Collider Probes of Dark Matter Genesis

Clifford Cheung

University of California, Berkeley
Lawrence Berkeley National Lab

C.C., Elor, Hall, Kumar (1010.0022)
C.C., Elor, Hall, Kumar (1010.0024)
C.C., Elor, Hall (1103.4394)
C.C., Hall, Pinner (1103.3520)
dark matter facts

We know that dark matter is

• dark (electrically neutral)

• around (cosmologically stable)

• abundant \((\Omega h^2=0.11) \)
WIMP miracle

The present day abundance of dark matter,

$$\Omega h^2 \sim \frac{1 \text{ pb}}{\langle \sigma v \rangle}$$

is more or less correct given a weak-scale annihilation cross-section.
Solving hierarchy problem yields dark matter!

<table>
<thead>
<tr>
<th>theory</th>
<th>Z_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supersymmetry</td>
<td>R-parity</td>
</tr>
<tr>
<td>Extra Dimensions</td>
<td>KK-parity</td>
</tr>
<tr>
<td>Little Higgs</td>
<td>T-parity</td>
</tr>
</tbody>
</table>
WIMP miracle is a well-motivated and highly predictive framework which

- links dark matter to the hierarchy problem.
- implies signals for direct detection & LHC.
theory space

observables

$\langle \sigma v \rangle$
The WIMP is just the tip of the iceberg!
The WIMP miracle requires:

Dark matter thermalized with SM at temperatures of order its mass.

Let us consider the complementary space:

Dark matter NOT thermalized with SM at temperatures of order its mass.
1 sector:

2 sectors:
This setup is actually quite familiar.

gravitino:

MSSM \(-\tilde{G}\)

axion:

SM \(-\alpha\)

Are there other motivations for this setup?
hidden worlds?

- hidden sector
- hidden sector
- hidden sector
- visible sector
- heavy states
Consider the following general setup.

\[X, X' = Z_2 \text{ odd} \quad \text{m, m'} = \text{weak-scale} \]
example: gravity mediation + R-parity

\[X \ (\text{NLSP}) \quad \text{and} \quad X' \ (\text{LSP}) \]

\[X, X' = R \text{ odd} \quad \text{and} \quad m, m' = \text{weak-scale} \]
decays to dark matter

Since $m > m'$ the portal mediates the decay

$$X \rightarrow X' + \ldots$$

We are interested in $10^{-13} \text{ sec} < \tau < 1 \text{ sec}$.

May contain SM fields.
sector equilibration

initially, two heat baths

ultimately, one heat bath
Only a handful of parameters fix Ω:

1 sector:

\[\langle \sigma v \rangle \]

2 sector:

\[\xi = \frac{T'}{T} \]
\[\tau \]
\[m, \langle \sigma v \rangle \]
\[m', \langle \sigma v \rangle' \]
Only a handful of parameters fix Ω:

1 sector: $\langle \sigma v \rangle$ accessible at colliders

2 sector:
\[
\xi = \frac{T'}{T} \\
\tau \\
m, \langle \sigma v \rangle \\
m', \langle \sigma v \rangle'
\]
Only a handful of parameters fix Ω:

1 sector:

\[\langle \sigma v \rangle \]

accessible at colliders

2 sector:

\[\xi = \frac{T'}{T} \]

\[\tau \]

\[m, \langle \sigma v \rangle \]

\[m', \langle \sigma v \rangle' \]

accessible at colliders
The cosmological history varies substantially as a function of the lifetime:

10^{-13} sec \rightarrow ?? \rightarrow BBN \rightarrow co-DM

1 sec \rightarrow 10^{17} sec

thermalized
The cosmological history varies substantially as a function of the lifetime:

10^{-13} sec \hspace{1cm} 1 sec \hspace{1cm} 10^{17} sec

thermalized \hspace{1cm} freeze-in \hspace{1cm} freeze-out and decay \hspace{1cm} BBN \hspace{1cm} co-DM
outline

• general setup
• two sector cosmology
• cosmological phase diagram
• collider signals
• neutrinos
two sector cosmology
Define the ratio $\xi = \frac{T'}{T}$.
Inflaton may dominantly decay into and reheat the visible sector!

\[\xi_R = \frac{T'_R}{T_R} \]
Assuming conserved entropy in each sector,

\[\xi(T) \propto \left(\frac{g_{s}(T)}{g'_{s}(T)} \right)^{1/3} \]

where \(g_{s} \) and \(g'_{s} \) are the number of degrees of freedom in each sector.
energy budgets

The effective number of relativistic species at BBN is bounded by

$$\Delta N_\nu = \frac{4}{7} g'_* (T_{\text{BBN}}) \xi (T_{\text{BBN}})^4 < 1.4$$

Colder hidden sectors are safe!
yield variables

The yield of X is defined to be

$$Y = \frac{n}{s}$$

The yield of X' is defined to be

$$Y' = \frac{n'}{s}$$
yield

visible sector freeze-out (FO)

\[y = \frac{m}{T} \]
The yield Y_{FO} for visible sector freeze-out (FO) is given by:

$$Y_{FO} \propto \frac{\sqrt{g_*}}{g_{*s}} \frac{1}{m_{Pl} m\langle \sigma v \rangle}$$

where $x = m / T$.

The graph shows the yield as a function of x. The visible sector freeze-out (FO) is indicated by the curve reaching a plateau at lower values of x. The y-axis represents the yield, and the x-axis represents $x = m / T$.
yield

$x = \frac{m}{T}$

hidden sector freeze-out (FO')
hidden sector freeze-out (FO')

\[Y_{FO}' \approx \xi \frac{m\langle \sigma v \rangle}{m'\langle \sigma v \rangle'} Y_{FO} \]
yield

Y

Y'

$FO + FO'$

$x = \frac{m}{T}$
portal operator

\[O \]

visible sector

hidden sector

e.g. \[O = [L^\dagger L X']_D \]
yield

\[Y \]

\[Y' \]

\[x = \frac{m}{T} \]

\[FO + FO' \]
yield

freeze-out and decay (FO&D)

\[x = \frac{m}{T} \]
$Y_{FO} = Y'_{FO&D}$

freeze-out and decay (FO&D)

$y = m / T$
superWIMPs

FO&D is actually familiar from Feng et al.
$x = \frac{m}{T}$

freeze-out and decay (FO&D)
yield

freeze-in (FI)

\[x = \frac{m}{T} \]
$x = \frac{m}{T}$

$Y_{FI}' = \Gamma t$
Since $t \propto 1/H$ at the time when X becomes non-relativistic, the final yield of X' is

$$Y_{FI}' \propto \frac{\Gamma m_{Pl}}{m^2}$$

fast decays, small masses \rightarrow more!
If the yield of X' exceeds a critical value, then X' will begin to (re-)annihilate and in turn deplete the abundance.
re-annihilation

For each mode of dark matter genesis is a “re-annihilated” variant:

\[
\begin{align*}
\text{FO\&D} & \rightarrow \text{FO\&D}_{r} \\
\text{FI} & \rightarrow \text{FI}_{r}
\end{align*}
\]
cosmological phase diagram
Some of the parameters which dictate the cosmological history can be measured.

accessible

\[\tau \]
\[m, \langle \sigma v \rangle \]
\[m' \]

inaccessible

\[\xi \]
\[\langle \sigma v \rangle' \]
Plot “phase diagram” of dominant mode of dark matter genesis, subject to $\Omega h^2 = 0.11$.

Inaccessible parameters scanned inclusively:

\begin{align*}
10^{-3} &< \xi < 10^{-1} \\
10^{-5} \text{ pb} &< \langle \sigma v \rangle' < 10^{5} \text{ pb}
\end{align*}

and accessible parameters are the axes.
Cosmology imprints observables!

\[\langle \sigma v \rangle / \langle \sigma v \rangle_0 \]

\[\tau [\text{sec}] \]

\[\langle \sigma v \rangle_0 = 1 \text{ pb} \]
\[m = 100 \text{ GeV} \]
\[1/4 < m'/m < 1/3 \]
What are there phenomenological signals for these cosmological scenarios?

- Direct detection is a lost cause.
- How about X decays at LHC?

\[X \rightarrow X' + \ldots \]
Hidden sectors imply long lifetimes.

\[\langle \sigma v \rangle / \langle \sigma v \rangle_0 \]

\[\tau \text{ [sec]}\]

\[\langle \sigma v \rangle_0 = 1 \text{ pb}\]
\[m = 100 \text{ GeV}\]
\[1/4 < m'/m < 1/3\]
Afterwards, we go on to discuss the portal interactions, and present a detailed discussion of the FO&D visible and hidden sectors couple only through gravitational interactions. We begin with an analysis of our setup in a decoupled structures depicted in Figure 1, leaving a more detailed collider study to a companion paper [7].

The purpose of the present work, however, is to establish a comprehensive understanding of the FO&D, FO&D interactions. We then introduce the LHC even in this much broader framework compared to that of standard single sector FO.

Because each production mechanism lies in a distinctive region in the plane, we are left with the tantalizing possibility that the origin of DM might be successfully reconstructed at all parameters but σv. Each point corresponds to a narrow region in the band in $\langle \sigma v \rangle / \langle \sigma v \rangle_0$. Even though σv might be measured at all sectors, these mechanisms are defined by $10^{3} < m \langle \sigma v \rangle / m < 10^{4}$, while in the right panel, the masses have been scanned over a generous range, one sees that FO&D couples only through gravitational interactions. For example, see the left panel of Figure 1.

Hidden sectors imply long lifetimes. Because each production mechanism lies in a distinctive region in the plane, we are left with the tantalizing possibility that the origin of DM might be successfully reconstructed at all parameters but σv. Each point corresponds to a narrow region in the band in $\langle \sigma v \rangle / \langle \sigma v \rangle_0$. Even though σv might be measured at all sectors, these mechanisms are defined by $10^{3} < m \langle \sigma v \rangle / m < 10^{4}$, while in the right panel, the masses have been scanned over a generous range, one sees that FO&D couples only through gravitational interactions. For example, see the left panel of Figure 1.

Because each production mechanism lies in a distinctive region in the plane, we are left with the tantalizing possibility that the origin of DM might be successfully reconstructed at all parameters but σv. Each point corresponds to a narrow region in the band in $\langle \sigma v \rangle / \langle \sigma v \rangle_0$. Even though σv might be measured at all sectors, these mechanisms are defined by $10^{3} < m \langle \sigma v \rangle / m < 10^{4}$, while in the right panel, the masses have been scanned over a generous range, one sees that FO&D couples only through gravitational interactions. For example, see the left panel of Figure 1.

Hidden sectors imply long lifetimes. Because each production mechanism lies in a distinctive region in the plane, we are left with the tantalizing possibility that the origin of DM might be successfully reconstructed at all parameters but σv. Each point corresponds to a narrow region in the band in $\langle \sigma v \rangle / \langle \sigma v \rangle_0$. Even though σv might be measured at all sectors, these mechanisms are defined by $10^{3} < m \langle \sigma v \rangle / m < 10^{4}$, while in the right panel, the masses have been scanned over a generous range, one sees that FO&D couples only through gravitational interactions. For example, see the left panel of Figure 1.

Hidden sectors imply long lifetimes. Because each production mechanism lies in a distinctive region in the plane, we are left with the tantalizing possibility that the origin of DM might be successfully reconstructed at all parameters but σv. Each point corresponds to a narrow region in the band in $\langle \sigma v \rangle / \langle \sigma v \rangle_0$. Even though σv might be measured at all sectors, these mechanisms are defined by $10^{3} < m \langle \sigma v \rangle / m < 10^{4}$, while in the right panel, the masses have been scanned over a generous range, one sees that FO&D couples only through gravitational interactions. For example, see the left panel of Figure 1.

Hidden sectors imply long lifetimes. Because each production mechanism lies in a distinctive region in the plane, we are left with the tantalizing possibility that the origin of DM might be successfully reconstructed at all parameters but σv. Each point corresponds to a narrow region in the band in $\langle \sigma v \rangle / \langle \sigma v \rangle_0$. Even though σv might be measured at all sectors, these mechanisms are defined by $10^{3} < m \langle \sigma v \rangle / m < 10^{4}$, while in the right panel, the masses have been scanned over a generous range, one sees that FO&D couples only through gravitational interactions. For example, see the left panel of Figure 1.
collider signals
long-lived CHAMPs

If X is charged or colored, it may be stopped!

hep-ph/0612060 (Hamaguchi, Nojiri, de Roeck)
hep-ph/0506246 (Arvanitaki, Dimopoulos, Pierce, Rajendran, Wacker)
hep-ph/0409278 (Feng, Smith)
hep-ph/0409248 (Hamaguchi, Kuno, Nakaya, Nojiri)
Search for Stopped Gluinos in pp collisions at $\sqrt{s} = 7$ TeV

The CMS Collaboration*

Abstract

The results of the first search for long-lived gluinos produced in 7 TeV pp collisions at the CERN Large Hadron Collider are presented. The search looks for evidence of long-lived particles that stop in the CMS detector and decay in the quiescent periods between beam crossings. In a dataset with a peak instantaneous luminosity of 1×10^{32} cm$^{-2}$s$^{-1}$, an integrated luminosity of 10 pb$^{-1}$, and a search interval corresponding to 62 hours of LHC operation, no significant excess above background was observed. Limits at the 95% confidence level on gluino pair production over 13 orders of magnitude of gluino lifetime are set. For a mass difference $m_{\tilde{g}} - m_{\tilde{\chi}^0_1} > 100$ GeV/c2, and assuming BR($\tilde{g} \rightarrow g\tilde{\chi}^0_1$) = 100%, $m_{\tilde{g}} < 370$ GeV/c2 are excluded for lifetimes from 10 μs to 1000 s.
Consider the example \(\mathcal{O} = [L^\dagger L X']_D \).
lifetime (τ) measurement

mass (m’) measurement
By ascertaining the lifetime of extremely long-lived CHAMPs we can extend LHC reach.

\[\tau = 1 \text{ sec} \quad \mathcal{O}/m_{\text{GUT}} \]

\[\tau = 3 \text{ hrs} \quad \mathcal{O}/m_{\text{Pl}} \]

LHC can probe the GUT scale!
We can verify the origin of dark matter!

\[\frac{\langle \sigma v \rangle}{\langle \sigma v \rangle_0} \]

\[\tau \text{ [sec]} \]

\[\langle \sigma v \rangle_0 = 1 \text{ pb} \]
\[m = 100 \text{ GeV} \]
\[1/4 < m'/m < 1/3 \]
Dark matter from freeze-in.

\(\langle \sigma v \rangle_0 = 1 \text{ pb} \)
\(m = 100 \text{ GeV} \)
\(1/4 < m'/m < 1/3 \)
Dark matter from freeze-out and decay.

\[
\langle \sigma v \rangle / \langle \sigma v \rangle_0
\]

\[
\tau \ [\text{sec}]
\]

\[
\langle \sigma v \rangle_0 = 1 \ \text{pb}
\]

\[
m = 100 \ \text{GeV}
\]

\[
1/4 < m'/m < 1/3
\]
Now, onwards to a well-known example...
...neutrinos!
The see-saw is a hidden sector “in disguise”.

\[\lambda_{ij} [L_i N_j H_u]_F \]

visible sector

\[[M_i N_i N_i]_F \]

\[N_i \]
Integrating out the sterile neutrinos yields the active neutrino masses:

$$m_{ij} = v_u^2 \left(\lambda M^{-1} \lambda^T \right)_{ij}$$

probed experimentally to be $m_{ij} \approx 0.1$ eV.
Since m_{ij} is constrained, M_i and λ_{ij} are related. The neutrino see-saw can be:

\begin{align*}
\text{high-scale} & \quad \text{or} \quad \text{low-scale} \\
M_i \sim 10^{14} \text{ GeV} & \quad \lambda_{ij} \sim 1 \\
M_i \sim 100 \text{ GeV} & \quad \lambda_{ij} \sim 10^{-6}
\end{align*}
Since m_{ij} is constrained, M_i and λ_{ij} are related. The neutrino see-saw can be:

high-scale

- $M_i \sim 10^{14} \text{ GeV}$
- $\lambda_{ij} \sim 1$

or

low-scale

- $M_i \sim 100 \text{ GeV}$
- $\lambda_{ij} \sim 10^{-6}$

Small Yukawas are okay by me! (e.g. electron)
In the low-scale supersymmetric see-saw,

\[\lambda_{ij} \sim 10^{-6} \]

and sectors are very weakly coupled.

Claim: despite the tiny coupling, we can probe the see-saw directly at colliders!
See-saw can be verified at LHC if:

- LSP = sterile sneutrino
- NLSP = charged
- degenerate masses, $M_i \approx \tilde{M}_i$
\[\tilde{h}^\pm \quad E_{\ell_i} \leftrightarrow M_j \quad \ell_i^{\pm} \quad \tilde{n}_j \]
$m_{\tilde{\chi}^\pm} = 150$ GeV

$M_3 = 100$ GeV \quad M_2 = 80$ GeV \quad M_1 = 50$ GeV

E_l (GeV)
\tilde{h}^\pm \hspace{1cm} $E_{\ell_i} \leftrightarrow M_j$ \hspace{1cm} ℓ^\pm_i \\

\tilde{n}_j
\[\tilde{h}^\pm \leftrightarrow \tilde{\eta}_j \]

\[\tau + \text{BR}(\tilde{h}^\pm \rightarrow \ell_i^\pm \tilde{\eta}_j) \leftrightarrow |\lambda_{ij}| \]

\[E_{\ell_i} \leftrightarrow M_j \]
See-saw spectroscopy at the LHC!

\[M_j + |\lambda_{ij}| = \text{order of mag. verification?} \]

\[\text{large mixing angles?} \]

\[\text{inverted hierarchy?} \]
NLSP = stau \leftrightarrow measure λ_{3j} and M_i only
$\text{NLSP} = \text{squark} \leftrightarrow \text{measure } \lambda_{ij} \text{ and } M_i$
$m_{\tilde{q}} = 700$ GeV
$M_1 = 250$ GeV
$M_2 = 450$ GeV
$M_3 = 550$ GeV
conclusions
• There exists a rich array of alternatives to the WIMP paradigm of dark matter genesis.
• There exists a rich array of alternatives to the WIMP paradigm of dark matter genesis.

• These alternatives are dictated by a handful of (in some cases measurable) parameters.
• There exists a rich array of alternatives to the WIMP paradigm of dark matter genesis.

• These alternatives are dictated by a handful of (in some cases measurable) parameters.

• CHAMPS offer a unique opportunity for probing high-scale / weakly coupled physics.
• There exists a rich array of alternatives to the WIMP paradigm of dark matter genesis.

• These alternatives are dictated by a handful of (in some cases measurable) parameters.

• CHAMPS offer a unique opportunity for probing high-scale / weakly coupled physics.

• We may be able to reconstruct the origin of dark matter at colliders!
thanks!
Boltzmann equations

Cosmological history is determined by

\[
\frac{dn}{dt} + 3Hn = -(n^2 - n_{eq}^2)\langle \sigma v \rangle - \Gamma(n - n_{eq})
\]

\[
\frac{dn'}{dt} + 3Hn' = -(n'^2 - n'_{eq}^2)\langle \sigma v \rangle' + \Gamma(n' - n'_{eq})
\]

where \(n^{(i)} \) is the number density of \(X^{(i)} \).
sector equilibration

Since FI produces $\Delta \rho = Y'_{FI} T^4 = T'^4$ energy in the hidden sector, this yields a temperature so demanding $\xi < 1$ bounds $\tau > \tau_{\text{min}}$.

$$\xi = \left(Y'_{FI}\right)^{1/4}$$
sector equilibration

There is a minimum lifetime given by

$$
\tau_{\text{min}} \simeq 10^{-13} \text{ s} \left(\frac{100 \text{ GeV}}{m} \right)^2 \left(\frac{100}{g^* (T \simeq m)/g_X} \right)
$$

at which the two sectors thermalize.
2 to 2 scattering

If \mathcal{O} is a higher dimension operator then X' particles are produced via 2 to 2 scattering

\[Y'_{\text{scatt}} \propto m_{\text{Pl}} T_R \langle \sigma v \rangle_{\text{scatt}} \]

Y'_{scatt} can be neglected for low T_R or if there is substantial re-annihilation.