Holographic non-Fermi liquids:

Strange metal from black holes

John McGreevy, MIT

based on:
Hong Liu, JM, David Vegh, 0903.2477
Tom Faulkner, HL, JM, DV, 0907.2694
TF, Gary Horowitz, JM, Matthew Roberts, DV, 0911.3402

TF, Nabil Igbal, HL, JM, DV, 1003.1728 and in progress
see also: Sung-Sik Lee, 0809.3402

Cubrovic, Zaanen, Schalm, 0904.1933



Hac



Basic question: what is the ground state of a nonzero density of
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interacting fermions? (3 sign problem)

Lore: if it's a metal, it's a fermi liquid [Landau, 505 EK)
Recall:

if we had free fermions, we would fill single-particle B,
energy levels E(k) until we ran out of fermions:  —

Low-energy excitations: k

remove or add electrons near the fermi surface Ef, k.
Idea Landau: The low-energy excitations of the
interacting theory are still weakly-interacting fermionic, charged
‘quasiparticles’

Elementary excitations are free fermions with some dressing:

VN -
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The standard description of metals

The metallic states of a finite density of fermions that we
understand well are described by Landau’s Fermi liquid theory.
Landau quasiparticles — poles in single-fermion Green function Gg

at ki = |k| —kr =0, w=w,(k.) ~0: Gg ~ #
w—vrk +il
Measurable by ARPES (angle-resolved photoemission):
Wi K wuu!:u?n_w
o Kou= ki~ k

Intensity o
spectral density :

A(w, k) = Tm Gr(w, k) “5° Z8(w — vrk.)

Landau quasiparticles are long-lived: width is I' ~ w?.

residue Z (overlap with external e”) is finite on Fermi surface.

Reliable calculation of thermodynamics and transport relies on this.



Ubiquity of Landau fermi liquid

Physical origin of lore:
1. Landau FL successfully describes 3He, all metals
studied before ~ 1980s, ...

2. RG: Landau FL is stable under almost all perturbations.

[Shankar, Polchinski, Benfatto-Gallivotti 92]
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Non-Fermi liquids exist, but are mysterious
e.g: ‘normal’ phase of optimally-doped cuprates: (‘strange metal’)

®@in Kin

Momentum

among other anomalies: ARPES shows gapless modes at finite k (FS!)

with width I'(w,) ~ wy, vanishing residue Z k20,

Working defintion of NFL:
Still a sharp Fermi surface  (nonanalyticity of A(w ~ 0,k ~ kg) )
but no long-lived quasiparticles.

[Anderson, Senthil] ‘critical fermi surface’
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among other anomalies: ARPES shows gapless modes at finite k (FS!)
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with width [(w,) ~ wy, vanishing residue Z "= 0.

Working defintion of NFL:

Still a sharp Fermi surface  (nonanalyticity of A(w ~ 0,k ~ kg) )

but no long-lived quasiparticles.

[Anderson, Senthil] ‘critical fermi surface’

600
500 -
Most prominent gm
300 H
mystery of the strange metal phase: % o0
e-e scattering: p ~ T2, e-phonon: p ~ T3, 100

no known robust effective theory: p ~ T.



Superconductivity is a distraction

Look ‘behind’ superconducting dome by turning on magnetic field:

Fig 1-Daou etal.
Nd-LSCO

plrcm]

TIK]
(Magnetoresistance is negligible: evidence that B doesn’t alter normal state.)
Strange metal persists to T ~ 0!

This is the state we will be comparing to later on.



My understanding of the theoretical status of NFL

e Luttinger liquid (1+1-d) G(k,w) ~ (k — w)?€ v
e loophole in RG argument:

couple a Landau FL perturbatively to a bosonic mode
(magnetic photon, slave-boson gauge field, statistical gauge field,
ferromagnetism, SDW, Pomeranchuk order parameter...)

[Holstein et al, Baym et al, ... Halperin-Lee-Read, q
Polchinski, Altshuler-loffe-Millis, Nayak-Wilczek, Schafer-Schwenzer, _»_Q_»_
Chubukov et al, Fradkin et al, Metzner et al, S-S Lee, Metlitski-Sachdev, Mross et al] ¥ ¥ 79 ¥

— nonanalytic

behavior in GR(w) = m at FS:

const

2/3 d=2+1 . -
wlogw d=3+1 wy(kL)



Fermi liquid killed by gapless boson

1. In these perturbative calculations, non-analytic terms o< control parameter

—t
perturbative answer is parametrically reliable <

effect is visible only at parametrically low temperatures.

2. Recently, the validity of the 1/N expansion has been questioned.
[Sung-Sik Lee 0905, Metlitski-Sachdev 1001]

A controlled perturbation expansion does exist. [Mross, JM, Liu, Senthil, 1003.0894]

3. These NFLs are not strange metals in terms of transport.
FL killed by gapless bosons: small-angle scattering dominates —-
(forward scattering does not degrade current) q

‘transport lifetime’ # ‘single-particle lifetime’ _»i:}___

i.e. in models with [(wy) ~ wy, p ~ TOL kok-q &



Can string theory be useful here?

It would be valuable to have a non-perturbative description of such
states in more than one dimension.

Gravity dual?

We're not going to look for a gravity dual of the whole material.

Rather: lessons for principles of “non-Fermi liquid”.

Basic question for the holographic descripion:

How to make a finite density of fermions?



Outline
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Strategy to find a holographic Fermi surface

Consider any relativistic CFT with a gravity dual

a conserved U(1) symmetry  proxy for fermion number ~— A,
and a charged fermion proxy for bare electrons ~ — 1.
Any d >1+41, focuson d =2+ 1.

X )

AdS,
CFT at finite density: charged
black hole (BH) in AdS.

To find FS: [Sung-Sik Lee 0809.3402]
look for sharp features : :
in fermion Green functions _ _ 9 o _ _ __________%___.
at finite momentum + + + +

and small frequency.

AdS, x R?

To compute Gg: solve Dirac equation in charged BH geometry.
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e a conserved U(1) current (proxy for fermion number)
— gauge field F = dA in the bulk.
An ensemble with finite chemical potential for that current is described by the
AdS Reissner-Nordstrom black hole:
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What we are doing, more precisely
Consider any relativistic CFT 4 with

d(d-1) 2k2

R2

e a conserved U(1) current (proxy for fermion number)
— gauge field F = dA in the bulk.
An ensemble with finite chemical potential for that current is described by the
AdS Reissner-Nordstrom black hole:

e an Einstein gravity dual L4411 =R+ —F?+

87

2

d 2 d—2
ds2:%(_fdt2—|—d>_€2)+L2rTrfv A:'u<1_<r70) )dt

Q? M g8FQ
f() 1+ r2d— 2_I’_d’ f(l’o)—o, :u_CdTrg—l’
e a charged fermion operator Op (proxy for bare electrons)
— spinor field v in the bulk Lgy1 3 1; (DMFM — m) 1) + interactions
with D,y = 0,0 — iqAY (A=5$+mL, q=q)

‘Bulk universality’: for two-point functions, the interaction terms don't matter!

Results only depend on g, A.



Comments about the strategy

» There are many string theory vacua with these ingredients.
In specific examples of dual pairs
(e.g. M2-branes < M th on AdS; x S7), interactions and {q, m} are
specified.
which sets {q, m} are possible and what correlations there are is not clear.
» This is a large complicated system (p ~ N?), of which we are
probing a tiny part (py ~ N°).
» It would be surprising if we could describe a Fermi liquid
(= a weakly coupled QFT).

» In general, both bosons and fermions of the dual field theory
are charged under the U(1) current: this is a Bose-Fermi
mixture.

Notes: frequencies w below are measured from the chemical potential.

Results are in units of .



Computing Ggr

Translation invariance in X,t = ODE in r.
Rotation invariance: k; = 5}!{
Near the boundary, solutions behave as (= —¢*®1)

rco (0 (1
o)

Matrix of Green's functions, has two independent eigenvalues:

To compute Gg: solve Dirac equation in BH geometry,
impose infalling boundary conditions at horizon (son-starinets, 1gbal-Liu.
Like retarded response, falling into the BH is something that happens.



Dirac equation

1
e, (aM + Zwaerab - iqAM> v—mp=0

O, = (—gg™) VANEp, o = e Wtk

(0r + Ma®) &y = ((—1)*Ko' + Wic?) &,, a=1,2

with

8rr k 8rr u
=m rr K=k = 5 W=u,/>—= .
s g PVF gi 2T

= [E o))

Eqn depends on g and p only through 1 = 11q
— w is measured from the effective chemical potential, 1.




Fermi surface!
At T =0, we find (numerically):

ReGy, ImG,
Im(Gg)
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Fermi surface!

At T =0, we find (numerically):
Im(Gg) A

ReG;, ImG;
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‘MDC": G(w = —0.001, k) ‘EDC':
G(w, k =0.9)
Forq=1,m=0: kr ~0.918528499

In(F33)

But it's not a Fermi liquid:

The peak moves
with dispersion relation w ~ k% with

z=2.09 for g=1,A =3/2.
z=532for q=0.6A=3/2

P
1 '&”;"5&?&
e

and the residue vanishes.



Emergent quantum criticality

Whence these exponents?

Near-horizon geometry of black hole is AdS, x R9~1.
The conformal invariance of this metric is emergent.

(We broke the microscopic conformal invariance with finite density.)

AdS,xR"" AdS,,,

o |
horizon boundan
r-1<<1 r>>1
wL W w> U

AdS/CFT says that the low-energy physics is governed by the dual
IR CFT.

The bulk geometry is a picture of the RG flow from the CFT, to this NRCFT.



Analytic understanding of Fermi surface behavior: idea

T = 0: Expanding the wave equation in w is delicate.

The w-term dominates near the horizon.

Method of matched asymptotic expansions:

Find solution (in w-expansion) in two regions of BH geometry (IR and UV),
match their behavior in the region of overlap.

Familiar from the brane absorption calculations which led to AdS/CFT.

[Klebanov, Gubser, Maldacena, Strominger...]

AdS, xR AdS,,,

o -
horizon boundan

r-1<<1 r>>1

Here: this ‘matching’ can be interpreted in the QFT as RG
matching between UV and IR CFTs.



Analytic understanding of Fermi surface behavior: results

b 4+ wb + O(w?) + Gi(w ( )+ wb® + O(w ))

)
a0+ a()+o(w2)+gk(w)( ) +wal) + 0w ))

GR(w, k)

The location of the Fermi surface (a{”(k = k) = 0) is determined by
short-distance physics (analogous to band structure —

a, b € R from normalizable sol'n of w = 0 Dirac equation in full BH)

but the low-frequency scaling behavior near the FS is universal
(determined by near-horizon region — IR CFT G).

G = c(k)w?” is the retarded Gg of the op to which O matches.
its scaling dimension is v + % with (for d =2 +1)

v= Lg\/m2+k2—q2/2

L, is the ‘AdS radius’ of the IR AdS,.




Inner region (IR data) in more detail

c(k)
Gr(w) = e~/ M—2v)r (14 v — igeq) ' (m—+im)Ry — igeq — v
R F)T(1—v—igeq) (m+ i) Ry — iqeq + v
The AdS; Green's functions look like DLCQ of 1+1d CFT.
Leftmoving bit depends on g, rightmoving bit depends on w.

(2&))21’

qv [Azeyanagi et al, Guica et al, de Boer et al]



Inner region (IR data) in more detail

c(k)

_im (20T (L4 v —igeg) (m+if) Ry —iqeq —v
Fr2v)r(1—v—igeq) (m+im)Ry —igeq+v

The AdS, Green's functions look like DLCQ of 1+1d CFT.

Leftmoving bit depends on g, rightmoving bit depends on w.

Gr(w) =

(2w)21/

qv [Azeyanagi et al, Guica et al, de Boer et al]

T # 0: near-horizon geometry is a BH in AdS;

w? is the T — 0 limit of

r( 27.-T + /qed)

T*g(w/T)=(2nT)*
r (E —v—7t ’qed)

DLCQ of 1+1d CFT at T > 0.



Consequences for Fermi surface

h
ki — sw — hyc(k)w? ke

hi,2, vr real, UV data.
The AdS, Green's function RelGa. sG]

is the self-energy > = G = C(k)w2l’ "

GR(w, k) =

200

J \

-100

—

Correctly fits numerics near FS: R a0t no0L 102



v < 5: non-Fermi liquid

h
Gr(w, k) =
R( ) kL o VLFCU o h2w2IJkF
if v, < 2, wilk) ~ ki z= ! >1
ke 2) * 1 2ku
1—21/k
r(k) k0 const Z x k Whe kL0 0.
wy (k) ’ +

Not a stable quasiparticle.



v > %: Fermi liquid

Suppose vy, > %: — Oy,is irrelevant 6, = % + v > 1

A stable quasiparticle, but never Landau Fermi liquid.
(different thermo, transport.)



summary

Depending on the dimension of the operator (v + 1) in the IR
CFT, we find Fermi liquid behavior (but not Landau)
or non-Fermi liquid behavior: G: G

4 4

qQ
e
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-04 -02 0.0 0.2 04
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0.002 100 0.002 1000
2 0000 ) 30000 3
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v = %: Marginal Fermi liquid

h

~ - G eR C1€C
ki +&wlhw + qw ’

9

Gr

Mk . 1 .
(k) k0 const, Z k30 0.

wy (k) | Inw,|

A well-named phenomenological model of high- T, cuprates near optimal doping

7 ~
L)
% "
X A
\ . Marginal FL
N .
\ ,
\ ’,
1 \ ’
% .
Pseudo-gap \ ¢ I

wWavy

7
//\(_\ Fermi Liquid
~ BN

A x

[Varma et al, 1989].



UV data: where are the Fermi sufaces?

Above we supposed a(kF)SE) = 0. This happens at
kr: k s.t. 3 normalizable, incoming solution at w = 0:
This black hole can acquire ‘inhomogenous fermionic hair’

Schrodinger potential V/(7)/k? at w = 0 for m < 0,m =0,m > 0.

T is the tortoise coordinate  Right (7 = 0) is boundary; left is horizon.

k > qey: Potential is always positive

k < kosc = +/(qeq)? — m?: near the horizon V(x) = %, with

o < —7 (“oscillatory region”)

k € (geq, kosc): the potential develops a potential well, indicating
possible existence of a zero energy bound state.

Note: can exist on asymp. flat BH [Hartman-Song-Strominger 0912]




Charge transport

:‘: @
y . [l
ost prominent mystery — 1
of strange metal phase: opc ~ 71 b
U =0E) -

e-e scattering: o ~ T2, e-phonon scattering: ¢ ~ T, nothing: o ~ T71



Charge transport

600
(a)
800 x03
’E\4OO /
Most prominent mystery — — i
of strange metal phase: opc ~ T} "
200

(j=0E)
e-e scattering: o ~ T2, e-phonon scattering: ¢ ~ T, nothing: o ~ T71

We can compute the contribution
to the conductivity from

the Fermi surface. [Faulkner, Iqbal, Liu, JM, Vegh] LLWJ)

ON?)

Note: this is not the dominant contribution. — )

R

_ 1, ... = 2T 0 FS
opc = lim Im = {/)(w,0) = N TN (ope + ---)



Charge transport by holographic non-Fermi liquids

slight complication: gauge field a, mixes with metric perturbations.
There's a big charge density. Pulling on it with E leads to momentum flow.



Charge transport by holographic non-Fermi liquids

slight complication: gauge field a, mixes with metric perturbations.
There's a big charge density. Pulling on it with E leads to momentum flow.

b b2 (Q
ey step: Tm Dos(Q, ki 11, ry) = LEEIPEIR) (g )

bulk spectral density ImD ...

1. ... is determined by bdy fermion spectral density, A(w, k) = Im Gg(w, k)
2. ... factorizes on normalizable bulk sol'ns ”




Charge transport by holographic non-Fermi liquids

like Fermi liquid calculation

but with extra integrals over r, and no vertex corrections.

oFS, = C/ dkk/ dw C"c/\2(/< W) A2 (w, k)

A(w, k)
f(w) = #IH: the Fermi distribution function
A: an effective vertex, data analogous to vr, hip. 0 = A6
~q [ 7 drgg™axr, 0) e (1) POV const. A, k) ,
1 A(-w, k)

/ WA g

scale out T-dependence — oPC ~ T2,



Dissipation mechanism

boundar

horizon

+ o+ + 4+ + + + + + o+

opc  Im (jj) comes from fermions falling into the horizon.
dissipation of current is controlled by the decay of the fermions
into the AdS, DoFs.

= single-particle lifetime controls transport.

1 pc\ !
marginal Fermi liquid: v = 5 = |pFs = (O’ > ~ T




Dissipation mechanism

boundar

horizon

+ o+ + 4+ + + + + + o+

opc  Im (jj) comes from fermions falling into the horizon.
dissipation of current is controlled by the decay of the fermions
into the AdS, DoFs.

= single-particle lifetime controls transport.

1 pc\ !
marginal Fermi liquid: v = 5 = |pFs = (O’ > ~T].

The optical conductivity o(€2) can distinguish the existence of
quasiparticles (v > %) through the presence of a transport peak.



Questions regarding the stability of
this state



Charged AdS black holes and frustration
Entropy density of black hole:

_gy—- A _ _ &
s(T=0)= V1 2Gy 2meqp. (eq = 20 1))

This is a large low-energy density of states!

not supersymmetric ... lifted at finite V



Charged AdS black holes and frustration
Entropy density of black hole:

_gy—- A _ _ &
s(T=0)= V1 2Gy 2meqp. (eq = 20 1))

This is a large low-energy density of states!
not supersymmetric ... lifted at finite V
pessimism: S(T = 0) # 0 violates third law of thermodynamics, unphysical,

weird string-theorist nonsense.

optimism:

we're describing the state where the SC instability is removed by hand

(here: don't include charged scalars, expt: large é)

Can we get this behavior w/o the large low-E density of states?
Presumably: Small-freq behavior depended on existence of IR CFT, not large
c o s(T =0) of IR CFT.

[Hartnoll-Polchinski-Silverstein-Tong, 0012.]: bulk density of fermions modifies
extreme near-horizon region (out to §r ~ e*"’2), removes residual
entropy.



Stability of the groundstate

Charged bosons: In many explicit dual pairs, 3 charged scalars.
e At small T, they can condense spontaneously breaking the U(1)
symmetry, Changing the background [Gubser, Hartnoll-Herzog-Horowitz].

spinor: Ggr(w) has poles only in LHP of w [Faulkner-Liu-JM-Vegh, 0907]

scalar: 3 poles in UHP  (O(t)) ~ e+t oc eTImewst
= growing modes of charged operator: holographic superconductor



Stability of the groundstate

Charged bosons: In many explicit dual pairs, 3 charged scalars.
e At small T, they can condense spontaneously breaking the U(1)
symmetry, Changing the background [Gubser, Hartnoll-Herzog-Horowitz].

spinor: Ggr(w) has poles only in LHP of w [Faulkner-Liu-JM-Vegh, 0907]

scalar: 3 poles in UHP  (O(t)) ~ e+t oc eTImewst
= growing modes of charged operator: holographic superconductor

why: black hole spontaneously Boundary Ad
emits . o @/\

charged particles [starobinsky, Unruh, Hawking]. ]“_Xz) e

AdS is like a box: they can't escape.

Fermi: e
negative energy states get filled. e
Bose: the created particles then cause

stimulated emission (superradiance).

A holographic superconductor is a “black hole laser”.




Stability of the groundstate, cont'd

e If their mass/charge is big enough, they don't condense.

[Denef-Hartnoll] .
(vs: a weakly-coupled charged boson

at u # 0 will condense.) ,
Finding such string vacua N

is like moduli stabilization. o

0

e Many systems to which we'd like to I T T 3
apply this also have a superconducting region.

Other light bulk modes (e.g. neutral scalars)

can also have an important
effect on the groundstate [Mulligan, Kachru, Polchinski].

T(K)

om 8 o
S-shaped ", T T
\ or

p~T"
upturns (1<n<2) 7.7

et

0 005 01 015 02 025 03
Hole doping x




Photoemission ‘exp’ts’ on holographic supercondiictors

So far: a model of
some features of the normal state.

In SC state: a sharp peak forms in A(k,w).

= B,
150 100 50 Ey E (




Photoemission ‘exp’ts’ on holographic supercondiictors

So far: a model of
some features of the normal state.

In SC state: a sharp peak forms in A(k,w).

Intensity (arb. units)

With a suitable coupling between ¢ and ¢,

the superconducting condensate

opens a gap in the fermion spectrum.

[Faulkner, Horowitz, JM, Roberts, Vegh] 500]
if g, = 2q, we can have 400 f/\] O

2 300
Liuik 3 n50CM9 T +hee - ==
The (gapped) quasiparticles ot ~ooes S0 oo oar
are exactly stable in a certain N /v
kinematical regime -
(outside the lightcone of the IR CFT) — o ;\“‘/*74;\;\
the condensate lifts the IR CFT modes o

into which they decay. £



framework for strange metal

Quantum
Critical

a cartoon of the mechanism: P

a similar picture has been advocated by [Varma et al]



comparison

e a Fermi surface coupled to a critical boson field

L= (w— vek) + rpa+ L(a)

small-angle scattering dominates.

e a Fermi surface mixing with a bath of critical fermionic
fluctuations with large dynamical exponent [FLmv 00072604, Faulkner-Polchinski

1001.5049, FLMV+Igbal 1003.1728]
n - - =p-1
L=v(w—vek)y +¢x+9¥X+ 10 X
x: IR CFT operator

)= ———— G = () = (k)

w—ka—g

% 1x coupling is a relevant perturbation.



Concluding remarks

1. The green’s function near the FS is of the form (‘local quantum
criticality’, analytic in k.) found previously in perturbative
calculations, but the nonanalyticity can be order one.

2. This is an input of many studies (dynamical mean field theory)

3. The knowledge of quantum statistics displayed by the classical
wave equations is remarkable and necessary for AdS/CFT to
be consistent with basic facts about many-body physics.

4. [Denef-Hartnoll-Sachdev] | he leading N~1 contribution to the free
energy exhibits quantum oscillations in a magnetic field.

5. Main challenge: step away from large N. So far:
e Fermi surface is a small part of a big system.
e Fermi surface does not back-react on IR CFT.
e IR CFT has z = 0.



The end.

Thanks for listening.



Where are the Fermi sufaces?

m= —0.4, 0, 0.4:

—6—4—20246\ S S e
. k . , . . . . k
orange: ‘oscillatory region’: v € iIR, G periodic in log w
5 1
k=75
2

1
+ vy, Vk:%\/mz—i—kz—qz/Z




finite temperature

0.0002F
0.0000
—n.000z
—0.0004 F
~0.0006 F ot
—0008E et

—0.0010E

—-0.002 —0.001

The complex omega plane for T = 4.13 x 10™*:

the quasi-particle pole is a finite distance below the real w-axis.
dashed line: trajectory of the pole between

k = 0.87(left). .. 0.93(right). min, (Imw.) =~ T (up to 1% accuracy).

In background: density plot for Im Gy (w) at k = 0.90

where the corresponding pole is closest to the real axis.

There is a numerical instability for Imw < —7 T

(can also be seen directly from the wave equation:

the outgoing solution near the horizon dominates exponentially over the desired

incoming solution.)



Fermion poles always in LHP!

arg ¢ = arg (€™ £ e 2m9%) G = cpw®

+ for boson/fermion.

wg” = real - (e‘zﬂi” — e_2”qed) .

1.0,
o
m»\ e
N\
N
D\
L I \ L J
-04 -02 N2y 02 0.4
N\
N
N\
-0\
N\
\‘____
-1.00

Figure: A geometric argument that poles of the fermion Green function
always appear in the lower-half w-plane: Depicted here is the w?”
covering space on which the Green function is single-valued. The shaded
region is the image of the upper-half w-plane of the physical sheet.



fermi velocity

Think of w = 0 Dirac eqn as Schrédinger problem.

Like Feynman-Hellmann theorem: 0y (H) = (OxH)

we can derive a formula for vg in terms of expectation values in
the bound-state wavefunction CDzB).

Let:

<0>z/°°dr\/go,

Iy

= o) D Poe Py = Py @)

is the bulk particle-number current.
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Note: % = f(r) <1 implies that vr < c.




fermi velocity
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Figure: The Fermi velocity of the primary Fermi surface of various
components as a function of 2v > 1 for various values of m.



An explanation for the particle-hole symmetry
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Figure: Left: Motion of poles in the v < % regime. As k varies towards
ke, the pole moves in a straight line (hence I' ~ w.), and hits the branch
point at the origin at k = kr. After that, depending on y(kr), it may
move to another Riemann sheet of the w-plane, as depicted here. In that
case, no resonance will be visible in the spectral weight for k > kr.
Right: Motion of poles in the v > % regime, which is more like a Fermi
liquid in that the dispersion is linear in kj ; the lifetime is still never of
the Landau form.

Note: the location of the branch cut is determined by physics:

at T > 0, it is resolved to a line of poles.



Oscillatory region

Above we assumed v = Rg\/m2 + k? — (qeq)? € R
v =i\ < Oscillatory region.

This is when particle production occurs in AdSy. [pioline-Troost]
Effective mass below BF bound in AdS,. [Hartnoll-Herzog-Horowitz]
Rew? =sin2\logw == periodic in logw with period ‘—Lr'
comments about boson case:

Net flux into the outer region > 0 = superradiance of AdS RN
black hole (rotating brane solution in 10d)

Classical equations know quantum statistics!

like: statistics functions in greybody factors

Required for consistency of AdS/CFT!

boson: particles emitted from near-horizon region, bounce off
AdSy41 boundary and return, causing further stimulated emission.
spinor: there is particle production in AdS; region, but net flux
into the outer region is negative (‘no superradiance for spinors’).



oscillatory region and log-periodicity

When v(k) is imaginary, G ~ w" is periodic in logw.
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Figure: Both Re Gy (w, k = 0.5) (blue curve) and Im Gy (w, k = 0.5)
(orange) are periodic in logw as w — 0.
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Figure: The motion of poles of the Green functions of spinors (left) and
scalars (right) in the complex frequency plane. Both plots are for
parameter values in the oscillatory region (¢ = 1, m = 0). In order to give
a better global picture, the coordinate used on the complex frequency
plane is s = || exp(i arg(w)). The dotted line intersects the locations
of the poles at k = ko = ..., and its angle with respect to the real axis is
determined by G(k,w). The dashed lines in the left figure indicate the
motion of poles on another sheet of the complex frequency plane at
smaller values of k < kg. As k approaches the boundary of the oscillatory
region, most of the poles join the branch cut. It seems that one pole that
becomes the Fermi surface actually manages to stay in place. These plots
are only to be trusted near w = 0.



Oscillatory Regiol

No Classical Orbit

m/k

1 .
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Information from WKB. At large g, m, the primary Fermi momentum is given
by the WKB quantization formula: kg f:j ds\/m = 7, where
a=1,8=12 sis the tortoise coordinate, and s+ are turning points
surrounding the classically-allowed region. For k < q/\/§ the potential is
everywhere positive, and hence there is no zero-energy boundstate. This line
intersects the boundary of the oscillatory region at k* + m? = q2/2 at the point
P = (a, ) = (v6,+/2). Hence, only in the shaded (blue) region is there a

_ m/14B8%2—a?/2
T [dsy/V(si0.8)

This becomes ill-defined at the point P, and interpolates between v = 0 at the

Fermi surface. The exponent v(kg) is then given by v(ke)

boundary of the oscillatory region, and v = oo at k = q/\/§



	Concluding remarks

