative scale errors	0.4	0.4	0.4
overall scale errors	0.6	0.6	0.7
sea quarks	0.3	0.3	0.3
finite volume	0.1	0.1	0.3
Total	1.0%	1.0%	1.9%

Compare with continuum determination from vector current + $R(e^+e^-)$:

m_c(3GeV)=0.986(13) GeV

Kuhn et al, Nucl. Phys. B778, 192 (2007) [hep-ph/0702103]

Coupling from Ps. Correlator

- R_4 , R_6/R_8 ... dimensionless
- Compare lattice with pert'n theory to get coupling (at 3 GeV)

a, m_{u/d} Extrapolations

Fake Data

Test extrapolation using fake data:

- Use different theoretical models (*n*-th order chiral formulas, Bernard's staggered-quark chiral perturbation theory, ...) with random parameters to generate fake data for same lattice spacings and light-quark masses used in real simulation.
- Add correlated statistical noise to simulate Monte Carlo noise.
- Extrapolate using same analysis code as in real simulation.
- Check whether extrapolated results for decay constants agree with exact results (from theoretical model evaluated at a=0 with correct masses).
- Repeat 100s of times.

Pion, Kaon Decay Constants

Extrapolated results for pion and kaon decay constants agreed with "exact" results to within $\pm 1\sigma$ for 71% of 500 fake data sets.

D, D_s Decay Constants

f_D, f_{Ds} Extrapolations

- Lines are for lattice spacings 0.15, 0.12, and 0.09 fm.
- Mass ratio is approx $m_{u,d}/m_s$.
- f_{Ds} almost independent of $m_{u,d}$.
- f_{Ds} extrapolation 2%.

Masses and Decay Constants (2008)

