Monopoles, Anomalies, and Electroweak Symmetry Breaking

John Terning with Csaba Csaki, Yuri Shirman hep-ph/1003.1718

Hierarchy Problem Now

Technicolor

J.J. Thomson

Philos. Mag. 8 (1904) 331

charge quantization

Proc. Roy. Soc. Lond. A133 (1931) 60

Dirac

non-local action?

$$F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu} + {}^{*}G_{\mu\nu}$$

$$G_{\mu\nu}(x) = 4\pi (n \cdot \partial)^{-1} [n_{\mu}K_{\nu}(x) - n_{\nu}K_{\mu}(x)]$$

= $\int d^{4}y [f_{\mu}(x-y)K_{\nu}(y) - f_{\nu}(x-y)K_{\mu}(y)]$

$$\partial_{\mu} f^{\mu}(x) = 4\pi \delta(x)$$
$$f^{\mu}(x) = 4\pi n^{\mu} (n \cdot \partial)^{-1} \delta(x)$$

Phys. Rev. 74 (1948) 817

Science 165 (1969) 757

Zwanziger

non-Lorentz invariant, local action?

 $\mathcal{L} = -\frac{1}{2n^2e^2} \left\{ \left[n \cdot (\partial \wedge A) \right] \cdot \left[n \cdot^* (\partial \wedge B) \right] - \left[n \cdot (\partial \wedge B) \right] \cdot \left[n \cdot^* (\partial \wedge A) \right] \right. \\ \left. + \left[n \cdot (\partial \wedge A) \right]^2 + \left[n \cdot (\partial \wedge B) \right]^2 \right\} - J \cdot A - \frac{4\pi}{e^2} K \cdot B.$

$$F = \frac{1}{n^2} \left(\left\{ n \wedge \left[n \cdot (\partial \wedge A) \right] \right\} - \left\{ n \wedge \left[n \cdot (\partial \wedge B) \right] \right\} \right)$$

Phys. Rev. D3 (1971) 880

Zwanziger

non-Lorentz invariant, local action?

 $\mathcal{L} = -\frac{1}{2n^{2}e^{2}} \left\{ \left[n \cdot (\partial \wedge A) \right] \cdot \left[n \cdot^{*} (\partial \wedge B) \right] - \left[n \cdot (\partial \wedge B) \right] \cdot \left[n \cdot^{*} (\partial \wedge A) \right] \right. \\ \left. + \left[n \cdot (\partial \wedge A) \right]^{2} + \left[n \cdot (\partial \wedge B) \right]^{2} \right\} - J \cdot A - \frac{4\pi}{e^{2}} K \cdot B. \\ \left. \begin{array}{c} \text{electric} \end{array} \right. \\ \left. \begin{array}{c} \text{magnetic} \end{array} \right]$

$$F = \frac{1}{n^2} \left(\left\{ n \land [n \land (\partial \land A)] \right\} - * \left\{ n \land [n \land (\partial \land B)] \right\} \right)$$

Phys. Rev. D3 (1971) 880

Witten

effective charge shifted

$$\mathcal{L}_{\rm free} = -\frac{1}{4e^2} F^{\mu\nu} F_{\mu\nu} - \frac{\theta}{32\pi^2} F^{\mu\nu} * F_{\mu\nu}$$

$$q_{\text{eff},j} = q_j + g_j \frac{\theta}{2\pi}$$

Phys. Lett. B86 (1979) 283

't Hooft-Polyakov

topological monopoles

Nucl. Phys., B79 1974, 276 JETP Lett., 20 1974, 194

't Hooft-Mandelstam

magnetic condensate confines electric charge

High Energy Physics Ed. Zichichi, (1976) 1225 Phys. Rept. 23 (1976) 245

Rubakov-Callan

new unsuppressed contact interactions! JETP Lett. 33 (1981) 644 Phys. Rev. D25 (1982) 2141

Seiberg-Witten

 $\mathcal{N}=2$

massless fermionic monopoles

hep-th/9407087

Argyres-Douglas

CFT with massless electric and magnetic charges hep-th/9505062

is this anomaly free?

Anomalies

$$\mathcal{L} = -\frac{1}{2n^2e^2} \left\{ \left[n \cdot (\partial \wedge A) \right] \cdot \left[n \cdot^* (\partial \wedge B) \right] - \left[n \cdot (\partial \wedge B) \right] \cdot \left[n \cdot^* (\partial \wedge A) \right] \right. \\ \left. + \left[n \cdot (\partial \wedge A) \right]^2 + \left[n \cdot (\partial \wedge B) \right]^2 \right\} - J \cdot A - \frac{4\pi}{e^2} K \cdot B.$$

E-M Duality

$$\vec{E} \rightarrow \vec{B}$$

 $\vec{B} \rightarrow -\vec{E}$

$${}^{*}F^{\mu\nu} = \frac{1}{2} \epsilon^{\mu\nu\alpha\beta} F_{\alpha\beta}$$
$$F^{\mu\nu} \to {}^{*}F^{\mu\nu}$$

Shift Symmetry $\mathcal{L}_{\text{free}} = -\frac{1}{4e^2} F^{\mu\nu} F_{\mu\nu} - \frac{\theta}{32\pi^2} F^{\mu\nu} * F_{\mu\nu}$

 $\theta \to \theta + 2\pi$

 $\tau \equiv \frac{\theta}{2\pi} + \frac{4\pi i}{e^2}$

E-M Duality $\mathcal{L}_{\text{free}} = -\text{Im} \frac{\tau}{32\pi} \left(F^{\mu\nu} + i^* F^{\mu\nu}\right)^2$

$$\mathcal{L}_{c} = \frac{1}{4\pi} \int d^{4}x \, B_{\mu} \partial_{\nu} \,^{*}F^{\mu\nu}$$
$$\tilde{\mathcal{L}} = \operatorname{Im} \frac{1}{32\pi\tau} \left(\tilde{F}^{\mu\nu} + i^{*}\tilde{F}^{\mu\nu} \right)^{2}$$

$$\tilde{F}_{\mu\nu} = \partial_{\mu}B_{\nu} - \partial_{\nu}B_{\mu}$$

not a symmetry

$$\int \mathbf{from} \ \mathbf{SL}(2,\mathbf{Z})$$

$$\frac{d\tau}{d\log\mu} = \beta$$

$$\begin{pmatrix} a & -b \\ -c & d \end{pmatrix} \begin{pmatrix} q \\ g \end{pmatrix} = \begin{pmatrix} n \\ 0 \end{pmatrix} \qquad n = \gcd(q,g)$$

$$c = g/n, d = q/n \qquad aq - bg = n$$

$$\frac{d\tau'}{d\log\mu} = i\frac{n^2}{16\pi^2}$$

$$\frac{d\tau}{d\log\mu} = \frac{i}{16\pi^2}(q + g\tau)^2$$

ß from SL(2,Z)

$$\frac{d\tau}{d\log\mu} = \frac{i}{16\pi^2}(q+g\tau)^2$$

$$\beta_e = \mu \frac{de}{d\mu} = \frac{e^3}{12\pi^2} \sum_j \left[\left(q_j + \frac{\theta}{2\pi} g_j \right)^2 - g_j^2 \frac{16\pi^2}{e^4} \right]$$
$$\beta_\theta = \mu \frac{d\theta}{d\mu} = -\frac{16\pi}{3} \sum_j \left[q_j g_j + \frac{\theta}{2\pi} g_j^2 \right]$$

Argyres, Douglas hep-th/9505062

$$\frac{\mathsf{SL}(2,Z)}{4\pi} \partial_{\mu} \left(F^{\mu\nu} + i^* F^{\mu\nu}\right) = J^{\nu} + \tau K^{\nu}$$

$$K^{\mu} \to aK'^{\mu} + cJ'^{\mu}, \ J^{\mu} \to bK'^{\mu} + dJ'^{\mu}$$

 $(F^{\mu\nu} + i^{*}F^{\mu\nu}) \to \frac{1}{c\tau^{*} + d} (F'^{\mu\nu} + i^{*}F'^{\mu\nu})$

$$\frac{\mathrm{Im}\,(\tau')}{4\pi}\,\partial_{\nu}\,(F'^{\mu\nu} + i^{*}F'^{\mu\nu}) = J'^{\mu} + \tau'K'^{\mu}$$

Zwanziger Generalized

$$\mathcal{L} = -\mathrm{Im} \frac{\tau}{8\pi n^2} \left\{ [n \cdot \partial \wedge (A+iB)] \cdot [n \cdot \partial \wedge (A-iB)] \right\} -\mathrm{Re} \frac{\tau}{8\pi n^2} \left\{ [n \cdot \partial \wedge (A+iB)] \cdot [n \cdot^* \partial \wedge (A-iB)] \right\} +\mathrm{Re} \left[(A-iB) \cdot (J+\tau K) \right]$$

$$F = \frac{1}{n^2} \left(\left\{ n \land [n \land (\partial \land A)] \right\} - * \left\{ n \land [n \land (\partial \land B)] \right\} \right)$$
$$(A + iB) \to \frac{1}{c\tau^* + d} \left(A' + iB' \right)$$

Axial Anomaly from SL(2,Z) $(q,g) \rightarrow (n,0)$ $\partial_{\mu} j^{\mu}_{A}(x) = \frac{n^{2}}{16\pi^{2}} F^{\prime\mu\nu} * F^{\prime}_{\mu\nu}$ $= \frac{n^2}{32\pi^2} \operatorname{Im} \left(F'^{\mu\nu} + i^* F'^{\mu\nu} \right)^2$

Axial Anomaly

$$\partial_{\mu} j_{A}^{\mu}(x) = \frac{n^{2}}{32\pi^{2}} \operatorname{Im} (c\tau^{*} + d)^{2} (F^{\mu\nu} + i^{*}F^{\mu\nu})^{2}$$

$$= \frac{1}{16\pi^{2}} \operatorname{Re} (q + \tau^{*}g)^{2} F^{\mu\nu} F_{\mu\nu} + \frac{1}{16\pi^{2}} \operatorname{Im} (q + \tau^{*}g)^{2} F^{\mu\nu} F_{\mu\nu}$$

$$= \frac{1}{16\pi^{2}} \left\{ \left[\left(q + \frac{\theta}{2\pi} g \right)^{2} - g^{2} \frac{16\pi^{2}}{e^{4}} \right] F^{\mu\nu} F_{\mu\nu} + \left[qg + \frac{\theta}{2\pi} g^{2} \right] F^{\mu\nu} F_{\mu\nu} \right\}$$

$$\partial_{\mu} j^{\mu}_{A}(x) = \frac{1}{16\pi^{2}} \left\{ \left[q^{2} - g^{2} \frac{16\pi^{2}}{e^{4}} \right] F^{\mu\nu} * F_{\mu\nu} + qg F^{\mu\nu} F_{\mu\nu} \right\}$$

SU(N)²U(1) Anomaly

 $\mathcal{L}_{\text{anom}} = c \Omega G^{a\mu\nu} * G^a_{\mu\nu}$

 $\Omega = \Omega_A + i\,\Omega_B$

$$\Omega \to \frac{1}{c\tau^* + d} \ \Omega'$$

SU(N)²U(1) Anomaly

$$\mathcal{L}_{anom} = \frac{n \operatorname{Tr} T^{a}(r) T^{a}(r)}{16\pi^{2}} \Omega'_{A} G^{a\mu\nu} * G^{a}_{\mu\nu}$$

$$= \frac{n \operatorname{Tr} T^{a}(r) T^{a}(r)}{16\pi^{2}} \operatorname{Re} \Omega' G^{a\mu\nu} * G^{a}_{\mu\nu}$$

$$= \frac{n T(r)}{16\pi^{2}} \operatorname{Re} (c\tau^{*} + d) \Omega G^{a\mu\nu} * G^{a}_{\mu\nu}$$

$$= \frac{T(r)}{16\pi^{2}} \left[\left(q + \frac{\theta}{2\pi} g \right) \Omega_{A} + g \frac{4\pi}{e^{2}} \Omega_{B} \right] G^{a\mu\nu} * G^{a}_{\mu\nu}$$

$U(1)^3$ Anomaly $\sum_{j} q_j^3 = 0$ $\sum_{j} q_j g_j^2 = 0$ $\sum_{j} q_j^2 g_j = 0$ $\sum_{j} g_j^3 = 0$

Toy Model

$$\sum_{j} q_{j}^{3} = 0 , \qquad \sum_{j} g_{j}^{3} = 0 , \qquad \sum_{j} g_{j}^{2} q_{j} = 0 , \qquad \sum_{j} q_{j}^{2} g_{j} = 0 , \qquad \sum_{j} q_{j} = 0 , \qquad \sum_{j} q_{j} = 0 , \qquad \sum_{j} \operatorname{Tr} T_{r_{j}}^{a} T_{r_{j}}^{b} q_{j} = 0 , \qquad \sum_{j} \operatorname{Tr} T_{r_{j}}^{a} T_{r_{j}}^{b} q_{j} = 0 , \qquad \sum_{j} \operatorname{Tr} T_{r_{j}}^{a} T_{r_{j}}^{b} q_{j} = 0 , \qquad \sum_{j} \operatorname{Tr} T_{r_{j}}^{a} T_{r_{j}}^{b} q_{j} = 0 , \qquad \sum_{j} \operatorname{Tr} T_{r_{j}}^{a} T_{r_{j}}^{b} q_{j} = 0 , \qquad \sum_{j} \operatorname{Tr} T_{r_{j}}^{a} T_{r_{j}}^{b} q_{j} = 0 , \qquad \sum_{j} \operatorname{Tr} T_{r_{j}}^{a} T_{r_{j}}^{b} q_{j} = 0 , \qquad \sum_{j} \operatorname{Tr} T_{r_{j}}^{a} T_{r_{j}}^{b} q_{j} = 0 , \qquad \sum_{j} \operatorname{Tr} T_{r_{j}}^{a} T_{r_{j}}^{b} q_{j} = 0 , \qquad \sum_{j} \operatorname{Tr} T_{r_{j}}^{a} T_{r_{j}}^{b} q_{j} = 0 , \qquad \sum_{j} \operatorname{Tr} T_{r_{j}}^{a} T_{r_{j}}^{b} q_{j} = 0 , \qquad \sum_{j} \operatorname{Tr} T_{r_{j}}^{a} T_{r_{j}}^{b} q_{j} = 0 , \qquad \sum_{j} \operatorname{Tr} T_{r_{j}}^{a} T_{r_{j}}^{b} q_{j} = 0 , \qquad \sum_{j} \operatorname{Tr} T_{r_{j}}^{a} T_{r_{j}}^{b} q_{j} = 0 , \qquad \sum_{j} \operatorname{Tr} T_{r_{j}}^{a} T_{r_{j}}^{b} q_{j} = 0 , \qquad \sum_{j} \operatorname{Tr} T_{r_{j}}^{a} T_{r_{j}}^{b} q_{j} = 0 , \qquad \sum_{j} \operatorname{Tr} T_{r_{j}}^{a} T_{r_{j}}^{b} q_{j} = 0 , \qquad \sum_{j} \operatorname{Tr} T_{r_{j}}^{a} T_{r_{j}}^{b} q_{j} = 0 , \qquad \sum_{j} \operatorname{Tr} T_{r_{j}}^{a} T_{r_{j}}^{b} q_{j} = 0 , \qquad \sum_{j} \operatorname{Tr} T_{r_{j}}^{a} T_{r_{j}}^{b} q_{j} = 0 , \qquad \sum_{j} \operatorname{Tr} T_{r_{j}}^{a} T_{r_{j}}^{b} q_{j} = 0 , \qquad \sum_{j} \operatorname{Tr} T_{r_{j}}^{a} T_{r_{j}}^{b} q_{j} = 0 , \qquad \sum_{j} \operatorname{Tr} T_{r_{j}}^{a} T_{r_{j}}^{b} q_{j} = 0 , \qquad \sum_{j} \operatorname{Tr} T_{r_{j}}^{a} T_{r_{j}}^{b} q_{j} = 0 , \qquad \sum_{j} \operatorname{Tr} T_{r_{j}}^{a} T_{r_{j}}^{b} q_{j} = 0 , \qquad \sum_{j} \operatorname{Tr} T_{r_{j}}^{a} T_{r_{j}}^{b} q_{j} = 0 , \qquad \sum_{j} \operatorname{Tr} T_{r_{j}}^{a} T_{r_{j}}^{b} q_{j} = 0 , \qquad \sum_{j} \operatorname{Tr} T_{r_{j}}^{a} T_{r_{j}}^{b} q_{j} = 0 , \qquad \sum_{j} \operatorname{Tr} T_{r_{j}}^{a} T_{r_{j}}^{b} q_{j} = 0 , \qquad \sum_{j} \operatorname{Tr} T_{r_{j}}^{a} T_{r_{j}}^{b} q_{j} = 0 , \qquad \sum_{j} \operatorname{Tr} T_{r_{j}}^{a} T_{r_{j}}^{b} T_{r_{j}}^{b$$

 $\alpha_m \sim 98$

technicolor: fail

Standard Model

New dimension 4, four particle operator

Angular Momentum $\vec{L} = \vec{r} \times \vec{p} - q \, q \, \hat{r}$ Classical: $L^{2} = |\vec{r} \times \vec{p}|^{2} + q^{2} q^{2}$ Quantum: $|L_i, L_j| = i \epsilon_{ijk} L_k$

$$L^2 = \ell(\ell+1), \qquad \ell \ge q \, g$$

Wu, Yang Nucl. Phys. B107, (1976) 365

Angular Momentum $\left[(\partial_{\mu} - iqA_{\mu})^2 - \frac{q}{2}\sigma^{\mu\nu}F_{\mu\nu} - m^2 \right] \Psi = 0$

for $\ell = q g$ one helicity can reach the origin

non-Abelian magnetic charge

 $Q = T^3 + Y$

$$Q_m = T_m^3 + Y_m$$

explicit examples known in GUT models

EWSB is forced to align with the monopole charge

non-Abelian magnetic charge $\vec{B}_Y^a = \frac{g}{g_Y} \frac{r}{r^2}$ $\vec{B}_L^a = \delta_L^{a3} \frac{g \beta_L}{g_L} \frac{\hat{r}}{r^2}$ $\vec{B}_c^a = \delta_c^{a8} \frac{g \beta_c}{a_c} \frac{\hat{r}}{r^2}$

 $4\pi \left(T_c^8 g \beta_c + T_L^3 g \beta_L + Yg\right) = 2\pi n$

non-Abelian magnetic charge $4\pi \left(T_c^8 g \beta_c + T_L^3 g \beta_L + Yg\right) = 2\pi n$ $eA^{\mu} = g_L A_L^{3\mu} + g_Y A_V^{\mu}$ $\beta_L = 1$ $T_c^8 g \beta_c + q g = \frac{n}{2}$

The Model					
$(SU(3)_c \times SU(2)_L \times U(1)_Y)/Z_6$					
		$SU(3)_c$	$SU(2)_L$	$U(1)_Y^{el}$	$U(1)_Y^{mag}$
	Q_L	\Box^m	\Box^m	$\frac{1}{6}$	$\frac{1}{2}$
	L_L	1	\Box^m	$-\frac{1}{2}$	$-\frac{3}{2}$
	U_R	\Box^m	1^m	$\frac{2}{3}$	$\frac{1}{2}$
	D_R	\Box^m	1^m	$-\frac{1}{3}$	$\frac{1}{2}$
	N_R	1	1^m	0	$-\frac{3}{2}$
	E_R	1	1^m	-1	$-\frac{3}{2}$

 $\alpha_m = \frac{1}{4\alpha} \approx 32$

Variations

New U(1): weaker coupling but less elegant

embed in a GUT?

Phenomenology

Ginzburg, Schiller hep-th/9802310

naively expect pair production, unconfined, highly ionizing

ATLAS has a trigger for monopoles

CMS does not

naively expect pair production, unconfined, highly ionizing

ATLAS has a trigger for monopoles

CMS does not

Grojean, Weiler, JT

Annihilation

Andersen, Grojean, Weiler, JT

Andersen, Grojean, Weiler, JT

Andersen, Grojean, Weiler, JT

Monopoles are still fascinating after all these years

Anomalies for monopoles can be easily calculated

monopoles can break EWS and give the top quark a large mass

the LHC could be very exciting

$$e_{\alpha} \to \sigma^2_{\alpha \dot{\alpha}} e^{\dagger \dot{\alpha}}$$

$$(q,g) \rightarrow (-q,g)$$

 $(q,-g) \rightarrow (-q,-g)$

 $\mathcal{L}_{\rm int} = -\chi^{\dagger} \left(q A_{\mu} + \tilde{g} B_{\mu} \right) \bar{\sigma}^{\mu} \chi - \psi^{\dagger} \left(q A_{\mu} - \tilde{g} B_{\mu} \right) \bar{\sigma}^{\mu} \psi$

non-Abelian magnetic charge $(SU(2)_L \times U(1)_Y)/Z_2$ $Q = T^3 + Y$ Y integer $e^{2\pi iQ} = e^{2\pi iT^3}e^{2\pi iY}$ = diag $(e^{i\frac{1}{2}2\pi}, e^{-i\frac{1}{2}2\pi})$ = Z

Z element of center of SU(2)