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Inflation is an elegant 
explanation to:

The flatness problem
The horizon problem

....

The primordial seeds of 
structure formation
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Inflation with a Single Field

one scalar field 
+ 

flat potential

sufficient expansion 
+ 

nearly scale invariant 
density perturbations

V (φ)

φ
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δρ

ρ
∼ H2

φ̇
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A Multi-field Perspective

• Many (~100) scalar fields from string theory 
(moduli, dilaton...) + complicated potential

• Some moduli are stabilized, some participate in 
inflation with total number

• A convoluted inflaton path (random walk)

D ! 1
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An Example of Random Potential

V (ρi, φi) = V0(ρj) + αi cos
(

φi

fi

)

+βij cos
(

φi

fi
− φj

fj

)

+U(ρi, φi)
+ . . .

αi = M4
i e−Si

inst ! βij

•     are axion fields serving as inflatons

•         is the moduli potential, contains vacuum 
energy for inflation, relatively flat

•            couples moduli and axions, introduces 
randomness

V0(ρi)

U(ρi, φi)

periodic and regular

impurities & randomness

φi
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Inflation with a Random Potential

•        provides the energy for inflation

•                             , so that

• The inflaton scatters while drifting down the 
potential, with drift velocity 

•                  , the “refraction index”
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The Fokker-Planck Description

•           is the field space probability density

• No density perturbations so far, this is the 
homogeneous background, no matter how 
convoluted the path is.

∂P

∂t
= −∇ ·

[
"v("φ) P

]
+ ∂I∂J

[
DIJ("φ) P

]

P (!φ, t)

P (!φ, t) = (4πλ t)−
D
2 exp

(
− |!φ− !v t|2

4λ t

)
DIJ = λδIJ v(!φ, t) = constThe simplest case: 

8



Primordial Perturbations 

δφ ≡ Q

tMD / Last 
Scattering

Radiation 
Domination

End of 
Inflatio

Horizon 
Crossing

φ̇

δN = H
Q

φ̇

a ∼ t1/2

δT

T
∼ HδtE = δN

δtE =
Q

φ̇

ζ = −H

φ̇
Q (k " aH)

ds2 = −(1− 2Φ)dt2 + a(t)2(1 + 2Φ)dxi dxi

ζ = Φ−H δρ
ρ̇ , QI = δφI − φ̇I

H Φ

T ∼ a−1
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Adiabatic and Entropic Modes

• One adiabatic mode     
tangent to the inflaton 
path, leads to          .

• (D-1) Entropic modes     
orthogonal to the inflaton 
path, do not perturb the 
energy density          .

• Entropic perturbations 
only exist for multi-field 
inflation.

δρ = 0

δρ != 0

[C. Gordon, D. Wands, B. A. Bassett, R. Maartens, 
astro-ph/0009131]

ζ = −H

σ̇
Qσ , Qσ ≡ QIe

I
σ

φ1

φ2

Background path

perturbationsQ1

Q2

Qσ

Qs

Qs

Qσ
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• In single field inflation,    
          after horizon 
crossing.

• A bending path 
convert     into time 
delay, leading to super-
horizon evolution of   . 

Qσ

Qs

end of inflation

A shorter inner 
path gives extra 

time delay.

ζ̇ = 0

ζ

Qs

ζ̇ = −2H

σ̇
ėI
σ QI
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Power Spectrum
• For single field inflation,  one evaluates       at 

the time of horizon crossing    .          ensures 
the result does not change by the end of 
inflation. 

• For multi-field inflation, generically         , 

In principle, one can integrate

• However,  the inflaton path is a random walk, 
so    is a random variable !
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• From    to    , there are            random jumps,  
giving 

Random Jumps in

t∗ tE

ζ

N∗
e /∆Ne

Θ2 ≡ 〈θ2〉

The inflaton path

The random 
jumps in      
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• The first term comes from the adiabatic 
mode. The second term is the contribution 
from the entropic modes.

• The first term is “wrong”, it should exhibit 
fluctuations due to the randomness in     .

• The entropic contributions dominate,
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14



Fluctuations in the Power Spectrum

3~4 efolds,
200~300 multiples/efold

20-30 multiples/bin
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On small angular scales, PLANCK has much better 
systematics than WMAP, and cosmic variance is negligible. 

There may be a better chance to see the fluctuations. 
Also check both TT and TE spectrums.
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Small Non-Gaussianity

• Generically, order of magnitude 

fNL ∼ 〈ζ3〉
〈ζ2〉2 ζ ∼

√
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Conclusions
• Multi-field Inflation with a random potential is a 

natural scenario motivated by the string landscape

• The random walk nature of the inflaton allows the 
entropic modes to feed into the adiabatic mode in a 
random way. Our analysis is only the first step 
towards fully quantifying such an effect. 

• The final power spectrum has a dominant 
contribution from entropic modes, while the 
adiabatic mode gives fluctuations, might be 
observable by PLANCK.

• Non-Gaussianity is generically small.  
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