Probing GeV-scale Dark Forces with Dwarf Galaxies, Low Energy e+e- Colliders, and New Fixed-Target Experiments

Rouven Essig

Theory Group, SLAC National Accelerator Laboratory

Seminar, Cornell University, March 17th, 2010

with:

N. Sehgal, L.E. Strigari (arXiv: 0902.4750, PRD)

N. Sehgal, L.E. Strigari, M. Geha, J.D. Simon (to appear)

P. Schuster, N. Toro (arXiv: 0903.3941, PRD)

J.D. Bjorken, P. Schuster, N. Toro (arXiv: 0906.0580, PRD)

P. Schuster, N. Toro, B. Wojtsekhowski et.al. (arXiv:1001.2557)

Outline

- Theory and Motivation (and hints from dark matter)
- Probing GeV-scale Dark Forces
 - Indirect probe:

 $\gamma\text{-rays}$ from DM annihilation in dwarf galaxies

- Direct probes:
 - Low-energy e⁺e⁻ Colliders (BaBar, BELLE, CLEO, ...)
 - Fixed-Target Experiments (e.g. @ JLab)

Theory and Motivation

Standard Model

strong weak electromagnetic $g \quad W^{\pm}, Z \quad \gamma$

Theory and MotivationStandard ModelHidden Sector?strong weak electromagnetic new force?g W^{\pm}, Z γ A'

Strong constraints exist on light new matter with Standard Model interactions

New, very weak interactions of ordinary matter with a hidden sector are allowed and an exciting possibility!

Generic Coupling of Standard Model to Hidden Sector

Photon can mix with a new Vector Boson A'

Generated by heavy particles interacting with γ and A^\prime

"Kinetic Mixing"

[Holdom]

current constraint from BaBar and (g-2)_{µ,e}:

 $\epsilon \lesssim (0.3 - 1) \times 10^{-2}$

Useful to think about this in different way

Quarks & charged Leptons: milli-charged under A'

What is the mass of the A'?

A priori, mass could be anywhere.

However, it is very natural for $m_{A'}$ to be tied to $M_{\rm weak}$

SUSY can naturally give A' near GeV-scale

Hidden gauge forces?

 M_{Pl}

 $M_{\rm GUT}$

 $M_{\rm weak}$

 $\Lambda_{
m QCD}$

E

e.g.

 $m_{A'} \sim \sqrt{\epsilon g_D} \, m_W \sim 0.1 - 1 \, \text{GeV}$

[Arkani-Hamed, Weiner; Dienes, Kolda, March-Russell; Baumgart, Cheung, Ruderman, Wang; Katz, Sundrum; Morrissey, Poland, Zurek]

What do we know about Dark Matter?

Existence well-established !

Dark Matter interacts with us through gravity But does it have other interactions with us ?

Dark Matter interactions with ordinary matter?

Indirect detection: Cosmic-rays, photons, ...

PAMELA, Fermi, HESS, ATIC, ACTs, WMAP

Direct detection

CDMS, DAMA/LIBRA, XENON, CRESST, LUX, COUPP, KIMS,

Abundance of data suggests non-gravitational interactions

Excesses at high energies ~100–1000 GeV Very suggestive of DM annihilation DM must couple to ordinary matter, but how?

No antiproton excess

PAMELA satellite

Lack of excess forbids DM annihilation to hadrons

Slide from M. Boezio KITP DM workshop

Anomalies imply DM annihilation into leptons

A new force carrier A' with $m_{A'} \lesssim 1 \, {
m GeV}$ mediating the annihilation naturally gives only leptons from simple kinematics

> [Arkani-Hamed, Finkbeiner, Slatyer, Weiner; Pospelov & Ritz]

produces leptons, no anti-protons!

Need large boost factors to fit anomalies

DM relic abundance is determined in early Universe:

 $\Omega_{\rm DM} \propto rac{1}{\langle \sigma v
angle}$

If $\langle \sigma v \rangle$ is too large, then $\Omega_{\rm DM}$ is too small

To fit cosmic-ray e⁺ & e⁻ excess requires: $\langle \sigma v \rangle \sim 100\text{--}1000 \text{ times too large}$ to obtain correct $\Omega_{\rm DM}$

Light A' mediates long-range force

Sommerfeld enhancement

[e.g.Arkani-Hamed et.al; Pospelov, Ritz; Hisano et.al; March-Russell et.al; Cirelli et.al]

Light A' mediates long-range force [e.g.Arkani-Hamed et.al; Pospelov, Ritz; Hisano et.al; Sommerfeld enhancement March-Russell et.al; Cirelli et.al] high velocity

In Early Universe: v large, so $\langle \sigma v \rangle$ is small can obtain correct relic abundance & explain anomalies Further hints for new forces Many other Dark Matter anomalies:

• WMAP+Fermi "Haze"

[Finkbeiner, Dobler et.al.]

- DAMA/LIBRA annual modulation [Bernabei et.al., Tucker-Smith & Weiner]
- INTEGRAL 511 keV line

[Finkbeiner & Weiner]

Other hints:

• anomalous muon g-2 [Pospelov]

Irrespective of anomalies: new GeV-scale force carriers are important category of new physics

Rouven Essig

γ-rays guaranteed!
 (Fermi, ACT's)
 Dwarf galaxies:
 excellent targets

 e^+

 e^+

γ-rays guaranteed!
 (Fermi, ACT's)
 Dwarf galaxies:
 excellent targets

e⁺e⁻ Colliders (BaBar, BELLE, CLEO, KLOE)

> X = dark gauge/higgs bosons, pions, etc.

γ-rays guaranteed!
 (Fermi, ACT's)
 Dwarf galaxies:
 excellent targets

e⁺e⁻ Colliders (BaBar, BELLE, CLEO, KLOE)

> X = dark gauge/higgs bosons, pions, etc.

Fixed Target Experiments (E137, JLab, SLAC, FNAL, MINOS, COMPASS)

Indirect probe: γ -rays from Dwarfs

[RE, Sehgal, Strigari [RE, Sehgal, Strigari, Geha, Simon]

γ -rays guaranteed!

[Beacom et.al.; Birkedal, Matchev, Perelstein, Spray; Bringmann et.al.]

Observe with:

- Fermi LAT
- Atmospheric Cherenkov Telescopes (MAGIC, VERITAS, HESS)

 $\nu's$ also possible (lceCube)

Why dwarfs?

A Milky-Way DM Halo

[Diemand et.al.]

Via Lactea II Simulation

(only DM, no baryons)

A Milky-Way DM Halo

[Diemand et.al.]

Via Lactea II Simulation

(only DM, no baryons)

visible Milky Way galaxy ~30 kpc

some subhalos will form stars and become dwarf galaxies

Dwarf galaxies: Excellent Targets Sizeable Signal

- Nearby, DM dominated
- use stellar kinematics to determine expected flux
- low velocity dispersion: $v_{\rm dwarf} \sim v_{\rm halo}/20$ (Sommerfeld enhanced DM annihilation?)

Low Background

- high galactic latitude
- no intrinsic gamma-ray sources

Any signal would be very suggestive of dark matter

Known Nearby Dwarf Galaxies

Known Nearby Dwarf Galaxies

Current Fermi & ACT limits

[RE, Sehgal, Strigari, Geha, Simon]

Prospects for MAGIC & VERITAS from Segue 1

[RE, Sehgal, Strigari, Geha, Simon]

Constraining Sommerfeld enhancement

[RE, Sehgal, Strigari, Geha, Simon]

enhancement saturates when $v_{\chi} \lesssim m_{A'}/m_{\chi}$

 $m_{A'} = 1 \,\mathrm{GeV}$

Will probe resonances

Constraining Sommerfeld enhancement

[RE, Sehgal, Strigari, Geha, Simon]

enhancement saturates when $v_{\chi} \lesssim m_{A'}/m_{\chi}$

 e^+

 A'^*

 e^+

γ-rays guaranteed!
 (Fermi, ACT's)
 Dwarf galaxies:
 excellent targets

e⁺e⁻ Colliders (BaBar, BELLE, CLEO, KLOE)

> X = dark gauge/higgs bosons, pions, etc.

Fixed Target Experiments (E137, JLab, SLAC, FNAL, MINOS, COMPASS)

Probe GeV-scale directly with e⁺e⁻ Colliders

[RE, Schuster, Toro]

X = Standard Model or hidden-sector particle

 \implies BaBar, BELLE, KLOE, CLEO-c, BESIII, ...

Large # of spectacular events possibly contained in existing data sets!

Very rich phenomenology! Multi-leptons, resonances, displaced vertices, missing energy... Broad array of searches needed!

What searches have been done?

 e^-

Done $\gamma \mu^+ \mu^-$

 $4e, 4\mu, 2e + 2\mu$

Done

BaBar

BaBar

 $\operatorname{not}\operatorname{yet}\gamma+4\ell$

Higgs'-strahlung

[Batell, Pospelov, Ritz]

Typical sensitivity: $\epsilon \sim 10^{-4} - 10^{-3}$

Rare meson decays also have good reach

Not yet

 $2\ell, 6\ell$

[Reece, Wang; Batell, Pospelov, Ritz; Freytsis, Ligeti, Thaler]

C)

DM annihilation guarantees γ -rays! can also get $\nu's$ Dwarf galaxies: excellent targets ($v_{\rm dwarf} \sim v_{\rm halo}/20$)

X = dark gauge/higgs bosons, pions, etc.

Fixed Target Exp's (E137, E141, JLab, SLAC, FNAL, COMPASS)

Fixed-Target Experiments

[Bjorken RE, Schuster, Toro] [see also Batell et.al.; Reece & Wang]

Produce A' via bremsstrahlung off e⁻ beam on fixed target

Fixed Target advantages over Colliders

Larger Cross-section

[Bjorken RE, Schuster, Toro] [see also Batell et.al.; Reece & Wang]

Higher Luminosity

majority of incident e⁻'s scatter

~ few ab⁻¹/day

only ~1 e⁻ scatters per crossing

~ few ab⁻¹/decade

Cover huge range in mass and coupling

$$c\tau(A' \to \ell^+ \ell^-) \sim 1 \,\mathrm{m} \left(\frac{10^{-6}}{\epsilon}\right)^2 \left(\frac{100 \,\mathrm{MeV}}{m_{A'}}\right)$$

Need various strategies to cover huge lifetime range Rouven Essig SLAC

Good Beam Dump Constraints exist

[Bjorken RE, Schuster, Toro]

Rouven Essig **SLAC**

Need new experiments to cover remaining parameter space

Good Beam Dump Constraints exist

[Bjorken RE, Schuster, Toro]

Need new experiments to cover remaining parameter space

Strategy 1: New Beam Dumps

[Bjorken RE, Schuster, Toro]

Strategy 2: Thin targets for high $m_{A'}$, high ϵ

[Bjorken RE, Schuster, Toro]

A' lifetime short, so need thin target

Now have background too!

Most background is forward and softer, but not all...

Use vertexing and/or bump hunt

Example: Forward two-arm spectrometer

[Bjorken RE, Schuster, Toro]

several ideas to cover much of parameter space some are being turned into real experimental proposals

A' EXperiment (APEX) @ JLab Hall A

Proposal by RE, Schuster, Toro, Wojtsekhowski (collaboration of ~70 people) [see arXiv: 1001.2557]

Conditional approval Preparing for a Test Run in June 2010

Two High Resolution Spectrometers

only ~30 days of running needed

Heavy Photon Search Working Group

SLAC

R. Essig
C. Field
M. Graham
J. Jaros (Chair)
C. Kenney
T. Maruyama
K. Moffeit

A. Odian

- R. Partridge P. Schuster J. Sheppard C. Spencer N. Toro
- **FNAL** M. Demarteau

JLab P. Bosted S. Stepanyan L. Weinstein B. Wojtsekhowski

U. Oregon R. Frey Developing new experiment @ JLab Hall B

parasitic and nonparasitic options are being considered

complementary reach to APEX

could also discover "True Muonium", a $\mu^+\mu^$ bound state that decays like an A' !

Rouven Essig SLAC

Possible location for heavy photon search (parasitic option)

Summary of experiments to probe interesting region

Many possibilities not discussed...

- Muons beams: [RE, Harnik, Kaplan, Schuster, Toro to appear]
 - MINOS + Minerva
 - COMPASS @ CERN
- LHC, Tevatron Searches [e.g. D0] ("lepton-jets")

• Further details @ SLAC Dark Forces workshop

http://www-conf.slac.stanford.edu/darkforces2009/

Conclusions

- New dark forces: an exciting possibility
- Indirectly probed with dwarf galaxies
- Large existing data sets at e⁺e⁻ Colliders may contain spectacular signals
- New Fixed Target Experiments are relatively easy to build and have extensive reach

Short timescale for many new analyses & experiments

Thank you !

Ultra-faint Segue 1: Best dwarf target?

Draco

Distance: 80 kpc

data on >200 stellar velocities

Segue 1

Distance: 23 kpc

New stellar data is being analyzed (~65 stars)

[Simon et. al.]

classical dwarf (discovered 1954)

ultra-faint dwarf (discovered 2006)

 γ, ν flux « $\mathcal{L} \sim \int \rho^2$

determined from stellar velocities

Current analysis suggests $\mathcal{L}_{Segue1} \gtrsim \mathcal{L}_{Draco}$

Preliminary!

Many more details can be found at SLAC Dark Forces Workshop

Searches for New Forces at the GeV-scale

Organizers:

R. Essig, M. Graham, M. Peskin, A. Roodman, P. Schuster, N. Toro, J. Wacker

http://www-conf.slac.stanford.edu/darkforces2009/

see also Perimeter Conference "New Lights on Dark Matter"

http://www.perimeterinstitute.ca/en/Events/New_Lights_on_Dark_Matter/New_Lights_on_Dark_Matter/

SUSY can generate GeV scale naturally

[Dienes, Kolda, March-Russell; Baumgart, Cheung, Ruderman, Wang; Katz, Sundrum; Morrissey, Poland, Zurek]

Assume weak-scale SUSY exists and couple Standard Model to a dark-sector via kinetic mixing

$$\mathcal{L} \supset -\frac{\epsilon}{2} \int d^2 \theta \, W_Y W' + \text{h.c.}$$

This includes the usual $\frac{\epsilon}{2} F^{Y,\mu\nu} F'_{\mu\nu}$

But also, hypercharge $U(1)_{Y}$ and dark U(1)' D-terms mix

 $V_{\rm mix} = \epsilon \langle D_Y \rangle D'$ induces effective FI term for U(1)'

$$\rightarrow \epsilon \left(\frac{1}{2}g_Y v_{\rm SM}^2\right) D' \sim 1 \,{\rm GeV}^2 D'$$

SUSY can generate GeV scale naturally

[Dienes, Kolda, March-Russell; Baumgart, Cheung, Ruderman, Wang; Katz, Sundrum; Morrissey, Poland, Zurek]

Assume there is dark-sector matter charged under U(1)'

e.g.
$$W = \mu' H_+ H_- \qquad \qquad W = \lambda S H_+ H_-$$

Dark U(1)' D-term potential is

$$V_D \sim \frac{1}{2} \left(g_D \sum_i x_i |\phi_i|^2 - \epsilon \frac{g_Y}{2} v_{SM}^2 \right)^2$$

U(1)Y D-term

Electroweak-symmetry breaking triggers dark U(1)' breaking

$$m_{A'}^2 \sim \epsilon \frac{g_Y g_D}{g_2^2} m_W^2 \sim 1 \,\mathrm{GeV}^2$$