Collider Probes of Dark Matter Genesis

Clifford Cheung

University of California, Berkeley Lawrence Berkeley National Lab

C.C., Elor, Hall, Kumar (1010.0022) C.C., Elor, Hall, Kumar (1010.0024) C.C., Elor, Hall (1103.4394) C.C., Hall, Pinner (1103.3520)

dark matter facts

We know that dark matter is

• dark (electrically neutral)

- around (cosmologically stable)
- abundant ($\Omega h^2 = 0.11$)

WIMP miracle

The present day abundance of dark matter,

$$\Omega h^2 \simeq \frac{1 \text{ pb}}{\langle \sigma v \rangle}$$

is more or less correct given a weak-scale annihilation cross-section.

WIMP miracle is a well-motivated and highly predictive framework which

- links dark matter to the hierarchy problem.
- implies signals for direct detection & LHC.

The WIMP is just the tip of the iceberg!

The WIMP miracle requires :

Dark matter thermalized with SM at temperatures of order its mass.

Let us consider the complementary space :

Dark matter NOT thermalized with SM at temperatures of order its mass.

sector :

2 sectors :

This setup is actually quite familiar.

Are there other motivations for this setup?

Consider the following general setup.

example : gravity mediation + R-parity

decays to dark matter

Since m > m' the portal mediates the decay

sector equilibration

Only a handful of parameters fix Ω :

I sector : $\langle \sigma v \rangle$

2 sector : $\xi = T'/T$

au $m, \langle \sigma v
angle$ $m', \langle \sigma v
angle'$

Only a handful of parameters fix Ω :

sector :

2 sector : $\xi = T'/T$

 \mathcal{T} $m, \langle \sigma v \rangle$

 $m', \langle \sigma v \rangle'$

Only a handful of parameters fix Ω :

lifetime range

The cosmological history varies substantially as a function of the lifetime:

lifetime range

The cosmological history varies substantially as a function of the lifetime:

outline

- general setup
- two sector cosmology
- cosmological phase diagram
- collider signals
- neutrinos

two sector cosmology

bath + bath'

Define the ratio $\xi = T' / T$.

Inflaton may dominantly decay into and reheat the visible sector!

degrees of freedom

Assuming conserved entropy in each sector,

$$\xi(T) \propto \left(\frac{g_{*s}(T)}{g'_{*s}(T)}\right)^{1/3}$$

where g_{*s} and g'_{*s} are the number of degrees of freedom in each sector.

energy budgets

The effective number of relativistic species at BBN is bounded by

$$\Delta N_{\nu} = \frac{4}{7} g'_{*} (T_{\rm BBN}) \xi (T_{\rm BBN})^{4}$$
$$< 1.4$$

Colder hidden sectors are safe!

yield variables

The yield of X is defined to be

The yield of X' is defined to be

$$Y' = \frac{n'}{s}$$

$$x = m / T$$

e.g. $\mathcal{O} = [L^{\dagger}LX']_D$

$$x = m / T$$

superWIMPs

FO&D is actually familiar from Feng et al.

freeze-in

Since $t \propto 1/H$ at the time when X becomes non-relativistic, the final yield of X' is

$$Y'_{\rm FI} \propto rac{\Gamma m_{\rm Pl}}{m^2}$$

fast decays, small masses → more!

re-annihilation

If the yield of X' exceeds a critical value,

 $n'\langle \sigma v \rangle' > H$

then X' will begin to (re-)annihilate and in turn deplete the abundance.

re-annihilation

For each mode of dark matter genesis is a "re-annihilated" variant:

$FO\&D \rightarrow FO\&D_r$ $FI \rightarrow FI_r$

cosmological phase diagram

Some of the parameters which dictate the cosmological history can be measured.

Plot "phase diagram" of dominant mode of dark matter genesis, subject to $\Omega h^2 = 0.11$.

Inaccessible parameters scanned inclusively :

$$10^{-3} < \xi < 10^{-1}$$

$$10^{-5} \text{ pb} < \langle \sigma v \rangle' < 10^5 \text{ pb}$$

and accessible parameters are the axes.

Cosmology imprints observables!

What are there phenomenological signals for these cosmological scenarios?

- Direct detection is a lost cause.
- How about X decays at LHC?

$$X \to X' + \dots$$

Hidden sectors imply long lifetimes.

2

^{1/4 &}lt; m'/m < 1/3

collider signals

long-lived CHAMPs

If X is charged or colored, it may be stopped!

hep-ph/0612060 (Hamuguchi, Nojiri, de Roeck) hep-ph/0506246 (Arvanitaki, Dimopoulos, Pierce, Rajendran, Wacker) hep-ph/0409278 (Feng, Smith) hep-ph/0409248 (Hamaguchi, Kuno, Nakaya, Nojiri)

Search for Stopped Gluinos in *pp* collisions at $\sqrt{s} = 7$ TeV

The CMS Collaboration*

Abstract

The results of the first search for long-lived gluinos produced in 7 TeV *pp* collisions at the CERN Large Hadron Collider are presented. The search looks for evidence of long-lived particles that stop in the CMS detector and decay in the quiescent periods between beam crossings. In a dataset with a peak instantaneous luminosity of 1×10^{32} cm⁻²s⁻¹, an integrated luminosity of 10 pb⁻¹, and a search interval corresponding to 62 hours of LHC operation, no significant excess above background was observed. Limits at the 95% confidence level on gluino pair production over 13 orders of magnitude of gluino lifetime are set. For a mass difference $m_{\tilde{g}} - m_{\tilde{\chi}_1^0} > 100 \text{ GeV}/c^2$, and assuming BR($\tilde{g} \to g \tilde{\chi}_1^0$) = 100%, $m_{\tilde{g}} < 370 \text{ GeV}/c^2$ are excluded for lifetimes from 10 μ s to 1000 s.

an example

Consider the example $\mathcal{O} = [L^{\dagger}LX']_D$.

By ascertaining the lifetime of extremely longlived CHAMPs we can extend LHC reach.

LHC can probe the GUT scale!

We can verify the origin of dark matter!

Dark matter from freeze-in.

Dark matter from freeze-out and decay.

Now, onwards to a well-known example...

...neutrinos!

The see-saw is a hidden sector "in disguise".

neutrino see-saw

Integrating out the sterile neutrinos yields the active neutrino masses :

$$m_{ij} = v_u^2 \left(\lambda M^{-1} \lambda^T\right)_{ij}$$

probed experimentally to be $m_{ij} \leq 0.1$ eV.

Since m_{ij} is constrained, M_i and λ_{ij} are related. The neutrino see-saw can be :

- high-scale Or low-scale
- $M_i \sim 10^{14} \text{ GeV}$ $M_i \sim 100 \text{ GeV}$ $\lambda_{ij} \sim 1$ $\lambda_{ij} \sim 10^{-6}$

Since m_{ij} is constrained, M_i and λ_{ij} are related. The neutrino see-saw can be :

high-scale Or low-scale

 $M_i \sim 10^{14} \text{ GeV}$ $M_i \sim 100 \text{ GeV}$ $\lambda_{ij} \sim 1$ $\lambda_{ij} \sim 10^{-6}$ Small Yukawas are okay by me! (e.g. electron)

In the low-scale supersymmetric see-saw,

$$\lambda_{ij} \sim 10^{-6}$$

and sectors are very weakly coupled.

Claim : despite the tiny coupling, we can probe the see-saw directly at colliders!

See-saw can be verified at LHC if :

- LSP = sterile sneutrino
- NLSP = charged
- degenerate masses, $M_i \approx \tilde{M}_i$

See-saw spectroscopy at the LHC!

NLSP = stau $\leftrightarrow \rightarrow$ measure λ_{3j} and M_i only

NLSP = squark \longleftrightarrow measure λ_{ij} and M_i

conclusions

• These alternatives are dictated by a handful of (in some cases measurable) parameters.

- These alternatives are dictated by a handful of (in some cases measurable) parameters.
- CHAMPS offer a unique opportunity for probing high-scale / weakly coupled physics.

- These alternatives are dictated by a handful of (in some cases measurable) parameters.
- CHAMPS offer a unique opportunity for probing high-scale / weakly coupled physics.
- We may be able to reconstruct the origin of dark matter at colliders!

thanks!

Boltzmann equations

Cosmological history is determined by

$$\frac{dn}{dt} + 3Hn = -(n^2 - n_{eq}^2)\langle\sigma v\rangle - \Gamma(n - n_{eq})$$
$$\frac{dn'}{dt} + 3Hn' = -(n'^2 - n'_{eq}^2)\langle\sigma v\rangle' + \Gamma(n' - n'_{eq})$$

where $n^{(\prime)}$ is the number density of $X^{(\prime)}$.

sector equilibration

Since FI produces $\Delta \rho = Y'_{FI} T^4 = T'^4$ energy in the hidden sector, this yields a temperature

$$\xi = (Y'_{\rm FI})^{1/4}$$

so demanding $\xi < 1$ bounds $\tau > \tau_{min}$.

sector equilibration

There is a minimum lifetime given by

$$\tau_{\rm min} \simeq 10^{-13} \, {\rm s} \, \left(\frac{100 \, {\rm GeV}}{m}\right)^2 \left(\frac{100}{g'_*(T \simeq m)/g_X}\right)$$

at which the two sectors thermalize.

2 to 2 scattering

If O is a higher dimension operator then X' particles are produced via 2 to 2 scattering

$$Y_{\rm scatt}' \propto m_{\rm Pl} T_{\rm R} \langle \sigma v \rangle_{\rm scatt}$$

Y'_{scatt} can be neglected for low T_R or if there is substantial re-annihilation.