Monopoles, Anomalies, and Electroweak Symmetry Breaking

John Terning

with Csaba Csaki, Yuri Shirman hep-ph/1003.1718

Outline

s) Motivation
\& ${ }^{6}$ A Brief History of Monopoles
\& Anomalies
\& Models
s) LHC
\& Conclusions

Hierarchy Problem Now

susy

Technicolor

Hierarchy Problem Now

 SUSY
 Extra
 Dimensions

Hierarchy Problem Now

Hierarchy Problem Now

The Vision Thing

electric hypercharge

consistent theory of massless dyons? chiral symmetry breaking -> EWSB?

J.J. Thomson

(a)

(b)

$$
\mathrm{J}=\mathrm{q} \mathrm{~g}
$$

Philos. Mag. 8 (1904) 331

Dirac

charge quantization

Dirac

non-local action?

$$
\begin{gathered}
F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}+{ }^{*} G_{\mu \nu} \\
G_{\mu \nu}(x)=4 \pi(n \cdot \partial)^{-1}\left[n_{\mu} K_{\nu}(x)-n_{\nu} K_{\mu}(x)\right] \\
=\int d^{4} y\left[f_{\mu}(x-y) K_{\nu}(y)-f_{\nu}(x-y) K_{\mu}(y)\right] \\
\partial_{\mu} f^{\mu}(x)=4 \pi \delta(x) \\
f^{\mu}(x)=4 \pi n^{\mu}(n \cdot \partial)^{-1} \delta(x)
\end{gathered}
$$

Phys. Rev. 74 (1948) 817

Schwinger

Science 165 (1969) 757

Zwanziger

non-Lorentz invariant, local action?

$$
\begin{aligned}
\mathcal{L}= & -\frac{1}{2 n^{2} e^{2}}\left\{[n \cdot(\partial \wedge A)] \cdot\left[n \cdot^{*}(\partial \wedge B)\right]-[n \cdot(\partial \wedge B)] \cdot\left[n \cdot^{*}(\partial \wedge A)\right]\right. \\
& \left.+[n \cdot(\partial \wedge A)]^{2}+[n \cdot(\partial \wedge B)]^{2}\right\}-J \cdot A-\frac{4 \pi}{e^{2}} K \cdot B . \\
F= & \frac{1}{n^{2}}\left(\{n \wedge[n \cdot(\partial \wedge A)]\}-^{*}\{n \wedge[n \cdot(\partial \wedge B)]\}\right)
\end{aligned}
$$

Phys. Rev. D3 (1971) 880

Zwanziger

non-Lorentz invariant, local action?

$$
\begin{aligned}
& \mathcal{L}=-\frac{1}{2 n^{2} e^{2}}\left\{[n \cdot(\partial \wedge A)] \cdot\left[n \cdot \cdot^{*}(\partial \wedge B)\right]-[n \cdot(\partial \wedge B)] \cdot\left[n \cdot^{*}(\partial \wedge A)\right]\right. \\
&\left.+[n \cdot(\partial \wedge A)]^{2}+[n \cdot(\partial \wedge B)]^{2}\right\}-J \cdot A-\frac{4 \pi}{e^{2}} K \cdot B . \\
& \text { electric magnetic } \\
& F= \frac{1}{n^{2}}\left(\{n \wedge[n \cdot(\partial \wedge A)]\}-^{*}\{n \wedge[n \cdot(\partial \wedge B)]\}\right)
\end{aligned}
$$

Phys. Rev. D3 (1971) 880

Witten

effective charge shifted

$$
\begin{gathered}
\mathcal{L}_{\text {free }}=-\frac{1}{4 e^{2}} F^{\mu \nu} F_{\mu \nu}-\frac{\theta}{32 \pi^{2}} F^{\mu \nu *} F_{\mu \nu} \\
q_{\text {eff }, j}=q_{j}+g_{j} \frac{\theta}{2 \pi}
\end{gathered}
$$

Phys. Lett. B86 (1979) 283

't Hooft-Polyakov

topological monopoles

Nucl. Phys., B79 1974, 276
JETP Lett., 20 1974, 194

'† Hooft-Mandelstam

magnetic condensate confines electric charge

High Energy Physics Ed. Zichichi, (1976) 1225 Phys. Rept. 23 (1976) 245

Rubakov-Callan

$$
J=e g
$$

new unsuppressed contact interactions!
JETP Lett. 33 (1981) 644
Phys. Rev. D25 (1982) 2141

Seiberg-Witten

$$
\mathcal{N}=2
$$

massless fermionic monopoles
hep-th/9407087

Argyres-Douglas

CFT with massless electric and magnetic charges hep-th/9505062

Toy Model

is this anomaly free?

Anomalies

$$
\begin{aligned}
\mathcal{L}= & -\frac{1}{2 n^{2} e^{2}}\left\{[n \cdot(\partial \wedge A)] \cdot\left[n \cdot{ }^{*}(\partial \wedge B)\right]-[n \cdot(\partial \wedge B)] \cdot\left[n \cdot *^{*}(\partial \wedge A)\right]\right. \\
& \left.+[n \cdot(\partial \wedge A)]^{2}+[n \cdot(\partial \wedge B)]^{2}\right\}-J \cdot A-\frac{4 \pi}{e^{2}} K \cdot B .
\end{aligned}
$$

E-M Duality

$$
\begin{aligned}
& \vec{E} \rightarrow \vec{B} \\
& \vec{B} \rightarrow-\vec{E} \\
&{ }^{*} F^{\mu \nu}=\frac{1}{2} \epsilon^{\mu \nu \alpha \beta} F_{\alpha \beta} \\
& F^{\mu \nu} \rightarrow{ }^{*} F^{\mu \nu}
\end{aligned}
$$

Shift Symmetry

$$
\mathcal{L}_{\text {free }}=-\frac{1}{4 e^{2}} F^{\mu \nu} F_{\mu \nu}-\frac{\theta}{32 \pi^{2}} F^{\mu \nu *} F_{\mu \nu}
$$

$$
\begin{gathered}
\theta \rightarrow \theta+2 \pi \\
\tau \equiv \frac{\theta}{2 \pi}+\frac{4 \pi i}{e^{2}}
\end{gathered}
$$

E-M Duality

$$
\begin{gathered}
\mathcal{L}_{\text {free }}=-\operatorname{Im} \frac{\tau}{32 \pi}\left(F^{\mu \nu}+i^{*} F^{\mu \nu}\right)^{2} \\
\mathcal{L}_{c}=\frac{1}{4 \pi} \int d^{4} x B_{\mu} \partial_{\nu}{ }^{*} F^{\mu \nu} \\
\tilde{\mathcal{L}}=\operatorname{Im} \frac{1}{32 \pi \tau}\left(\tilde{F}^{\mu \nu}+i^{*} \tilde{F}^{\mu \nu}\right)^{2} \\
\tilde{F}_{\mu \nu}=\partial_{\mu} B_{\nu}-\partial_{\nu} B_{\mu}
\end{gathered}
$$

SL(2,Z)

$$
\begin{gathered}
\tau \equiv \frac{\theta}{2 \pi}+\frac{4 \pi i}{e^{2}} \quad S: \tau \rightarrow-\frac{1}{\tau} \quad T: \tau \rightarrow \tau+1 \\
\tau^{\prime}=\frac{a \tau+b}{c \tau+d} \\
K^{\mu} \rightarrow a K^{\prime \mu}+c J^{\prime \mu}, J^{\mu} \rightarrow b K^{\prime \mu}+d J^{\prime \mu} \\
a d-b c=1 \\
\text { not } a \text { symmetry }
\end{gathered}
$$

β from SL(2,z)
 $\frac{d \tau}{d \log \mu}=\beta$

$$
\begin{gathered}
\left(\begin{array}{cc}
a & -b \\
-c & d
\end{array}\right)\binom{q}{g}=\binom{n}{0} \quad n=\operatorname{gcd}(q, g) \\
c=g / n, d=q / n \quad a q-b g=n \\
\frac{d \tau^{\prime}}{d \log \mu}=i \frac{n^{2}}{16 \pi^{2}} \\
\frac{d \tau}{d \log \mu}=\frac{i}{16 \pi^{2}}(q+g \tau)^{2}
\end{gathered}
$$

$$
\begin{gathered}
3 \\
\frac{d \tau}{d \log \mu}=\frac{i}{16 \pi^{2}}(q+g \tau)^{2} \\
\beta_{e}=\mu \frac{d e}{d \mu}=\frac{e^{3}}{12 \pi^{2}} \sum_{j}\left[\left(q_{j}+\frac{\theta}{2 \pi} g_{j}\right)^{2}-g_{j}^{2} \frac{16 \pi^{2}}{e^{4}}\right] \\
\beta_{\theta}=\mu \frac{d \theta}{d \mu}=-\frac{16 \pi}{3} \sum_{j}\left[q_{j} g_{j}+\frac{\theta}{2 \pi} g_{j}^{2}\right]
\end{gathered}
$$

Argyres, Douglas hep-th/9505062

SL(2,Z)

$$
\begin{gathered}
\frac{\operatorname{Im}(\tau)}{4 \pi} \partial_{\mu}\left(F^{\mu \nu}+i^{*} F^{\mu \nu}\right)=J^{\nu}+\tau K^{\nu} \\
K^{\mu} \rightarrow a K^{\prime \mu}+c J^{\prime \mu}, J^{\mu} \rightarrow b K^{\prime \mu}+d J^{\prime \mu} \\
\left(F^{\mu \nu}+i^{*} F^{\mu \nu}\right) \rightarrow \frac{1}{c \tau^{*}+d}\left(F^{\prime \mu \nu}+i^{*} F^{\prime \mu \nu}\right)
\end{gathered}
$$

$$
\frac{\operatorname{Im}\left(\tau^{\prime}\right)}{4 \pi} \partial_{\nu}\left(F^{\prime \mu \nu}+i^{*} F^{\prime \mu \nu}\right)=J^{\prime \mu}+\tau^{\prime} K^{\prime \mu}
$$

Zwanziger Generalized

$$
\begin{aligned}
\mathcal{L}= & -\operatorname{Im} \frac{\tau}{8 \pi n^{2}}\{[n \cdot \partial \wedge(A+i B)] \cdot[n \cdot \partial \wedge(A-i B)]\} \\
& -\operatorname{Re} \frac{\tau}{8 \pi n^{2}}\{[n \cdot \partial \wedge(A+i B)] \cdot[n \cdot * \partial \wedge(A-i B)]\} \\
& +\operatorname{Re}[(A-i B) \cdot(J+\tau K)] \\
F= & \frac{1}{n^{2}}\left(\{n \wedge[n \cdot(\partial \wedge A)]\}-{ }^{*}\{n \wedge[n \cdot(\partial \wedge B)]\}\right) \\
& (A+i B) \rightarrow \frac{1}{c \tau^{*}+d}\left(A^{\prime}+i B^{\prime}\right)
\end{aligned}
$$

Axial Anomaly from SL(2,Z)

$$
(q, g) \rightarrow(n, 0)
$$

$$
\begin{aligned}
\partial_{\mu} j_{A}^{\mu}(x) & =\frac{n^{2}}{16 \pi^{2}} F^{\prime \mu \nu *} F_{\mu \nu}^{\prime} \\
& =\frac{n^{2}}{32 \pi^{2}} \operatorname{Im}\left(F^{\prime \mu \nu}+i^{*} F^{\prime \mu \nu}\right)^{2}
\end{aligned}
$$

Axial Anomaly

$$
\begin{aligned}
\partial_{\mu} j_{A}^{\mu}(x)= & \frac{n^{2}}{32 \pi^{2}} \operatorname{Im}\left(c \tau^{*}+d\right)^{2}\left(F^{\mu \nu}+i^{*} F^{\mu \nu}\right)^{2} \\
= & \frac{1}{16 \pi^{2}} \operatorname{Re}\left(q+\tau^{*} g\right)^{2} F^{\mu \nu *} F_{\mu \nu}+\frac{1}{16 \pi^{2}} \operatorname{Im}\left(q+\tau^{*} g\right)^{2} F^{\mu \nu} F_{\mu \nu} \\
= & \frac{1}{16 \pi^{2}}\left\{\left[\left(q+\frac{\theta}{2 \pi} g\right)^{2}-g^{2} \frac{16 \pi^{2}}{e^{4}}\right] F^{\mu \nu *} F_{\mu \nu}\right. \\
& +\left[q g+\frac{\theta}{2 \pi} g^{2}\right] F^{\mu \nu} F_{\mu \nu}
\end{aligned}
$$

Axial Anomaly

$\partial_{\mu} j_{A}^{\mu}(x)=\frac{1}{16 \pi^{2}}\left\{\left[q^{2}-g^{2} \frac{16 \pi^{2}}{e^{4}}\right] F^{\mu \nu}{ }^{*} F_{\mu \nu}+q g F^{\mu \nu} F_{\mu \nu}\right\}$

$\mathrm{SU}(\mathrm{N})^{2} \mathrm{U}(1)$ Anomaly

$$
\mathcal{L}_{\mathrm{anom}}=c \Omega G^{a \mu \nu *} G_{\mu \nu}^{a}
$$

$$
\begin{aligned}
& \Omega=\Omega_{A}+i \Omega_{B} \\
& \Omega \rightarrow \frac{1}{c \tau^{*}+d} \Omega^{\prime}
\end{aligned}
$$

$S U(N)^{2} U(1)$ Anomaly

$$
\begin{aligned}
\mathcal{L}_{\text {anom }} & =\frac{n \operatorname{Tr} T^{a}(r) T^{a}(r)}{16 \pi^{2}} \Omega_{A}^{\prime} G^{a \mu \nu *} G_{\mu \nu}^{a} \\
& =\frac{n \operatorname{Tr} T^{a}(r) T^{a}(r)}{16 \pi^{2}} \operatorname{Re} \Omega^{\prime} G^{a \mu \nu *} G_{\mu \nu}^{a} \\
& =\frac{n T(r)}{16 \pi^{2}} \operatorname{Re}\left(c \tau^{*}+d\right) \Omega G^{a \mu \nu *} G_{\mu \nu}^{a} \\
& =\frac{T(r)}{16 \pi^{2}}\left[\left(q+\frac{\theta}{2 \pi} g\right) \Omega_{A}+g \frac{4 \pi}{e^{2}} \Omega_{B}\right] G^{a \mu \nu *} G_{\mu \nu}^{a}
\end{aligned}
$$

$U(1)^{3}$ Anomaly

$$
\begin{aligned}
\mathcal{L}_{\mathrm{anom}}= & \frac{n^{3}}{16 \pi^{2}} \Omega_{A}^{\prime} F^{\prime \mu \nu *} F_{\mu \nu}^{\prime}=\frac{n^{3}}{32 \pi^{2}} \operatorname{Re}\left[\Omega^{\prime}\right] \operatorname{Im}\left[\left(F^{\prime \mu \nu}+i^{*} F_{\mu \nu}^{\prime}\right)^{2}\right] \\
= & \frac{n^{3}}{32 \pi^{2}} \operatorname{Re}\left[\left(c \tau^{*}+d\right) \Omega\right] \operatorname{Im}\left[\left(c \tau^{*}+d\right)^{2}\left(F^{\mu \nu}+i^{*} F_{\mu \nu}\right)^{2}\right] \\
= & \frac{1}{16 \pi^{2}}\left[\left(q+\frac{\theta}{2 \pi} g\right)^{3}-\left(q+\frac{\theta}{2 \pi} g\right) \frac{16 \pi^{2}}{e^{4}} g^{2}\right] \Omega_{A} F^{\mu \nu *} F_{\mu \nu} \\
& -\frac{1}{16 \pi^{2}}\left[-\left(q+\frac{\theta}{2 \pi} g\right)^{2} \frac{4 \pi}{e^{2}} g+\frac{64 \pi^{3}}{e^{6}} g^{3}\right] \Omega_{B} F^{\mu \nu *} F_{\mu \nu} \\
& -\frac{1}{8 \pi^{2}}\left[\left(q+\frac{\theta}{2 \pi} g\right)^{2} \frac{4 \pi}{e^{2}} g \Omega_{A}+\left(q+\frac{\theta}{2 \pi} g\right) \frac{16 \pi^{2}}{e^{4}} g^{2} \Omega_{B}\right] F^{\mu \nu} F_{\mu \nu}
\end{aligned}
$$

$U(1)^{3}$ Anomaly

$$
\begin{aligned}
\sum_{j} q_{j}^{3} & =0 \\
\sum_{j} q_{j} g_{j}^{2} & =0 \\
\sum_{j} q_{j}^{2} g_{j} & =0 \\
\sum_{j} g_{j}^{3} & =0
\end{aligned}
$$

Toy Model

	$S U(3)_{c}$	$S U(2)_{L}$	$U(1)_{Y}: q$	$U(1)_{Y}: g$
Q	\square	\square	$\frac{1}{6}$	3
L	1	\square	$-\frac{1}{2}$	-9
\bar{U}	\square	1	$-\frac{2}{3}$	-3
\bar{D}	\square	1	$\frac{1}{3}$	-3
\bar{N}	1	1	0	9
\bar{E}	1	1	1	9

$\sum_{j} q_{j}^{3}=0, \quad \sum_{j} g_{j}^{3}=0, \quad \sum_{j} g_{j}^{2} q_{j}=0, \quad \sum_{j} q_{j}^{2} g_{j}=0, \quad \sum_{j} q_{j}=0, \quad \sum_{j} g_{j}=0$,
$\sum_{j} \operatorname{Tr} T_{r_{j}}^{a} T_{r_{j}}^{b} q_{j}=0, \quad \sum_{j} \operatorname{Tr} \tau_{r_{j}}^{a} r_{r_{j}}^{b} q_{j}=0, \quad \sum_{j} \operatorname{Tr} T_{r_{j}}^{a} T_{r_{j}}^{b} g_{j}=0, \quad \sum_{j} \operatorname{Tr} \tau_{r_{j}}^{a} r_{r_{j}}^{b} g_{j}=0$

Dynamics

	$S U(3)_{c}$	$S U(2)_{L}$	$U(1)_{Y}: q$	$U(1)_{Y}: g$	
Q	\square	\square	$\frac{1}{6}$	3	
L	1	\square	$-\frac{1}{2}$	-9	
\bar{U}	\square	1	$-\frac{2}{3}$	-3	
\bar{D}	\square	1	$\frac{1}{3}$	-3	
\bar{N}	1	1	0	9	
\bar{E}	1	1	1	9	
	$\left(\frac{1}{6}\right)^{2} \alpha_{Y} 3^{2} \alpha_{m}=\frac{1}{4}$				
	$\alpha_{m} \sim 98$				

Quark Masses

technicolor: fail

Quark Masses

Standard Model

Rubakov-Callan

$$
\begin{gathered}
J_{f}=-q g=1 / 2 \\
S_{f}=-1 / 2
\end{gathered}
$$

M

$$
\begin{gathered}
J_{i}=q g=-1 / 2 \\
S_{i}=1 / 2
\end{gathered}
$$

New dimension 4, four particle operator

Angular Momentum

Classical:

$$
\vec{L}=\vec{r} \times \vec{p}-q g \hat{r}
$$

$$
L^{2}=|\vec{r} \times \vec{p}|^{2}+q^{2} g^{2}
$$

Quantum:

$$
\left[L_{i}, L_{j}\right]=i \epsilon_{i j k} L_{k}
$$

$$
L^{2}=\ell(\ell+1), \quad \ell \geq q g
$$

Wu, Yang Nucl. Phys. B107, (1976) 365

Angular Momentum

$$
\left[\left(\partial_{\mu}-i q A_{\mu}\right)^{2}-\frac{q}{2} \sigma^{\mu \nu} F_{\mu \nu}-m^{2}\right] \Psi=0
$$

$$
\left[-\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial}{\partial r}\right)+\frac{1}{r^{2}}\left(\vec{L}^{2}-q^{2} g^{2}\right)-q \vec{\sigma} \cdot \vec{B}-\left(E^{2}-m^{2}\right)\right] \Psi=0
$$

$$
\frac{1}{r^{2}}\left(\ell(\ell+1)-q^{2} g^{2}\right)-q g \frac{\vec{\sigma} \cdot \hat{r}}{r^{2}}
$$

for $\ell=q g$ one helicity can reach the origin

Four Fermion Ops

$$
\begin{array}{cl}
J_{f}=-q g=-1 / 2 & \longleftarrow \\
S_{f}=-1 \\
U_{R} \\
t_{L} \\
t_{R} \nearrow U_{L} \\
J_{i}=q g=2 \\
S_{i}=1
\end{array} \quad \begin{aligned}
& \text { time }
\end{aligned}
$$

Four Fermion Ops

$$
\begin{aligned}
J_{f}= & -q g=-1 / 2 \\
& S_{f}=-1
\end{aligned}
$$

$U_{R} \quad t_{L}$

$$
\begin{gathered}
J_{i}=q g=2 \\
S_{i}=1
\end{gathered}
$$

fail!

Four Fermion Ops

$$
\begin{gathered}
J_{f}=-q g=-2 \\
S_{f}=0
\end{gathered}
$$

$U_{R} \quad t_{R}$

Four Fermion Ops

$$
\begin{gathered}
J_{f}=-q g=-2 \\
S_{f}=0
\end{gathered}
$$

$U_{R} \quad t_{R}$

$$
\begin{gathered}
J_{i}=q g=1 / 2 \\
S_{i}=0
\end{gathered}
$$

fail!

$$
\begin{gathered}
\text { non-Abelian } \\
\text { magnetic charge } \\
Q=T^{3}+Y \\
Q_{m}=T_{m}^{3}+Y_{m} \\
\text { explicit examples known in GUT models }
\end{gathered}
$$

EWSB is forced to align with the monopole charge

non-Abelian

magnetic charge

$$
\begin{aligned}
\vec{B}_{Y}^{a} & =\frac{g}{g_{Y}} \frac{\hat{r}}{r^{2}} \\
\vec{B}_{L}^{a} & =\delta_{L}^{a 3} \frac{g \beta_{L}}{g_{L}} \frac{\hat{r}}{r^{2}} \\
\vec{B}_{c}^{a} & =\delta_{c}^{a 8} \frac{g \beta_{c}}{g_{c}} \frac{\hat{r}}{r^{2}}
\end{aligned}
$$

$$
4 \pi\left(T_{c}^{8} g \beta_{c}+T_{L}^{3} g \beta_{L}+Y g\right)=2 \pi n
$$

non-Abelian

magnetic charge

$$
\begin{gathered}
4 \pi\left(T_{c}^{8} g \beta_{c}+T_{L}^{3} g \beta_{L}+Y g\right)=2 \pi n \\
e A^{\mu}=g_{L} A_{L}^{3 \mu}+g_{Y} A_{Y}^{\mu} \\
\beta_{L}=1
\end{gathered}
$$

$$
T_{c}^{8} g \beta_{c}+q g=\frac{n}{2}
$$

The Model

$$
\left(S U(3)_{c} \times S U(2)_{L} \times U(1)_{Y}\right) / Z_{6}
$$

	$S U(3)_{c}$	$S U(2)_{L}$	$U(1)_{Y}^{e l}$	$U(1)_{Y}^{\operatorname{mag}}$
Q_{L}	\square^{m}	\square^{m}	$\frac{1}{6}$	$\frac{1}{2}$
L_{L}	1	\square^{m}	$-\frac{1}{2}$	$-\frac{3}{2}$
U_{R}	\square^{m}	1^{m}	$\frac{2}{3}$	$\frac{1}{2}$
D_{R}	\square^{m}	1^{m}	$-\frac{1}{3}$	$\frac{1}{2}$
N_{R}	1	1^{m}	0	$-\frac{3}{2}$
E_{R}	1	1^{m}	-1	$-\frac{3}{2}$

$$
\alpha_{m}=\frac{1}{4 \alpha} \approx 32
$$

Four Fermion Ops
 $$
\begin{array}{cl} J_{f}=-\frac{2}{3}\left(\frac{-3}{2}\right) & \longleftrightarrow \\ S_{f}=-1 & \longleftrightarrow \end{array}
$$
 N_{R}
 \dagger_{L}

 time
 $t_{R} \nearrow \mathrm{~N}_{\mathrm{L}}$
 $$
\begin{gathered} J_{i}=\frac{2}{3}\left(\frac{-3}{2}\right) \\ S_{i}=1 \end{gathered}
$$

Four Fermion Ops
 $$
\begin{array}{cl} J_{f}=-\frac{2}{3}\left(\frac{-3}{2}\right) & \longleftrightarrow \\ S_{f}=-1 & \longleftrightarrow \end{array}
$$
 N_{R}
 \dagger_{L}

 time
 $t_{R} \nearrow N_{L}$
 $$
\begin{gathered} J_{i}=\frac{2}{3}\left(\frac{-3}{2}\right) \\ S_{i}=1 \end{gathered}
$$
 hooray!

Variations

New U(1): weaker coupling but less elegant

embed in a GUT?

Phenomenology

uncontrolled perturbation theory

Ginzburg, Schiller hep-th/9802310

LHC

naively expect pair production, unconfined, highly ionizing

ATLAS has a trigger for monopoles

CMS does not

LHC

naively expect pair production, unconfined, highly ionizing

ATLAS has a trigger for monopoles

CMS does not

Bremstrahlung

Grojean, Weiler, JT

Annihilation

Andersen, Grojean, Weiler, JT

Fireball

Andersen, Grojean, Weiler, JT

Fireball

CMS has a trigger for this

Andersen, Grojean, Weiler, JT

Conclusions

Monopoles are still fascinating after all these years

Anomalies for monopoles can be easily calculated
monopoles can break EWS and give the top quark a large mass
the LHC could be very exciting

$$
\begin{aligned}
e_{\alpha} & \rightarrow \sigma_{\alpha \dot{\alpha}}^{2} e^{\dagger \dot{\alpha}} \\
(q, g) & \rightarrow(-q, g) \\
(q,-g) & \rightarrow(-q,-g) \\
\mathcal{L}_{\mathrm{int}}=-\chi^{\dagger}\left(q A_{\mu}+\tilde{g} B_{\mu}\right) \bar{\sigma}^{\mu} & \chi-\psi^{\dagger}\left(q A_{\mu}-\tilde{g} B_{\mu}\right) \bar{\sigma}^{\mu} \psi
\end{aligned}
$$

non-Abelian

magnetic charge
$\left(S U(2)_{L} \times U(1)_{Y}\right) / Z_{2}$

$$
Q=T^{3}+Y
$$

Y integer

$$
\begin{aligned}
e^{2 \pi i Q} & =e^{2 \pi i T^{3}} e^{2 \pi i Y} \\
& =\operatorname{diag}\left(e^{i \frac{1}{2} 2 \pi}, e^{-i \frac{1}{2} 2 \pi}\right) \\
& =Z
\end{aligned}
$$

Z element of center of $S U(2)$

