
Monopoles, Anomalies,
 and Electroweak

Symmetry Breaking

John Terning
with Csaba Csaki, Yuri Shirman 

hep-ph/1003.1718



Outline 

  Motivation

  A Brief History of Monopoles

  Anomalies

  Models

  LHC

  Conclusions



SUSY Technicolor

Hierarchy Problem Now



Extra
 Dimensions

SUSY Technicolor

Hierarchy Problem Now



flat curved

Extra
 Dimensions

SUSY Technicolor

Hierarchy Problem Now



flat curved

Extra
 Dimensions

SUSY Technicolor

HiggslessRSsmall

large

discrete

Little Higgs

composite 
Higgs

gaugephobic Higgs

Hierarchy Problem Now



The Vision Thing
magnetic hypercharge

electric hypercharge

consistent theory of massless dyons?
chiral symmetry breaking -> EWSB?



J.J. Thomson

Philos. Mag. 8 (1904) 331

J = q g

Magnetic Monopoles 5

•
e g

•!

R

J

Figure 1. Static configuration of an electric change and a magnetic monopole.

which follows from symmetry (the integral can only supply a numerical factor, which

turns out to be 4π [27]). The quantization of charge follows by applying semiclassical

quantization of angular momentum:

J · R̂ =
eg

c
= n

!

2
, n = 0, ±1, ±2, . . . , (2.4a)

or

eg = m′
!c, m′ =

n

2
. (2.4b)

(Here, and in the following, we use m′ to designate this “magnetic quantum number.”

The prime will serve to distinguish this quantity from an orbital angular momentum
quantum number, or even from a particle mass.)

2.3. Classical scattering

Actually, earlier in 1896, Poincaré [3] investigated the motion of an electron in the

presence of a magnetic pole. This was inspired by a slightly earlier report of anomalous
motion of cathode rays in the presence of a magnetized needle [32]. Let us generalize

the analysis to two dyons (a term coined by Schwinger in 1969 [11]) with charges e1, g1,

and e2, g2, respectively. There are two charge combinations

q = e1e2 + g1g2, κ = −e1g2 − e2g1

c
. (2.5)

Then the classical equation of relative motion is (µ is the reduced mass and v is the

relative velocity)

µ
d2

dt2
r = q

r

r3
− κv × r

r3
. (2.6)

The constants of the motion are the energy and the angular momentum,

E =
1

2
µv2 +

q

r
, J = r × µv + κr̂. (2.7)

Note that Thomson’s angular momentum (2.3) is prefigured here.

Because J · r̂ = κ, the motion is confined to a cone, as shown in figure 2. Here the
angle of the cone is given by

cot
χ

2
=

l

|κ| , l = µv0b, (2.8)

where v0 is the relative speed at infinity, and b is the impact parameter. The scattering

angle θ is given by

cos
θ

2
= cos

χ

2

∣
∣
∣
∣
sin

(
ξ/2

cos χ/2

)∣
∣
∣
∣
, (2.9a)
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for example, for spin-1/2 particles. The photon propagator is denoted by D+(x − x′)

and fµ(x) is the Dirac string function which satisfies the differential equation

∂µf
µ(x) = 4πδ(x), (5.7)

the four-dimensional generalization of (3.17). A formal solution of this equation is given

by

fµ(x) = 4πnµ (n · ∂)−1 δ(x), (5.8)

where nµ is an arbitrary constant vector. [Equation (3.125) results if n̂ = −ẑ, in which
case f(r, t) = f(r)δ(t).]

5.3. Field theory of magnetic charge

In order to facilitate the construction of the dual-QED formalism we recognize that the

well-known continuous global U(1) dual symmetry (2.2b) [75, 78, 33] implied by (5.2),

(5.4), given by
(

j′

∗j′

)

=

(

cos θ sin θ

− sin θ cos θ

) (

j
∗j

)

, (5.9a)

(

F ′

∗F ′

)

=

(

cos θ sin θ

− sin θ cos θ

)(

F
∗F

)

, (5.9b)

suggests the introduction of an auxiliary vector potential Bµ(x) dual to Aµ(x). In order

to satisfy the Maxwell and charge conservation equations, Dirac [85] modified the field

strength tensor according to

Fµν = ∂µAν − ∂νAµ + ∗Gµν , (5.10)

where now (5.2) gives rise to the consistency condition on Gµν(x) = −Gνµ(x)

∂ν ∗Fµν = −∂νGµν = 4π ∗jµ. (5.11)

We then obtain the following inhomogeneous solution to the dual Maxwell’s equation

(5.11) for the tensor Gµν(x) in terms of the string function fµ and the magnetic current
∗jν :

Gµν(x) = 4π (n · ∂)−1 [nµ
∗jν(x) − nν

∗jµ(x)]

=

∫

(dy) [fµ(x − y) ∗jν(y) − fν(x − y) ∗jµ(y)] , (5.12)

where use is made of (5.4), (5.7), and (5.8). A minimal generalization of the QED

Lagrangian including electron-monopole interactions reads

L = − 1

16π
FµνF

µν + ψ̄ (iγ∂ + eγA − mψ)ψ + χ̄ (iγ∂ − mχ) χ, (5.13)

where the coupling of the monopole field χ(x) to the electromagnetic field occurs

through the quadratic field strength term according to (5.10). We now rewrite the

Lagrangian (5.13) to display more clearly that interaction by introducing the auxiliary

potential Bµ(x).
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Gµν(x) = 4π(n · ∂)−1 [nµKν(x)− nνKµ(x)]

=
�

d4y [fµ(x− y)Kν(y)− fν(x− y)Kµ(y)]
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two gauge potentials, the form of the non-Lorentz invariant kinetic mixing ensures that the

are only two on-shell degrees of freedom for the gauge fields. The advantage of having two

gauge potentials is that one, Aµ, has a local coupling to electric currents, while Bµ has a

local coupling to magnetic currents. In Dirac’s formulation, the magnetic current does not

couple directly to the gauge field, it only couples through the Dirac string attached to each

monopole, which makes calculations very difficult.

For our work we will need to generalize the Zwanziger action to include the CP violating

parameter θ. The use of differential forms also makes the expressions slightly easier to write,

so we will use the notation

(a ∧ b)µν
= aµbν − bµaν , (3.4)

(a · ∗
(b ∧ c))ν

= �µναβaµbαcβ . (3.5)

Zwanziger found [13] that the action (with a vanishing θ)

L = − 1

2n2e2
{[n · (∂ ∧ A)] · [n ·∗ (∂ ∧B)]− [n · (∂ ∧B)] · [n ·∗ (∂ ∧ A)]

+ [n · (∂ ∧ A)]
2
+ [n · (∂ ∧B)]

2�− J · A− 4π

e2
K · B. (3.6)

(where n is an arbitrary four vector corresponding to the direction of the Dirac string)

reproduces the Maxwell equations if the identification of the field strength F is given by

F =
1

n2
({n ∧ [n · (∂ ∧ A)]}− ∗ {n ∧ [n · (∂ ∧B)]}) . (3.7)

While the Lagrangian is not Lorentz invariant, the EOM’s will be if written in terms of the

field strength. The proper generalization of this Lagrangian incorporating the θ-angle is

L = −Im
τ

8πn2
{[n · ∂ ∧ (A + iB)] · [n · ∂ ∧ (A− iB)]}

−Re
τ

8πn2
{[n · ∂ ∧ (A + iB)] · [n ·∗ ∂ ∧ (A− iB)]}

−J · A− 4π

e2
K · B. (3.8)

One can check that this Lagrangian indeed correctly reproduces the Maxwell equations (3.1)

after the Witten effect is taken into account. To incorporate the Witten effect, one may also

write a low-energy Lagrangian below the mass scale of the fermions that will correct the

coupling terms to

−J · A− 4π

e2
K · B → Re [(A− iB) · (J + τK)] (3.9)

while if the fermions are massless then the θ term can always be rotated away.

One can easily see that with this incorporation of the Witten effect in the coupling in the

Lagrangian the SL(2, Z) covariance is also explicit. Since under SL(2, Z) the field strength
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contributions and find new conditions that must be satisfied even in a CP conserving theory
with θ = 0.

In the next section we review CP and how it can be defined for dyons. We then review
how the axial anomaly can be calculated for a dyon making use of SL(2, Z) transformations.
Finally we apply this analysis to the various types of gauge anomalies.

2 Review of SL(2, Z) and β-functions

Since it is impossible to write a local and Lorentz invariant Lagrangian for coexisting
monopoles and dyons, direct loop calculations are quite difficult to perform. One of the main
tools we will be using here to circumvent this problem are SL(2, Z) duality transformations.
Thus it is important to be very clear what the exact meaning of these transformations are.
There exist some very special theories (usually N = 2 or N = 4 superconformal theories)
which have a manifestSL(2, Z) symmetry, which means that the entire particle spectrum
is invariant under SL(2, Z). Here we will not be confining ourselves to such theories, and
we will be using SL(2, Z) in a different way, merely as a set of field redefinitions. For us
SL(2, Z) will be just a particular change of variables. Let us review in detail how this comes
about [?]. Consider a U(1) gauge theory with coupling e and a non-vanishing θ angle in the
non-canonical (”holomorphic”) normalization of the gauge fields:

Lfree = − 1

4e2
F µνFµν −

θ

32π2
F µν ∗Fµν (2.1)

where

∗F µν =
1

2
�µναβFαβ . (2.2)

It is very convenient to introduce the holomorphic gauge coupling τ , defined as

τ ≡ θ

2π
+

4πi

e2
. (2.3)

With this notation the Lagrangian of the free theory (without any electric or magnetic
charges) can be rewritten as:

Lfree = −Im
τ

32π
(F µν + i ∗F µν)2 . (2.4)

One can see, that a shift in τ by a real integer τ → τ +n corresponds to shifts in the θ angle
θ → θ + 2πn. This is often referred to as a T-duality. Even though this does not leave the
Lagrangian invariant, it is a symmetry of the theory since the only way the path integral
depends on θ is via the phase eimθ. To obtain the full SL(2, Z) transformation group one
also needs to introduce the duality field transformations. This is nothing but a change of
variables in the path integral (for example nicely described in [?]). The main point is that
the path integral in terms of the (electric) gauge potential Aµ given by

�
DAµe

iS (2.5)

2

1 Introduction

It is well known that there is a charge consistency constraint in a theory with both electric
and magnetic charges [1–3]. If we label the electric and magnetic charges of particle j by qj

and gj then the charges of any pair of particles must satisfy

q1g2 − q2g1 = 2πn . (1.1)

In a CP invariant theory this requires that both types of charges can be expressed as integers
in units of a fundamental charge [5]. There are also five well known conditions on electric
charges of fermions that arise from requiring anomaly cancellations. The gauge anomaly
conditions come from the U(1)3 gauge anomaly, as well as the various mixed anomalies
between the U(1) and other possible force carriers. In general, there are the SU(N)2U(1)
mixed anomaly, the U(1)XU(1)2 mixed anomaly, the U(1)U(1)2

X mixed anomaly, and the
mixed gravitational U(1) anomaly. We can write these conditions, in order, as:

�

j

q3
j = 0 , (1.2)

�

j

Tr T a
rj

T b
rj

qj ≡ δab
�

j

T (rj)qj = 0 , (1.3)

�

j

qXjq
2
j = 0 , (1.4)

�

j

q2
Xjqj = 0 , (1.5)

�

j

qj = 0 . (1.6)

We are thus led to ask a very simple question: are there not also anomaly conditions on
magnetic charges?

In a theory with a dyon, i.e. a particle with both qj and gj non-vanishing [4], and a CP
violating θ parameter, the effective electric charge (in units of the fundamental charge) was
shown by Witten [5] to be

qeff,j = qj + gj
θ

2π
(1.7)

Disregarding cancellations that occur for particular values of θ one might naivley expect that
we get new anomaly cancellation conditions for the magnetic charges by replacing qj by qeff,j

in Eqs. (1.2)-(1.6) and requiring that terms with different powers of θ vanish independently.
This argument is too naive, for two reasons. First, since the magnetic charge also couples

to the electromagnetic field, there should be additional contributions proportional to powers
of the magnetic charge even with θ = 0. Secondly as the mass of a charged fermion goes
to zero, the θ dependent piece of the charge becomes delocalized [6], and θ becomes an un-
physical parameter at zero mass. In what follows we will find both the electric and magnetic

1

effective charge shifted
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Toy Model

is this anomaly free?



Anomalies

two gauge potentials, the form of the non-Lorentz invariant kinetic mixing ensures that the

are only two on-shell degrees of freedom for the gauge fields. The advantage of having two

gauge potentials is that one, Aµ, has a local coupling to electric currents, while Bµ has a

local coupling to magnetic currents. In Dirac’s formulation, the magnetic current does not

couple directly to the gauge field, it only couples through the Dirac string attached to each

monopole, which makes calculations very difficult.

For our work we will need to generalize the Zwanziger action to include the CP violating

parameter θ. The use of differential forms also makes the expressions slightly easier to write,

so we will use the notation

(a ∧ b)µν
= aµbν − bµaν , (3.4)

(a · ∗
(b ∧ c))ν

= �µναβaµbαcβ . (3.5)

Zwanziger found [13] that the action (with a vanishing θ)

L = − 1

2n2e2
{[n · (∂ ∧ A)] · [n ·∗ (∂ ∧B)]− [n · (∂ ∧B)] · [n ·∗ (∂ ∧ A)]

+ [n · (∂ ∧ A)]
2
+ [n · (∂ ∧B)]

2�− J · A− 4π

e2
K · B. (3.6)

(where n is an arbitrary four vector corresponding to the direction of the Dirac string)

reproduces the Maxwell equations if the identification of the field strength F is given by

F =
1

n2
({n ∧ [n · (∂ ∧ A)]}− ∗ {n ∧ [n · (∂ ∧B)]}) . (3.7)

While the Lagrangian is not Lorentz invariant, the EOM’s will be if written in terms of the

field strength. The proper generalization of this Lagrangian incorporating the θ-angle is

L = −Im
τ

8πn2
{[n · ∂ ∧ (A + iB)] · [n · ∂ ∧ (A− iB)]}

−Re
τ

8πn2
{[n · ∂ ∧ (A + iB)] · [n ·∗ ∂ ∧ (A− iB)]}

−J · A− 4π

e2
K · B. (3.8)

One can check that this Lagrangian indeed correctly reproduces the Maxwell equations (3.1)

after the Witten effect is taken into account. To incorporate the Witten effect, one may also

write a low-energy Lagrangian below the mass scale of the fermions that will correct the

coupling terms to

−J · A− 4π

e2
K · B → Re [(A− iB) · (J + τK)] (3.9)

while if the fermions are massless then the θ term can always be rotated away.

One can easily see that with this incorporation of the Witten effect in the coupling in the

Lagrangian the SL(2, Z) covariance is also explicit. Since under SL(2, Z) the field strength
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Figure 1: The fermion triangle diagram which contributes to the anomaly. One must also
add the crossed graph where the gauge bosons are interchanged.

A simpler way of obtaining the anomaly is to follow the method of Argyres and Douglas
[10] of using SL(2, Z) transformations to map the theory with a dyon to a dual theory with
an electric charge, perform the calculations in the dual theory, and then map back, as we did
for the β-function in Sec. 2. Thus we want to perform SL(2, Z) transformations of the sort
(2.8-2.9). As in (2.11) one can map a dyon with charges (q, g) to a dual electron with charge
n, where n is the greatest common factor of the integers q and g, using a transformation
with c = g/n and d = q/n. In the dual theory with electric charge n, the axial anomaly is

∂µj
µ
A(x) =

n2

16π2
F �µν ∗F �

µν =
n2

32π2
Im (F �µν + i ∗F �µν)2 . (5.1)

Using (3.2) we find that in the original theory with a dyon the axial anomaly is

∂µj
µ
A(x) =

n2

32π2
Im (cτ ∗ + d)2 (F µν + i ∗F µν)2 (5.2)

=
1

16π2
Re (q + τ ∗g)2 F µν ∗Fµν +

1

16π2
Im (q + τ ∗g)2 F µν Fµν

=
1

16π2

���
q +

θ

2π
g

�2

− g2 16π2

e4

�
F µν ∗Fµν +

�
qg +

θ

2π
g2

�
F µν Fµν

�
. (5.3)

We immediately recognize that the coefficients are indeed determined by the one-loop β
function contributions as expected. The second term, proportional to the gauge kinetic term
F µν Fµν , may give one pause since it might seem that it allows us to rotate away this term
in the action. However there is only an axial anomaly if there are charged massless fermions,
but then θ and βθ are unphysical. Rotating θ to zero we are left with

∂µj
µ
A(x) =

1

16π2

��
q2 − g2 16π2

e4

�
F µν ∗Fµν + qg F µν Fµν

�
. (5.4)

6 Gauge Anomalies

In the case of a mixed gauge anomaly between the U(1) of electromagnetism (with only
electric charges) and an SU(N) gauge group one finds that gauge dependent terms appear
in the action

Lanom = c Ω Gaµν ∗Ga
µν (6.1)
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E-M Duality

Lc =
1
4π

�
d4xBµ∂ν

∗Fµν
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Figure 1: The fermion triangle diagram which contributes to the anomaly. One must also
add the crossed graph where the gauge bosons are interchanged.
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Figure 1: The fermion triangle diagram which contributes to the anomaly. One must also
add the crossed graph where the gauge bosons are interchanged.
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[10] of using SL(2, Z) transformations to map the theory with a dyon to a dual theory with
an electric charge, perform the calculations in the dual theory, and then map back, as we did
for the β-function in Sec. 2. Thus we want to perform SL(2, Z) transformations of the sort
(2.8-2.9). As in (2.11) one can map a dyon with charges (q, g) to a dual electron with charge
n, where n is the greatest common factor of the integers q and g, using a transformation
with c = g/n and d = q/n. In the dual theory with electric charge n, the axial anomaly is

∂µj
µ
A(x) =

n2

16π2
F �µν ∗F �

µν =
n2

32π2
Im (F �µν + i ∗F �µν)2 . (5.1)

Using (3.2) we find that in the original theory with a dyon the axial anomaly is

∂µj
µ
A(x) =

n2

32π2
Im (cτ ∗ + d)2 (F µν + i ∗F µν)2 (5.2)

=
1

16π2
Re (q + τ ∗g)2 F µν ∗Fµν +

1

16π2
Im (q + τ ∗g)2 F µν Fµν

=
1

16π2

���
q +

θ

2π
g

�2

− g2 16π2

e4

�
F µν ∗Fµν +

�
qg +

θ

2π
g2

�
F µν Fµν

�
. (5.3)

We immediately recognize that the coefficients are indeed determined by the one-loop β
function contributions as expected. The second term, proportional to the gauge kinetic term
F µν Fµν , may give one pause since it might seem that it allows us to rotate away this term
in the action. However there is only an axial anomaly if there are charged massless fermions,
but then θ and βθ are unphysical. Rotating θ to zero we are left with

∂µj
µ
A(x) =

1

16π2

��
q2 − g2 16π2

e4

�
F µν ∗Fµν + qg F µν Fµν

�
. (5.4)

6 Gauge Anomalies

In the case of a mixed gauge anomaly between the U(1) of electromagnetism (with only
electric charges) and an SU(N) gauge group one finds that gauge dependent terms appear
in the action

Lanom = c Ω Gaµν ∗Ga
µν (6.1)

8



SU(N)2U(1) Anomaly



SU(N)2U(1) Anomaly



U(1)3 Anomaly



U(1)3 Anomaly



Toy Model



Dynamics



Quark Masses
technicolor: fail

TRTL

sL sR sRsL

dL dR

1
M2

1
M2



Quark Masses
Standard Model

H

sL sR sL

dL

sR

dR

1
M2log(M)



M

M eL

eR

time

Jf = -q g = 1/2
Sf = -1/2

Ji = q g = -1/2
Si = 1/2

New dimension 4, four particle operator

Rubakov-Callan



Angular Momentum
�L = �r × �p− q g r̂

L2 = |�r × �p |2 + q2 g2

[Li, Lj ] = i �ijkLk

Classical:

Quantum:

L2 = �(� + 1), � ≥ q g

Wu, Yang  Nucl. Phys. B107, (1976) 365

http://www.citeulike.org/user/terning/author/Wu:T
http://www.citeulike.org/user/terning/author/Wu:T
http://www.citeulike.org/user/terning/author/Yang:CN
http://www.citeulike.org/user/terning/author/Yang:CN


Angular Momentum
�
(∂µ − iqAµ)2 − q

2
σµνFµν −m2

�
Ψ = 0

1
r2

(�(� + 1)− q2g2)− q g
�σ · r̂

r2

�
− 1

r2

∂

∂r
(r2 ∂

∂r
) +

1
r2

(�L2 − q2g2)− q �σ · �B − (E2 −m2)
�

Ψ = 0

� = q gfor           one helicity can reach the origin



Four Fermion Ops

time

ULtR

Ji = q g = 2
Si = 1

UR tL

Jf = -q g = -1/2
Sf = -1



Four Fermion Ops

time
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Ji = q g = 2
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UR tL

Jf = -q g = -1/2
Sf = -1

fail!



Four Fermion Ops

time
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Ji = q g = 1/2
Si = 0

UR tR

Jf = -q g = -2
Sf = 0



Four Fermion Ops

time

ULtL

Ji = q g = 1/2
Si = 0

UR tR

Jf = -q g = -2
Sf = 0

fail!



non-Abelian 
magnetic charge

explicit examples known in GUT models

EWSB is forced to align with the monopole charge



non-Abelian 
magnetic charge

4π
�
T 8

c g βc + T 3
L g βL + Y g

�
= 2πn

�Ba
Y =

g

gY

r̂

r2

�Ba
L = δa3

L
g βL

gL

r̂

r2

�Ba
c = δa8

c
g βc

gc

r̂

r2



non-Abelian 
magnetic charge

4π
�
T 8

c g βc + T 3
L g βL + Y g

�
= 2πn

eAµ = gLA3µ
L + gY Aµ

Y

T 8
c g βc + q g =

n

2

βL = 1



The Model
SU(3)c SU(2)L U(1)el

Y U(1)mag
Y

QL
m m 1

6
1
2

LL 1 m − 1
2 − 3

2

UR
m 1m 2

3
1
2

DR
m 1m − 1

3
1
2

NR 1 1m 0 − 3
2

ER 1 1m −1 − 3
2



Four Fermion Ops

time

NLtR

NR tL

Ji =
2
3

�
−3
2

�

Jf = −2
3

�
−3
2

�

Sf = −1

Si = 1



Four Fermion Ops

time

NLtR

NR tL

hooray!

Ji =
2
3

�
−3
2

�

Jf = −2
3

�
−3
2

�

Sf = −1

Si = 1



Variations
New U(1):  weaker coupling but less elegant

embed in a GUT?



Phenomenology
p, q p, q
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M M
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"
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"

Ginzburg, Schiller hep-th/9802310

uncontrolled perturbation theory



LHC

ATLAS has a trigger
 for monopoles

CMS does not

naively expect pair production, 
unconfined, highly ionizing 



but it won’t work

LHC
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 for monopoles
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naively expect pair production, 
unconfined, highly ionizing 



Bremstrahlung

Grojean, Weiler, JT

1 2 3 4 r �1�TeV�
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�100

�80

�60

�40

�20

E �TeV�



Annihilation

Andersen, Grojean, Weiler, JT



Fireball

Andersen, Grojean, Weiler, JT

Preliminary



Fireball

Andersen, Grojean, Weiler, JT

Preliminary

CMS has a
trigger for this



Conclusions
Monopoles are still fascinating 

after all these years

Anomalies for monopoles can be 
easily calculated

monopoles can break EWS and give the 
top quark a large mass

the LHC could be very exciting 





CP



non-Abelian 
magnetic charge

Y integer

Z element of center of SU(2)


