Mass Measurement in Boosted Decay Chains w/ Missing Energy

JING SHAO
SYRACUSE UNIVERSITY

base on the work with Jay Hubisz arxiv:1009.1148

LEPP PARTICLE THEORY SEMINAR SEP 152010
w Warm-up for mass measurement w/ missing energy
~ The Problem
~ The knowns methods
\% Boosted decay chain, Collinearity
m MET-cone method
~ 1D projection of MET-cone: $m_{\text {test }}$ variable
is Definition, analytic solution and endpoints
~ Numerical results
\% Test consistency

* Conclusion

Missing energy events in new physics

m Missing energy event is not unusual -- neutrino in SM
is We are interested in the missing energy from new physics
\% Dark matter motivation : exist (meta)stable exotic particle

* New symmetry to protect it from decay
~ Z2 parity --> pair production of stable exotics at LHC
~ SUSY, UED ...

Mass reconstruction is important

* Crucial for understanding the underlying physics
su distinguish different physical models

The dark matter Connection

* The mass of the missing particle determines the relic density

$$
\Omega_{\chi} h^{2} \propto \frac{1}{\langle\sigma v\rangle} \sim \frac{m_{\chi}^{2}}{\alpha^{2}} .
$$

* Comparison with direct detection and indirect detection

Baltz, Battaglia, Peskin and Wizansky, hep-ph/0602187.

Determine the Dark Matter Mass -- challenging at the LHC

THE DIFFICULTY:

* Two missing particles in each event
* Unknown parton frame leads to less constrained kinematics
is Interpretation of the signal as a particular physics process maybe complicated -- different underlying topologies or a mixture of them

visible

Kinematic Approaches

- Demand that at least some particles are sufficiently close to their mass shells that their energy-momentum Lorentz invariant can be used to constrain their masses

Advantage: do not need to know many details of the underlying physical model (gauge group, spin etc)

Three main catergories:
see a recent review:
Barr and Lester, arXiv:1004.2732[Hep-ph]

* Invariant Mass endpoint
* Polynomial method/Mass relation method
~ Mt2 variable and Kink
« Other variations: subsystem MT2, Mct,

BACHACOU, HINCHLIFFE AND PAIGE

KAWAGOE, NOJIRI AND POLESELLO; CHENG, GUNION, HAN AND MCELRATH

LESTER AND SUMMERS
W.S. CHO, K.CHOI, Y.G.KIM, C.B.PARK
K.KONG, K. MATCHEV, M.PARK

Invariant Mass endpoint

* Simple decay chain

$m_{\ell \ell}^{\max }=\sqrt{\left(M_{Z}^{2}-M_{Y}^{2}\right)\left(M_{Y}^{2}-M_{X}^{2}\right)} / M_{Y}$
~ Only probe mass differences

is Need long decay chain to get enough constraints suffer from combinatoric ambiguities

Polynomial method(Mass relation)

m Using On-shell conditions event-by-event

$$
\begin{gathered}
\text { constraints } \geq \text { unknowns } \\
10 n .
\end{gathered} \quad 4+8 n .
$$

is For $n>2$, over-constrained system
\% Very restrictive kinematics

is Require long decay chains -- at least four on-shell particles in each chain

Cambridge MT2 method

~ Massive new particles pair produced $p p \rightarrow \tilde{l l}$

$$
\begin{aligned}
& \begin{aligned}
m_{i}^{2} & \geq M_{T 2}^{2} \\
& \equiv \min _{\boldsymbol{p}_{1}+\boldsymbol{p}_{2}=\boldsymbol{p}_{T}}\left[\max \left\{m_{T}^{2}\left(\boldsymbol{p}_{T l^{-}}, \boldsymbol{p}_{1}\right), m_{T}^{2}\left(\boldsymbol{p}_{T l^{+}}, \boldsymbol{p}_{2}\right)\right\}\right]
\end{aligned} \\
& \\
& \text { minimization over all } \\
& \text { possible trial LSP }
\end{aligned} m_{l}^{2}+m_{\tilde{\chi}}^{2}+2\left(E_{T l} E_{T \tilde{\chi}}-\boldsymbol{p}_{T l} \cdot \boldsymbol{p}_{T \tilde{\chi}}\right)
$$ momentum

\% MT2 endpoint func. of trial LSP mass

* Mт2 kink --> LSP mass
* for simple 2-body decay, no clear kink

* for multi-body decay, combinatoric dilute the kink
W.S. CHO, K.CHOI, Y.G.KIM, C.B.PARK

Having multiplet methods is crucial

Any new orthogonal ideas?
\% In many new physics models: there are both heavy($\sim \mathrm{TeV})$ exotics as well as light($\sim 100 \mathrm{GeV}$) ones

* Boosted decay is generic
* Can we get additional handle if missing particle is approximately collinear with visible particles ?

MET-cone method

4. Based on the simple observation:
~ MET only allowed to vary a narrow region around visible momentum -- "MET-cone"
\% MET-cone boundary is sensitive to the underlying masses
is for initial study: symmetric double decay chains

Only use the information
« use SUSY notation of X and MET

Collinearity of the decay

w parametrize the opening angle in the lab frame

$$
\tan \theta_{\chi_{2} X}=\frac{\beta_{0}^{X}}{\gamma}\left(\frac{\sin \theta_{0}}{\beta_{0}^{X} \cos \theta_{0}+\beta}\right)
$$

$\beta, \gamma \quad$ velocity $\&$ boost factor of χ_{2}
$\beta_{0}, \gamma_{0} \begin{aligned} & \text { velocity \& boost factor in the } \\ & \text { rest frame of } \chi_{2}\end{aligned}$

* Narrow range of variation $\quad \beta_{0}^{X}<\beta$

$$
0 \leq \tan \theta_{\chi_{2} X} \leq \frac{\beta_{0}^{X}}{\gamma \beta} \frac{1}{\sqrt{1-\left(\beta_{0}^{X} / \beta\right)^{2}}} \xrightarrow{\gamma \gg 1} \frac{\beta_{0}^{X}}{\gamma} \frac{1}{\sqrt{1-\left(\beta_{0}^{X}\right)^{2}}}
$$

~ Two Cases

- Large boost factor $\gamma \gg 1$
- Moderate boost factor γ, but the decay products are non-relativistic in the rest frame of the decay $\beta_{0} \ll 1$
is For a given underlying physics, both boost factor and θ_{0} vary according to the matrix element

$$
\tilde{q}_{L} \rightarrow \chi_{2} q \rightarrow \chi_{1} Z q
$$

is boost factor decrease with increased \# of steps in the cascade

Correlation in the magnitude

~ boost factors are correlated

$$
\begin{aligned}
& \gamma_{\chi_{1}}=\gamma \gamma_{0}^{\chi_{1}}\left(1+\beta \beta_{0}^{\chi_{1}} \cos \theta\right) \\
& \gamma_{X}=\gamma \gamma_{0}^{X}\left(1-\beta \beta_{0}^{X} \cos \theta\right)
\end{aligned}
$$

$$
\begin{aligned}
p_{\chi_{1}} & =\gamma_{\chi_{1}} \beta_{\chi_{1}} m_{\chi_{1}} \\
p_{X} & =\gamma_{X} \beta_{X} m_{X}
\end{aligned}
$$

In the limit $\beta_{0} \ll 1$, two boost factors equal

* the ratio mainly depend on θ_{0}, mildly dependence on the boost factor γ

MET-Cone

MET-Cone

~ Sum over momenta of both decay chain

MET-Cone

* Sum over momenta of both decay chain

MET-Cone

* Sum over momenta of both decay chain

\approx For small β_{0}, the MET vector vary around $\vec{p}_{X}^{\text {tot }}$, form a "Cone"

MET-Cone : a more precise definition

* For a given visible particle configuration, what is the allowed region of MET ?
fix $\gamma_{a}^{X}, \gamma_{b}^{X}, \theta_{a b}^{X}$
$\theta_{\text {beam }}, \phi_{\text {beam }}$

$$
m_{\chi_{1}}, m_{\chi_{2}}, m_{X}
$$

Vary the rest frame angles with a flat prior

$$
\theta_{a, 0}, \theta_{b, 0}, \phi_{a, 0}, \phi_{b, 0}
$$

~ A simple example:

$$
\begin{gathered}
\chi_{2} \rightarrow \chi_{1} Z \\
m_{\chi_{2}}=200 \mathrm{GeV}, m_{\chi_{1}}=100 \mathrm{GeV} . \\
\gamma_{a, b}^{X}=5 \quad \theta_{a b}^{X}=\pi / 2 \quad \theta_{\text {beam }}=0
\end{gathered}
$$

* Has definite boundary! MET must be inside if the correct masses were used

MET-Cone : mass dependence

s the MET cone boundary is sensitive to the exotic masses in the decay

$$
\begin{aligned}
& \left(m_{\chi_{2}}, m_{\chi_{1}}, m_{Z}\right) \\
& \quad(220-300,120-200,91)
\end{aligned}
$$

90

$$
\gamma_{a}^{Z}=\gamma_{b}^{Z}=3.0
$$

(220-300, 100, 91)

MET-cone: application for mass measurement

~ For a set of events and trial masses, the MET-cone boundary can be determined by the Z configurations event-by-event.

* The correct masses are those that lead to the
 smallest MET-cone that enclose all the MET points

$$
d_{\min } \rightarrow 0
$$

* More systematically, compare the statistical likelihood of a MET data under different mass hypotheses.

Quick Summary

is The MET-cone method is a completely new method
4. Only need information of the visible particles in the final-step decay and MET

* Although motivated from boosted decay chain, the general idea of the method doesn't require boost.

4. It should work best in the boosted case

More detailed numerical evaluation of this method is under investigation.

Numerically complication due to the event-byevent reconstruction of the envelope of the METcone.

Is there a simple way to access the power of MET-cone?

Is there a simple way to access the power of MET-cone?

Yes!

A 1D projection of the MET-cone

\% focus on events where MET is in narrow window around y-axis (i.e. the direction of the total X momentum)

* Finite variation in the ratio between total X momentum and total missing momentum

2. Define $m_{\chi_{1}}^{\text {test }}$:

$$
\vec{p}_{\chi_{1}}^{T \text { total }}=\vec{p}_{X}^{T \text {,total }} m_{\chi_{1}}^{\text {test }} / m_{X}
$$

\approx Expect two endpoints for $m_{\chi_{1}}^{\text {test }}$

$m_{\text {test: }}$ an alternative definition

\% Introduce a test mass and a test missing momentum

$$
\vec{p}_{\text {test }}^{a, b} \equiv \vec{p}_{X}^{a, b} \frac{m_{\chi_{1}}^{\text {test }}}{m_{X}}
$$

* $\mathrm{m}_{\text {test }}$ is determined by minimizing

$$
\Delta E_{T}^{2}\left(m_{\chi_{1}}^{\text {test }}\right)=\left|\vec{p}_{\text {test }}^{T, \text { total }}-\vec{p}_{\text {exp }}^{T}\right|^{2}
$$

* The minimization condition $+\Delta E_{T}^{\min } \longrightarrow 0$

$$
\rightleftarrows \vec{p}_{\chi 1}^{T, \text { total }} \rightarrow \vec{p}_{X}^{T, \text { total }} m_{\chi 1}^{\text {test }} / m_{X}
$$

\approx In the limit $\beta_{0} \rightarrow 0$,

$$
\frac{p_{\chi_{1}}}{p_{X}}=\frac{\gamma_{\chi_{1}} \beta_{\chi_{1}} m_{\chi_{1}}}{\gamma_{X} \beta_{X} m_{X}} \rightarrow \frac{m_{\chi_{1}}}{m_{X}} \leftrightharpoons m^{\text {test }}=m_{\chi_{1}}
$$

$m_{\text {test: }}$ analytic solution

Solving the constraint Eq. (\#)

Consider a simple case: Z's in the trans. plane.

$$
\begin{aligned}
& \hat{n}_{\chi_{1}}^{i}=\left(\delta_{j}^{i}+\alpha_{j}^{i}\right) \hat{n}_{X}^{j}+\delta_{i} \hat{n}_{\perp} . \\
& \alpha_{a}^{a}=-2 \sin ^{2}\left(\theta_{a} / 2\right)-\cot \theta_{a b} \sin \theta_{a} \cos \phi_{a} \\
& \alpha_{b}^{a}=\cos \phi_{a} \sin \theta_{a} / \sin \theta_{a b} .
\end{aligned}
$$

$$
\begin{aligned}
& 0=\frac{\gamma_{\chi_{1}}^{a} \beta_{\chi_{1}}^{a}}{\gamma_{X}^{a} \beta_{X}^{a}}+\sum_{i=a, b} \frac{\gamma_{\chi_{1}}^{i} \beta_{\chi_{1}}^{i}}{\gamma_{X}^{a} \beta_{X}^{a}} \alpha_{a}^{i}-(a \rightarrow b) \leadsto \frac{\gamma_{\chi_{1}}^{b} \beta_{\chi_{1}}^{b}}{\gamma_{X}^{b} \beta_{X}^{b}}=\frac{\gamma_{\chi_{1}}^{a} \beta_{\chi_{1}}^{a}}{\gamma_{X}^{a} \beta_{X}^{a}}\left(1+\mathcal{O}\left(\theta_{a, b}\right)\right), \\
& \frac{m_{\chi_{1}}^{\text {test }}}{m_{\chi_{1}}}=\frac{\gamma_{\chi_{1}}^{a} \beta_{\chi_{1}}^{a}}{\gamma_{X}^{a} \beta_{X}^{a}}+\sum_{i=a, b} \frac{\gamma_{\chi_{1}}^{i} \beta_{\chi_{1}}^{i}}{\gamma_{X}^{a} \beta_{X}^{a}} \alpha_{a}^{i} \rightleftharpoons \frac{m_{\chi_{1}}^{\text {test }}}{m_{\chi_{1}}} \approx \frac{\gamma_{\chi_{1}}^{a} \beta_{\chi_{1}}^{a}}{\gamma_{X}^{a} \beta_{X}^{a}}\left(1+\alpha_{a}^{a}+\alpha_{a}^{b}\right)
\end{aligned}
$$

$$
\begin{aligned}
m_{\chi_{1}}^{\text {test }} & \approx m_{\chi_{1}} \frac{\gamma_{0}^{\chi_{1}}}{\gamma_{0}^{X}} \frac{1+\beta \beta_{0}^{\chi_{1}} \cos \theta_{0}^{a}}{1-\beta \beta_{0}^{X} \cos \theta_{0}^{a}} \\
& \times\left(1-\cot \theta_{a b}^{X} \cos \phi^{a} \theta^{a}+\csc \theta_{a b}^{X} \cos \phi^{b} \theta^{b}\right)
\end{aligned}
$$

Force to have equal mom. ratios for two sides of the decay chains

$m_{\text {test: }}$ endpoints

\% In the limit $\gamma \rightarrow \infty, \beta_{0}$ fixed , the endpoint positions given by

$$
m_{ \pm}^{\text {test }} \approx m_{\chi_{1}} \frac{\gamma_{0}^{\chi_{1}}}{\gamma_{0}^{X}} \frac{1 \pm \beta \beta_{0}^{\chi_{1}}}{1 \mp \beta \beta_{0}^{X}}
$$

~ $\quad \beta_{0} \rightarrow 0, m_{ \pm}^{\text {test }} \rightarrow m_{\chi_{1}}$
i. Punchline: endpoints only depend on the masses
$-->$ measure these endpoints experimentally can determine these masses

non-collinear effects

in mtest not invariant under boost -- subjet to noncollinear correction

$$
\begin{aligned}
m_{\chi_{1}}^{\text {test }} & \approx m_{\chi_{1}} \frac{\gamma_{0}^{\chi_{1}}}{\gamma_{0}^{X}} \frac{1+\beta \beta_{0}^{\chi_{1}} \cos \theta_{0}^{a}}{1-\beta \beta_{0}^{X} \cos \theta_{0}^{a}} \\
& \times\left(1-\cot \theta_{a b}^{X} \cos \phi^{a} \theta^{a}+\csc \theta_{a b}^{X} \cos \phi^{b} \theta^{b}\right)
\end{aligned}
$$

* endpoints get smeared;
m prefer small θ, not too small $\theta_{a b}^{X}$
~ If X's not in the trans. plane, extra projection needed
-- more complicated in the above θ expansion

Quick Summary

~ MET-cone method
~ A simple 1D variable miest for mass measurement
in How well this works in simulation?

Numerical study -- simulation

m Use MadGraph to generate 2--> 6 matrix element for SUSY squark production and decay

$$
p p \rightarrow \tilde{q}_{L} \tilde{q}_{L} \rightarrow q \tilde{\chi}_{1} Z q \tilde{\chi}_{1} Z
$$

* No detector effects included
\approx Parton-level cuts
 TOTAL Z MOMENTUM

TWO Z'S OPENING ANGLE

Result

Model Mass Spectrum

Model 1 :
moderate boost + small $\beta_{0}-->$ small variation + sharp endpoints

Model 2 :
moderate boost + large β_{0}--> larger variation + fuzzier endpoints

Model 3 \& 4 :
even reduced boost

	$m_{\chi_{1}}$	$m_{\chi_{2}}$	$m_{\tilde{q}_{L}}$	$\left(m_{-}^{\text {test }}\right)^{\text {theo }}$	$\left(m_{+}^{\text {test }}\right)^{\text {theo }}$
1	100	200	1000	54.6	183.2
2	100	250	1250	21.6	463.0
3	200	300	1000	117.9	339.2
4	200	350	1250	52.6	761.0

Fit of endpoints

~Use linear fits

- Lower endpoint -- take half-max pt to reduce smearing effects
- Upper endpoint -- intercept position
\approx Better fits are possible
\approx Larger sys. err. for Model 2 and 4

	$m_{\chi_{1}}$	$m_{\chi_{2}}$	$m_{-}^{\text {test }}$	$m_{+}^{\text {test }}$	$m_{\chi_{1}}^{\text {meas }}$	$m_{\chi_{2}}^{\text {meas }}$
1	100	200	55 ± 2	205 ± 3	106 ± 2	208 ± 3
2	100	250	27 ± 2	454 ± 20	110 ± 5	253 ± 5
3	200	300	112 ± 5	342 ± 10	195 ± 5	296 ± 5
4	200	350	49 ± 2	682 ± 16	183 ± 5	329 ± 5

Masses are in GeV with statistical error

Fit of endpoints

2 Use linear fits

- Lower endpoint -- take half-max pt to reduce smearing effects
- Upper endpoint -- intercept position
\approx Better fits are possible
\approx Larger sys. err. for Model 2 and 4
e.g. for Model 2:
vary upper endpt 400-500 GeV
$\left(m_{\chi_{1}}^{\text {meas }}, m_{\chi_{2}}^{\text {meas }}\right)=(103 \mathrm{GeV}, 241 \mathrm{GeV})-(116 \mathrm{GeV}, 264 \mathrm{GeV})$

$m_{+}^{\text {test }}$

Is it a boosted decay chain?

* $\Delta E_{T}^{\min } / E_{T}^{\exp }$ distribution

* Sharp endpoints in mtest distribution

4. Measure upstream exotica masses : show how to determine the squark mass

Squark Mass: Use Inv. Mass

~ Z-jet invariant mass endpoints

$$
\begin{aligned}
& \left(m_{Z j}^{\min }\right)^{2}=\frac{m_{Q}^{2}-m_{\chi_{2}}^{2}}{2 m_{\chi_{2}}^{2}} A_{-}, \\
& \left(m_{Z j}^{\max }\right)^{2}=m_{Z}^{2}+\frac{m_{Q}^{2}-m_{\chi_{2}}^{2}}{2 m_{\chi 2}^{2}} A_{+}
\end{aligned}
$$

$$
A_{ \pm} \equiv\left(m_{x_{2}}^{2}+m_{Z}^{2}-m_{x_{1}}^{2}\right) \pm \sqrt{\left(m_{x_{2}}^{2}-m_{Z}^{2}-m_{x_{1}}^{2}\right)^{2}-4 m_{\chi_{1}}^{2} m_{Z}^{2}} .
$$

$$
\frac{a}{2} \operatorname{erf}[(x-b) / c]+d
$$

$$
m_{\text {min }}^{Z j}=780.2 \pm 0.5 \mathrm{GeV}
$$

* Using upper endpoint and LSP/NLSP mass measured

$$
m_{\tilde{q}}=1002_{-26}^{+38} \mathrm{GeV}
$$

Use CM energy Variable: $\sqrt{\hat{S}_{\text {min }}}$

* Reconstruct missing particle momenta using collinear approx.

$$
\begin{aligned}
\vec{p}_{\chi_{1}, a} & =k_{a} \vec{p}_{X, a} \\
\vec{p}_{\chi_{1}, b} & =k_{b} \vec{p}_{X, b}
\end{aligned}
$$

a

\approx Reconstruct CM energy of the collision $s=\left(\sum_{i} p_{i}\right)^{2}$

* lower endpoint provide an estimate of the mass of mother particle

$$
\hat{s} \geq 4 m_{Q}^{2}
$$

Use CM energy Variable:

« Use the measured LSP mass and cuts

- $p_{T}>50 \mathrm{GeV}$ for jet
- $|\eta|<3$ for jet
- missing E_{T} cut $E_{T}^{\text {miss }}>100 \mathrm{GeV}$

Summary and Outlook

* LHC may discovery new physics via large \mathbb{E}_{T}, difficult for mass measurement - key information for studying cosmic relic dark matter
* MET-cone and mtest variable are useful tools for mass measurement in boosted events with E_{T}.
* Further explore the idea of MET-cone and develop a more general method that can apply for less-collinear events.
* More realistic collider study: include detector effects on MET, initial/final-state radiation etal

