

PDG

S-matrix approach to the Z

While practically all experimental analyses of LEP/SLC

 data have followed the 'Breit-Wigner' approach described above, an alternative S-matrix-based analysis is also possible. The Z, like all unstable particles, is associated with a complex pole in the S matrix. The pole position is process independent and gauge invariant. The mass, \bar{M}_{Z}, and width, $\bar{\Gamma}_{Z}$, can be defined in terms of the pole in the energy plane via [11-14]$$
\bar{s}=\bar{M}_{Z}^{2}-i \bar{M}_{Z} \bar{\Gamma}_{Z}
$$

leading to the relations

$$
\begin{aligned}
\bar{M}_{Z} & =M_{Z} / \sqrt{1+\Gamma_{Z}^{2} / M_{Z}^{2}} \\
& \approx M_{Z}-34.1 \mathrm{MeV} \\
\bar{\Gamma}_{Z} & =\Gamma_{Z} / \sqrt{1+\Gamma_{Z}^{2} / M_{Z}^{2}} \\
& \approx \Gamma_{Z}-0.9 \mathrm{MeV}
\end{aligned} \sim 100 \mathrm{MeV}
$$

Some authors [15] choose to define the Z mass and width via

$$
\bar{s}=\left(\bar{M}_{Z}-\frac{i}{2} \bar{\Gamma}_{Z}\right)^{2}
$$

which yields $\bar{M}_{Z} \approx M_{Z}-26 \mathrm{MeV}, \bar{\Gamma}_{Z} \approx \mathrm{I}_{Z}-1.2 \mathrm{MeV}$.
Adjust kinematics
$\beta_{34}\left(\hat{s}, \bar{m}^{2}, \bar{m}^{2}\right)=\beta_{34}\left(\hat{s}, m_{3}^{2}, m_{4}^{2}\right) \quad \Rightarrow \quad \bar{m}^{2}=\frac{m_{3}^{2}+m_{4}^{2}}{2}-\frac{\left(m_{3}^{2}-m_{4}^{2}\right)^{2}}{4 \hat{s}}$
$)^{2}$
in equal mass
formulae

> Color Recombinations affect fragmentation, momentum of reconstructed objects

Leading Systematic in W mass @ LEP
~ 100 MeV

Magnitude of effect in hadronic environment not well known

- ALEPH and L3 final results -OPAL:final (since Sum05) -DELPHI: prel.	Uncertainties on Mw			
	NEW! Main Sum05	\rightarrow Winter 2006		
	Source	Systematic Error on $\mathrm{M}_{\mathrm{w}}(\mathrm{MeV})$		
		qqlv	११११	Combined
Final LEP Energy Calib.: reduced uncertainty on E_{6}	QED(ISR/FSR,etc)	9	5	8
	Hadronisation	14	20	15
New 4q reco: reduce FSI effec	Detector Syst.	14	8	10
	ct LEP Beam Energy	9 (14)	9 (11)	9
$4 q$ weigh \dagger from 16\% (9\% bef Sum05) to $23 \%\left(\delta M_{w}{ }^{\text {stat }}\right.$ (no syst) ~21 MeV, now 26 $\mathrm{MeV} \rightarrow$ use most of $4 q$ stat power)	Colour Reconnection		31 (49)	7
	Bose-Einstein Corr.		13 (22)	3
	Other	3	11	4
	Total Systematic	22 (28)	43 (63)	24 (28)
	Statistical	31	43 (48)	26 (27)
	Overall	38 (42)	61 (79)	35 (39)
	O: EPJ C45 307 (2006) L:EPJ C45 569 (2006) A: submitted to EPJC			
14th March 2006 - Recontres de Moriond (La Thuile) St				

Final State Interactions

- $1 / \Gamma_{\mathrm{W}} \sim 0.1 \mathrm{fm} \ll I_{\text {had }} \sim 1 \mathrm{fm} \rightarrow$ two (colour singlet) with significant space-time overlap \rightarrow possible interaction of final products

Effect not simulated in Monte Carlo \rightarrow possible mass/width bias only in १৭৭৭ channel

Colour Reconnection

- Colour crosstalk between Ws: bias in १৭৭৭ but not qqlv.

Bose-Einstein Corrrelations

- QM interference \rightarrow Momentum space correlation of bosons pairs from different W (inter-W) decays: bias ११৭৭ only
- Established in Z^{0} decays

Colour Reconnection

$\delta M_{w}, \delta \Gamma_{w}=$ largest (CR - no CR) shift in different models

MSTP(115) :

$(D=0)(C)$ choice of colour rearrangement scenario for process 25, pair production, when both 's decay hadronically. (Also works for process 22 , production, except when the 's are allowed to fluctuate to very small masses.)
= 0 : no reconnection.
= 1 : scenario I, reconnection inspired by a type I superconductor, with the reconnection probability related to the overlap volume in space and time between the and strings. Related parameters are found in PARP(115) - PARP(119), with PARP(117) of special interest.
= 2 : scenario II, reconnection inspired by a type II superconductor, with reconnection possible when two string cores cross. Related parameter in PARP(115).
= 3 : scenario II', as model II but with the additional requirement that a reconnection will only occur if the total string length is reduced by it.
$=5$: the GH scenario, where the reconnection can occur that reduces the total string length (measure) most. PARP(120) gives the fraction of such event where a reconnection is actually made; since almost all events could allow a reconnection that would reduce the string length, $\operatorname{PARP}(120)$ is almost the same as the reconnection probability.
$=11$: the intermediate scenario, where a reconnection is made at the `origin' of events, based on the subdivision of all radiation of a system as coming either from the or the . PARP(120) gives the assumed probability that a reconnection will occur. A somewhat simpleminded model, but not quite unrealistic.
= 12 : the instantaneous scenario, where a reconnection is allowed to occur before the parton showers, and showering is performed inside the reconnected systems with maximum virtuality set by the mass of the reconnected systems. PARP(120) gives the assumed probability that a reconnection will occur. Is completely unrealistic, but useful as an extreme example with very large effects.

Colour Reconnection (cont)

CR affects mostly soft particles

 between jets \Rightarrow changes jet direction Re-calculate jet dir. from particles:1. with momentum P larger than $P_{\text {thr }}$
2. by weighted momentum vector sum (weight $=|P|^{\kappa}$)
3. within cone of radius R

Use $P_{\text {thr }}(G e V)=3(A), 2.5(0), 2(\mathrm{~L})$ for M_{w} (be stat-syst compr). Γ_{W} is obtained with stan analysis (O, A) or using $P_{\text {thr }}(L)$.

W mass stability vs jet dir

14th March 2006 - Recontres de Moriond (La Thuile)

W mass biases vs momentum cut

$$
\begin{aligned}
& \delta M_{w} \text { stat :worse by } 15-35 \% \\
& \delta M_{w}^{\text {had }}: \text { worse by } \sim 30-100 \% \\
& \delta M_{w}^{c R} \text { :reduced by factor 2-3 } \\
& \text { Total } \delta \mathrm{M}_{\mathrm{w}} \text { improves: } \\
& 79 \mathrm{MeV} \rightarrow 61 \mathrm{MeV}
\end{aligned}
$$

Standard Model at LEP - F. Spano'

Gluons from top radiation $\mathrm{E} \sim 1.5 \mathrm{GeV}$
??? MeV
b fragmentation not necessarily the same as @ LEP ??? MeV

Magnitude of color re-connections
needs to be studied

Experiments need to provide people for even simple studies

