NEW OBSERVATIONAL POWER FROM HALO BIAS

SARAH SHANDERA
PERIMETER INSTITUTE

ARXIV: 1010.3722
WITH N. DALAL,
D. Huterer

CORNELL
17 NOVEMBER 2010

The PLAN:

- Non-Gaussianity and Large Scale Structure
- A bigger family for the local ansatz
- Theory information in the new ansatz
- Analytic expectation for halo bias
- Simulation results
- What it might mean...

I.NON-GAUSSIANITY AND LARGE SCALE STRUCTURE

INFLATION: OUR CURRENT KNOWLEDGE:

$$
\begin{aligned}
\mathcal{P}_{\zeta} & =\frac{H^{2}}{(2 \pi)^{2} M_{p}^{2} \epsilon} \\
& =A_{0}\left(\frac{k}{k_{0}}\right)^{n_{s}-1}
\end{aligned}
$$

INFLATION: OUR CURRENT KNOWLEDGE:

$$
\begin{aligned}
\mathcal{P}_{\zeta} & =\frac{H^{2}}{(2 \pi)^{2} M_{p}^{2} \epsilon} \\
& =A_{0}\left(\frac{k}{k_{0}}\right)^{n_{s}-1}
\end{aligned}
$$

Amplitude

INFLATION: OUR CURRENT KNOWLEDGE:

$$
\begin{aligned}
\mathcal{P}_{\zeta} & =\frac{H^{2}}{(2 \pi)^{2} M_{p}^{2} \epsilon} \\
& =A_{0}\left(\frac{k}{k_{0}}\right)^{n_{s}-1}
\end{aligned}
$$

Amplitude

Spectral index

INFLATION: OUR CURRENT KNOWLEDGE:

$$
\begin{aligned}
\mathcal{P}_{\zeta} & =\frac{H^{2}}{(2 \pi)^{2} M_{p}^{2} \epsilon} \\
& =A_{0}\left(\frac{k}{k_{0}}\right)^{n_{s}-1}
\end{aligned}
$$

Amplitude

Spectral index

$$
n_{s}-1=-6 \epsilon+2 \eta
$$

INFLATION: OUR CURRENT KNOWLEDGE:

$$
\begin{aligned}
\mathcal{P}_{\zeta} & =\frac{H^{2}}{(2 \pi)^{2} M_{p}^{2} \epsilon} \\
& =A_{0}\left(\frac{k}{k_{0}}\right)^{n_{s}-1}
\end{aligned}
$$

Amplitude
Spectral index
$\mathcal{O}\left(10^{-9}\right)$

$$
n_{s}-1=-6 \epsilon+2 \eta \approx-0.04
$$

INFLATION: OUR CURRENT KNOWLEDGE:

$$
\begin{aligned}
\mathcal{P}_{\zeta} & =\frac{H^{2}}{(2 \pi)^{2} M_{p}^{2} \epsilon} \\
& =A_{0}\left(\frac{k}{k_{0}}\right)^{n_{s}-1}
\end{aligned}
$$

Spectral index

$$
n_{s}-1=-6 \epsilon+2 \eta \approx-0.04
$$

* Two numbers to fit: Can change the model radically

BEYOND THE POWER SPECTRUM

- Non-Gaussianity: any higher order connected correlation different from zero
- Interactions: $S=S_{0}+S_{2}+S_{3}+\ldots$
* Gravity
* Self-interactions \}

Qualitatively distinguishable!

* Multiple fields

Summary of NG properties:

	Power Spectrum	Bispectrum	N-point
Information	$\underline{\|\vec{k}\|}$	$\xrightarrow[\vec{k}_{2}]{\vec{k}_{1}} \vec{k}_{3}$	N-gon
Amplitude	\mathcal{P}_{ζ}	$f_{N L} \mathcal{P}_{\zeta}^{2}$	$\left\langle\zeta^{n}\right\rangle \propto \frac{\left(\left\langle\zeta^{2}\right\rangle\right)^{n-1}}{\left(c_{s}^{2}\right)^{n-2}}$
Sign	-	$f_{N L}>0$ More Structure	$\mathrm{N}=4:$ wide / narrow distribution
Scale Dependence	$n_{s}-1$?	?

Summary of NG properties:

	Power Spectrum	Bispectrum	N-point
Information	$\underline{\|\vec{k}\|}$	$\xrightarrow[\vec{k}_{2}]{\vec{k}_{1}} \vec{k}_{3}$	N-gon
Amplitude	\mathcal{P}_{ζ}	$f_{N L} \mathcal{P}_{\zeta}^{2}$	$\left\langle\zeta^{n}\right\rangle \propto \frac{\left(\left\langle\zeta^{2}\right\rangle\right)^{n-1}}{\left(c_{s}^{2}\right)^{n-2}}$
Sign	-	$f_{N L}>0$ More Structure	N=4: wide narrow distribution
Scale Dependence	$n_{s}-1$	$?$	$?$

CMB: CHECK SPECIFIC BISPECTRA

- Given a shape, limit the amplitude:
- Computationally intensive
* Squeezed: $\xrightarrow[\vec{k}_{3}]{\stackrel{k_{1}}{\longrightarrow}} \vec{k}_{2}$
* Equilateral:

"Local" type; multiple fields, slow roll

Derivative interactions

How NON-GAUSSIAN IS NON-GAUSSIAN?

$$
f_{N L} \sim 0.05 \ll 5 \sim 5 \ll \mathcal{O}(100) \ll 10^{9 / 2}
$$

How NON-GAUSSIAN IS NON-GAUSSIAN?

How NON-GAUSSIAN IS NON-GAUSSIAN?

How NON-GAUSSIAN IS NON-GAUSSIAN?

How NON-GAUSSIAN IS NON-GAUSSIAN?

How NON-GAUSSIAN IS NON-GAUSSIAN?

Gravitational Evolution

GOOD NEWS FOR PLANCK...

Bx:ing

GOOD NEWS FOR PLANCK...

* Lots of room for discovery
 * Detection now rules out 99% of models

때ำำ

(Hero)

LARGE SCALE STRUCTURE

Inflaton \longrightarrow Curvature $\delta \phi \longrightarrow \zeta$

Curvature \longrightarrow Density $\zeta \longrightarrow \delta$

Density \longrightarrow Structure

LARGE SCALE STRUCTURE

Inflaton \longrightarrow Curvature $\delta \phi \longrightarrow \zeta$

Curvature \longrightarrow Density

$$
\zeta \longrightarrow \delta
$$

Density \longrightarrow Structure

- Different statistics:
- Cluster number counts
- power spectra of collapsed objects
- Initial conditions +

Grav. evolution

- Smaller scales

LARGE SCALE STRUCTURE

Inflaton \longrightarrow Curvature $\delta \phi \longrightarrow \zeta$

Curvature \longrightarrow Density $\zeta \longrightarrow \delta$

Density Structure

- Different statistics:
- Cluster number counts
- power spectra of collapsed objects
- Initial conditions +

Grav. evolution

- Smaller scales

A FAVORITE COSMOLOGIST'S ANSATZ...

- "Local Ansatz"

$$
\Phi(\mathbf{x})=\Phi_{G}(\mathbf{x})+f_{N L}\left[\Phi_{G}^{2}(\mathbf{x})-\left\langle\Phi_{G}^{2}(\mathbf{x})\right\rangle\right]+\ldots
$$

- Nearly Gaussian?

$$
\left|f_{N L}\right|<10^{9 / 2}
$$

- Positive skewness ($\mathbf{f}_{\mathrm{NL}}>\mathbf{0}$) means more structure

Why the Local Ansatz is NICE (I)

- Easy for N-body simulations (defined from a real space Gaussian)
- One parameter: $\left\langle\Phi^{n}\right\rangle \propto f_{N L}^{n-2}\left(\Delta_{\Phi}^{2}\right)^{(n-1)}$

Why the Local Ansatz is NICE (II)

- Exciting signal in the power spectrum of collapsed objects
- Constraints competitive with CMB!
(Dalal et al; Slosar et al; McDonald; Afshordi, Tolley; Matarrese, Verde; Carbone et al)

Halo/Galaxy Bias

- Statistics of collapsed objects are different from underlying matter fluctuations
- Assume: collapsed objects form from peaks in the initial density field

PEAK-BACKGROUND SPLIT: GaUssian CASE

- Long wavelength background mode:
- Perturb it:
- Poisson eqn (no mode coupling):

PEAK-BACKGROUND SPLIT: GaUssian CASE

- Long wavelength background mode: $\Phi\left(\mathbf{k}_{l}\right)$
- Perturb it:
- Poisson eqn (no mode coupling):

PEAK-BACKGROUND SPLIT: GaUssian CASE

- Long wavelength background mode: $\Phi\left(\mathbf{k}_{l}\right)$
- Perturb it: $\Delta \Phi\left(\mathbf{k}_{l}\right)$
- Poisson eqn (no mode coupling):

PEAK-BACKGROUND SPLIT: GaUssian CASE

- Long wavelength background mode: $\Phi\left(\mathbf{k}_{l}\right)$
- Perturb it: $\Delta \Phi\left(\mathbf{k}_{l}\right)$
- Poisson eqn (no mode coupling):

$$
\Delta \delta\left(\mathbf{k}_{l}\right) \propto k_{l}^{2} \Delta \Phi\left(\mathbf{k}_{l}\right)
$$

\& Shift background density up / down

GAUSSIAN CASE: PEAKS ARE MORE CLUSTERED

$$
P_{h m}(k)=b(M) P_{m m}(k)
$$

GAUSSIAN CASE: PEAKS ARE MORE CLUSTERED

LOCAL NON-GAUSSIANITY

- Correlation between long and short modes \rightarrow enhanced clustering
- Peak-Background split:

LOCAL NON-GAUSSIANITY

- Correlation between long and short modes \rightarrow enhanced clustering

$$
P_{h m}(k)=b\left(M, f_{N L}, k\right) P_{m m}(k)
$$

- Peak-Background split:

LOCAL NON-GAUSSIANITY

- Correlation between long and short modes \rightarrow enhanced clustering

$$
\begin{gathered}
P_{h m}(k)=b\left(M, f_{N L}, k\right) P_{m m}(k) \\
P_{h m}(k)=\left[b_{G}(M)+\Delta b\left(f_{N L}, k, M\right)\right] P_{m m}(k)
\end{gathered}
$$

- Peak-Background split:

LOCAL NON-GAUSSIANITY

- Correlation between long and short modes \rightarrow enhanced clustering

$$
\begin{gathered}
P_{h m}(k)=b\left(M, f_{N L}, k\right) P_{m m}(k) \\
P_{h m}(k)=\left[b_{G}(M)+\Delta b\left(f_{N L}, k, M\right)\right] P_{m m}(k)
\end{gathered}
$$

- Peak-Background split:

$$
\Phi_{N G}\left(\mathbf{k}_{s}\right) \approx \Phi_{G}\left(\mathbf{k}_{s}\right)\left[1+2 f_{N L} \Phi\left(\mathbf{k}_{l}\right)\right]
$$

BIAS, CONT'D

- Poisson Equation:

$$
\begin{aligned}
& \delta_{s} \propto-\nabla^{2} \Phi_{N G, s} \\
& \delta_{s} \propto-\nabla^{2} \Phi_{G, s}\left(1+2 f_{N L} \Phi_{G, l}\right) \\
& \delta_{s} \propto \delta_{G, s}\left(1+2 f_{N L} \Phi_{G, l}\right)
\end{aligned}
$$

Physically: local σ_{8} depends on $\Phi\left(k_{l}\right)$
(McDonald; Afshordi, Tolley)

- So, on large scales the shift is

$$
\Delta b\left(M, f_{N L}, k\right) \propto b_{G}(M) f_{N L} \frac{1}{k^{2} T(k) D(z)}
$$

BIAS, CONT'D

- Poisson Equation:

$$
\begin{aligned}
& \delta_{s} \propto-\nabla^{2} \Phi_{N G, s} \\
& \delta_{s} \propto-\nabla^{2} \Phi_{G, s}\left(1+2 f_{N L} \Phi_{G, l}\right) \\
& \delta_{s} \propto \delta_{G, s}\left(1+2 f_{N L} \Phi_{G, l}\right)
\end{aligned}
$$

Physically: local σ_{8} depends on $\Phi\left(k_{l}\right)$
(McDonald; Afshordi, Tolley)

- So, on large scales the shift is

$$
\Delta b\left(M, f_{N L}, k\right) \propto b_{G}(M) f_{N L} \frac{1}{k^{2} T(k) D(z)}
$$

CONSTRAINTS AND FORECASTS

Table 1 Current recent 2 - sigma constraints on local fnl		
Data/method	$f_{\text {NL }}$	reference
Photometric LRG - bias	$63_{-85-331}^{+54+101}$	Slosar et al. 2008
Spectroscopic LRG- bias	$70_{-83-191}^{+7439}$	Slosar et al. 2008
QSO - bias	$8{ }_{-3}^{+20}$	Slosar et al. 2008
combined	28_{-24-57}^{+23+42}	Slosar et al. 2008
NVSS-ISW	$105_{-337-1157}^{+647+75}$	Slosar et al. 2008
NVSS-ISW	$236 \pm 127(2-\sigma)$	Afshordi\&Tolley 2008
WMAP3-Bispectrum	30 ± 84	Spergel et al. (WMAP) 2007
WMAP3-Bispectrum	32 ± 68	Creminelli et al. 2007
WMAP3-Bispectrum	87 ± 60	Yadav \& Wandelt 2008
WMAP-Bispectrum	38 ± 42	Smith et al. 2009
WMAP5-Bispectrum	51 ± 60	Komatsu et al. (WMAP) 2008
WMAP5-Minkowski	-57 ± 121	Komatsu et al. (WMAP) 2008

Tables compiled by

 Licia VerdeTable 2 Forecasts 1 - sigma constraints on local f_{NL}

Data/method	$\Delta f_{\mathrm{NL}}(1-\sigma)$	reference
BOSS-bias	18	Carbone et al. 2008
ADEPT/Euclid-bias	1.5	Carbone et al. 2008
PANNStarrs -bias	3.5	Carbone et al. 2008
LSST-bias	0.7	Carbone et al. 2008
LSST-ISW	7	Afshordi\& Tolley 2008
BOSS-bispectrum	35	Sefusatti \& Komatsu 2008
ADEPT/Euclid-bispectrum	3.6	Sefusatti \& Komatsu 2008
Planck-Bispectrum	3	Yadav et al . 2007
BPOL-Bispectrum	2	Yadav et al . 2007

II. A Bigger Family FOR THE LOCAL ANSATZ

Sing SQUEEZED LIMIT

$$
\left|\vec{k}_{1}\right|=\left|\vec{k}_{2}\right|=a(t) H(t)
$$

First jump resets the clock:

$$
\Delta t=\frac{\delta \phi}{\dot{\phi}}
$$

Sing SQUEEZED LIMIT

$$
\left|\vec{k}_{1}\right|=\left|\vec{k}_{2}\right|=a(t) H(t)
$$

$$
\left(f_{N L} \propto-\left(n_{s}-1\right)\right.
$$

(Maldacena; Creminelli, Zaldarriaga)

SO...LOCAL TYPE NG IS

NECESSARILY MULTI-FIELD

- One field sources inflation; a second field sources curvature fluctuation: "Curvaton" (Lyth, Ungarelli, Wands)
- Mixed curvaton/inflaton contributions to curvature
- Multi-field inflation (Linde, Mukhanov)
(Many! modern references, see paper)

LOCAL ANSATZ?

- What information does the local ansatz contain? (eg, where is multi-field information?)
- How closely does it match the theory possibilities?
- Many multi-field scenarios...distinguishable?
- Needs to be generalized...

OTHER REASONS TO GENERALIZE

- Test the properties of the observable (bias)
- Test analytic understanding: simulations

A Generalization...

- Factorizable, symmetric extension:

$$
B_{\Phi}\left(\mathbf{k}_{1}, \mathbf{k}_{2}, \mathbf{k}_{3}\right)=\quad P_{\Phi}\left(k_{1}\right) P_{\Phi}\left(k_{2}\right)+5 \text { perm } .
$$

- Mild scale-dependence:

A Generalization...

- Factorizable, symmetric extension:

$$
B_{\Phi}\left(\mathbf{k}_{1}, \mathbf{k}_{2}, \mathbf{k}_{3}\right)=\quad \xi_{m}\left(k_{1}\right) \xi_{m}\left(k_{2}\right) P_{\Phi}\left(k_{1}\right) P_{\Phi}\left(k_{2}\right)+5 \text { perm } .
$$

- Mild scale-dependence:

A Generalization...

- Factorizable, symmetric extension:

$$
B_{\Phi}\left(\mathbf{k}_{1}, \mathbf{k}_{2}, \mathbf{k}_{3}\right)=\xi_{s}\left(k_{3}\right) \xi_{m}\left(k_{1}\right) \xi_{m}\left(k_{2}\right) P_{\Phi}\left(k_{1}\right) P_{\Phi}\left(k_{2}\right)+5 \text { perm }
$$

- Mild scale-dependence:

A Generalization...

- Factorizable, symmetric extension:

$$
B_{\Phi}\left(\mathbf{k}_{1}, \mathbf{k}_{2}, \mathbf{k}_{3}\right)=\xi_{s}\left(k_{3}\right) \xi_{m}\left(k_{1}\right) \xi_{m}\left(k_{2}\right) P_{\Phi}\left(k_{1}\right) P_{\Phi}\left(k_{2}\right)+5 \text { perm }
$$

- Mild scale-dependence:

$$
\xi_{s, m}(k)=\xi_{s, m}\left(k_{p}\right)\left(\frac{k}{k_{p}}\right)^{n_{f}^{(s),(m)}}
$$

NOTE...

- One of these functions is familiar:

$$
\left.\Phi(\mathbf{x})=\Phi_{G}(\mathbf{x})+f_{N L} *\left[\Phi_{G}^{2}(\mathbf{x})-\left\langle\Phi_{G}^{2}(\mathbf{x})\right\rangle\right]\right]
$$

$$
f_{N L}^{\text {eff }}(k)=f_{N L}^{\text {eff,0 }}\left(\frac{k}{k_{0}}\right)^{n_{f}}
$$

NOTE...

- One of these functions is familiar:

$$
\left.\Phi(\mathbf{x})=\Phi_{G}(\mathbf{x})+f_{N L} *\left[\Phi_{G}^{2}(\mathbf{x})-\left\langle\Phi_{G}^{2}(\mathbf{x})\right\rangle\right]\right]
$$

$$
f_{N L}^{\text {eff }}(k)=f_{N L}^{\text {eff.0 }}\left(\frac{k}{k_{0}}\right)^{n_{f}}
$$

$$
f_{N L}(k)=\xi_{s}\left(k_{p}\right)\left(\frac{k}{k_{p}}\right)^{n_{f}^{(s)}}
$$

III. INFORMATION IN THE GENERALIZED ANSATZ

SCALE-DEPENDENCE, PHYSICALLY

- Power Spectrum:

$$
\begin{array}{r}
\dot{H} \neq 0 \Rightarrow n_{s} \neq 1 \\
\dot{H}<0 \Rightarrow n_{s}<1
\end{array}
$$

Red spectrum is encouraging!

- Bispectrum?
- Single field slow roll: amplitude and scale dependence linked: (Maldacena; Creminelli)
$\xrightarrow[\vec{k}_{2}]{\vec{k}_{1}} \vec{k}_{3}$

$$
f_{N L} \propto-\left(n_{s}-1\right)
$$

SCALE-DEPENDENCE? TYPE I (MULTI-FIELD)

- Two or more fields contribute to curvature:

SCALE-DEPENDENCE? TYPE I (MULTI-FIELD)

- Two or more fields contribute to curvature:

$$
\Phi_{N G}=\phi_{G}+\sigma_{G}+\tilde{f}_{N L}\left(\sigma_{G}^{2}-\left\langle\sigma_{G}^{2}\right\rangle\right)
$$

(Wands et al; Byrnes et al; Byrnes, Wands)

SCALE-DEPENDENCE? TYPE I (MULTI-FIELD)

- Two or more fields contribute to curvature:

$$
\Phi_{N G}=\phi_{G}+\sigma_{G}+\tilde{f}_{N L}\left(\sigma_{G}^{2}-\left\langle\sigma_{G}^{2}\right\rangle\right)
$$

$$
\begin{gathered}
\xi=\frac{\mathcal{P}_{\zeta, \sigma}(k)}{\mathcal{P}_{\zeta, \phi}(k)+\mathcal{P}_{\zeta, \sigma}(k)} \\
f_{N L}(k)=\tilde{f}_{N L} \xi^{2}(k)
\end{gathered}
$$

\}

Scale-dependence from changing ratio of contribution to \mathcal{P}_{ζ}

(Wands et al; Byrnes et al; Byrnes, Wands)
(Erickcek, Hirata, Kamionkowski)

SCALE-DEPENDENCE? TYPE I (MULTI-FIELD)

- Two or more fields contribute to curvature:

$$
\Phi_{N G}=\phi_{G}+\sigma_{G}+\tilde{f}_{N L}\left(\sigma_{G}^{2}-\left\langle\sigma_{G}^{2}\right\rangle\right)
$$

$$
\begin{gathered}
\xi=\frac{\mathcal{P}_{\zeta, \sigma}(k)}{\mathcal{P}_{\zeta, \phi}(k)+\mathcal{P}_{\zeta, \sigma}(k)} \\
f_{N L}(k)=\tilde{f}_{N L} \xi^{2}(k)
\end{gathered}
$$

$$
n_{f} \leq-\left(n_{s}-1\right) \sim 0.1
$$

(Wands et al; Byrnes et al; Byrnes, Wands)

SCALE-DEPENDENCE? TYPE I (MULTI-FIELD)

- Two or more fields contribute to curvature:

$$
\Phi_{N G}=\phi_{G}+\sigma_{G}+\tilde{f}_{N L}\left(\sigma_{G}^{2}-\left\langle\sigma_{G}^{2}\right\rangle\right)
$$

$$
\begin{aligned}
& \left.\begin{array}{l}
\xi=\frac{\mathcal{P}_{\zeta, \sigma}(k)}{\mathcal{P}_{\zeta, \phi}(k)+\mathcal{P}_{\zeta, \sigma}(k)} \\
f_{N L}(k)=\tilde{f}_{N L} \xi^{2}(k)
\end{array}\right\} n_{f} \leq-\left(n_{s}-1\right) \sim 0.1 \\
& \hline
\end{aligned}
$$

$$
B_{\Phi}^{m}\left(\mathbf{k}_{1}, \mathbf{k}_{2}, \mathbf{k}_{3}\right)=\xi_{m}\left(k_{1}\right) \xi_{m}\left(k_{2}\right) P_{\Phi}\left(k_{1}\right) P_{\Phi}\left(k_{2}\right)+5 \text { perm }
$$

(Wands et al; Byrnes et al; Byrnes, Wands)

SCALE-DEPENDENCE? TYPE II (SINGLE-FIELD)

- A non-Gaussian (non-inflaton!) field alone generates curvature perturbations:
- and -
- The field has self-interactions beyond quadratic

SCALE-DEPENDENCE? TYPE II (SINGLE-FIELD)

- A non-Gaussian (non-inflaton!) field alone generates curvature perturbations:
- and -
- The field has self-interactions beyond quadratic

Quadratic curvaton \longrightarrow constant $f_{N L}$

$$
\Phi \propto \delta \rho \sim \frac{1}{2}\left(2 m^{2} \sigma \delta \sigma+m^{2} \delta \sigma^{2}\right)
$$

Beyond quadratic \longrightarrow scale-dependent $f_{N L}$
(Byrnes, Enqvist, Takahashi; Huang)

BOTH IN ONE GO...

- Multiple field inflation

$$
\zeta(k)=N_{, \phi}(k) \delta \phi(k)+N_{, \sigma}(k) \delta \sigma(k)+\frac{1}{2} N_{, \sigma \sigma}(k)[\delta \sigma \star \delta \sigma](k)+\ldots
$$

- Mixed generic curvaton/inflaton

Generally:

$$
B_{\Phi}\left(\mathbf{k}_{1}, \mathbf{k}_{2}, \mathbf{k}_{3}\right) \equiv \xi_{s}\left(k_{3}\right) \xi_{m}\left(k_{1}\right) \xi_{m}\left(k_{2}\right) P_{\Phi}\left(k_{1}\right) P_{\Phi}\left(k_{2}\right)+5 \text { perm., }
$$

How Natural?

- Theoretically, are multiple fields likely?? Hard to say, but:
- IF we find observably large local nonGaussianity, as natural as the spectral index different from one
- IF we are constraining local nonGaussianity, this possibility matters!

(THEORY) CAVEATS FOR OUR MODEL

- We will check only approx. local NG

(THEORY) CAVEATS

- We will check only local NG (equilateral more compelling?)
- Constant scale-dependence can't be exact

ANALOG OF LOCAL ANSATZ CONSTRAINT:

$$
\frac{\Phi(\mathbf{x})=\Phi_{G}(\mathbf{x})+f_{N L} *\left[\Phi_{G}^{2}(\mathbf{x})-\left\langle\Phi_{G}^{2}(\mathbf{x})\right\rangle\right]}{\left|f_{N L}\right|<10^{9 / 2}}
$$

ANALOG OF LOCAL ANSATE CONSTRAINT:

$$
\Phi(\mathbf{x})=\Phi_{G}(\mathbf{x})+f_{N L} *\left[\Phi_{G}^{2}(\mathbf{x})-\left\langle\Phi_{G}^{2}(\mathbf{x})\right\rangle\right]
$$

$$
\left|f_{N L}\right|<10^{9 / 2}
$$

$$
\rightarrow\left|\left|f_{N L}^{\text {eff }}(k)\right|<10^{9 / 2}\right.
$$

ANALOG OF LOCAL ANSATZ CONSTRAINT:

$$
\Phi(\mathbf{x})=\Phi_{G}(\mathbf{x})+f_{N L} *\left[\Phi_{G}^{2}(\mathbf{x})-\left\langle\Phi_{G}^{2}(\mathbf{x})\right\rangle\right]
$$

$$
\left|f_{N L}\right|<10^{9 / 2}
$$

$$
\rightarrow\left|\left|f_{N L}^{\text {eff }}(k)\right|<10^{9 / 2}\right.
$$

- Statement about perturbation theory of the inflaton

(THEORY) CAVEATS

- We will check only local NG (equilateral more compelling?)
- Constant scale-dependence can't be exact
- Expect more terms in the series

BEYOND THE BISPECTRUM

- Higher orders = more work (only up to S_{4} done in some cases)

$$
S=S_{0}+S_{2}+S_{3}+\ldots
$$

- Expect new terms / parameters at each order

$$
\Phi(\mathbf{x})=\Phi_{G}(\mathbf{x})+f_{N L} *\left[\Phi_{G}^{2}(\mathbf{x})-\left\langle\Phi_{G}^{2}(\mathbf{x})\right\rangle\right]+g_{N L} * \Phi_{G}^{3}+\ldots
$$

(eg, simulations by Desjacques, Seljak)

(THEORY) CAVEATS

- We will check only local NG (equilateral more compelling?)
- Constant scale-dependence can't be exact
- Expect more terms in the series
- k-space form not exact (?)
- Restricted to $n_{f} \sim \mathcal{O}(\epsilon, \eta)$?

IV.ANALYTIC EXPECTATIONS FOR BIAS

EXPECT...

- Background is defined by scale of object
- Scale-dependent non-Gaussianity: relevant $f_{N L}$ is at the scale of object

EXPECT...

- Background is defined by scale of object
- Scale-dependent non-Gaussianity: relevant $f_{N L}$ is at the scale of object

$$
\begin{aligned}
& \text { For } f_{N L}(k)=f_{N L}\left(k_{p}\right)\left(\frac{k}{k_{p}}\right)^{n_{f}^{(s)}} \\
& \text { If } n_{f}^{(s)}>0 \\
& \text { Then } \Delta b_{N G}\left(M_{\text {small }}\right)>\Delta b_{N G}\left(M_{\text {large }}\right)
\end{aligned}
$$

TWO EFFECTS...

$$
B_{\Phi}\left(\mathbf{k}_{1}, \mathbf{k}_{2}, \mathbf{k}_{3}\right) \equiv \xi_{s}\left(k_{3}\right) \xi_{m}\left(k_{1}\right) \xi_{m}\left(k_{2}\right) P_{\Phi}\left(k_{1}\right) P_{\Phi}\left(k_{2}\right)+5 \text { perm., }
$$

- Effective $f_{N L}$ depending on mass (scale) of object $\xi_{s}(k), \xi_{m}(k)$
- Shift in k-dependence on large scales $\xi_{m}(k)$

$$
\Delta b_{N G}(k, M) \propto \frac{f_{N L}^{\mathrm{eff}}(M)}{k^{2-n_{f}^{(m)}}}
$$

PEAK-BACKGROUND SPLIT

- Bispectrum in squeezed limit:

$$
k_{1}, k_{2}=k_{s} \gg k_{3}=k_{l}
$$

$B\left(k_{1}, k_{2}, k_{3}\right) \approx 2 \xi_{s}\left(k_{1}\right) \xi_{m}\left(k_{2}\right) \xi_{m}\left(k_{3}\right) P\left(k_{2}\right) P\left(k_{3}\right)$

PEAK-BACKGROUND SPLIT

- Bispectrum in squeezed limit:

$$
k_{1}, k_{2}=k_{s} \gg k_{3}=k_{l}
$$

$B\left(k_{1}, k_{2}, k_{3}\right) \approx 2 \xi_{s}\left(k_{1}\right) \xi_{m}\left(k_{2}\right) \xi_{m}\left(k_{3}\right) P\left(k_{2}\right) P\left(k_{3}\right)$
$B\left(k_{1}, k_{2}, k_{3}\right) \approx 2 \xi_{s}\left(k_{s}\right) \xi_{m}\left(k_{s}\right) \xi_{m}\left(k_{l}\right) P\left(k_{s}\right) P\left(k_{l}\right)$

BIAS, CONT'D

- The result, summing over short wavelength modes

BIAS, CONT'D

- The result, summing over short wavelength modes
$\Delta b \propto b_{G}\left[\frac{2 \delta_{c}}{k^{2} T(k)}\left(\frac{k}{k_{p}}\right)^{n_{f}^{(m)}} \xi_{s}\left(k_{p}\right)\left[\xi_{m}\left(k_{p}\right)\right]^{2} \mathcal{F}_{R}\left(k, n_{f}^{(s)}, n_{f}^{(m)}\right)\right]$

BIAS, CONT'D

- The result, summing over short wavelength modes
$\Delta b \propto b_{G}\left[\frac{2 \delta_{c}}{k^{2} T(k)}\left(\frac{k}{k_{p}}\right)^{n_{f}^{(m)}} \xi_{s}\left(k_{p}\right)\left[\xi_{m}\left(k_{p}\right)\right]^{2} \mathcal{F}_{R}\left(k, n_{f}^{(s)}, n_{f}^{(m)}\right)\right.$

BIAS, CONT'D

- The result, summing over short wavelength modes
$\Delta b \propto b_{G}\left[\frac{2 \delta_{c}}{k^{2} T(k)}\left(\frac{k}{k_{p}}\right)^{n_{f}^{(m)}} \xi_{s}\left(k_{p}\right)\left[\xi_{m}\left(k_{p}\right)\right]^{2} \mathcal{F}_{R}\left(k, n_{f}^{(s)}, n_{f}^{(m)}\right)\right]$

$$
f_{N L}^{e f f}\left(M, n_{f}^{(s)}, n_{f}^{(m)}, k_{p}\right)
$$

THE SUM

- Small k limit:

$$
\underbrace{\mathcal{F}_{R}\left(k, n_{f}^{(s)}, n_{f}^{(m)}\right) \approx \frac{1}{2 \pi^{2} \sigma(M)^{2}} \int_{0}^{\infty} d k_{1} k_{1}^{2} P_{\Phi}\left(k_{1}\right) M_{R}^{2}\left(k_{1}\right)\left(\frac{k_{1}}{k_{p}}\right)^{n_{f}^{(s)}+n_{f}^{(m)}}}_{\text {Window function }}
$$

* Normalized to 1 if NG constant

I. MASS-DEPENDENT AMPLITUDE

PREDICTED EfFECT ON BIAS

FORECASTS

- We report constraints on:

$$
f_{N L}(k)=\xi_{s}\left(k_{p}\right)\left[\xi_{m}\left(k_{p}\right)\right]^{2}\left(\frac{k}{k_{p}}\right)^{n_{f}^{(s)}+n_{f}^{(m)}}
$$

- Fiducial values:

$$
f_{N L}\left(k_{p}\right) \equiv \xi_{s}\left(k_{p}\right) \xi_{m}^{2}\left(k_{p}\right)=30, n_{f}^{(s),(m)}=0
$$

Single Field Model

MULTi-Field Model

Single-Field AgAin

Shandera, 17 Nov 2010, Cornell

Distinguishing Between THE EFFECTS

V. SIMULATION RESULTS

N-BODY SIMULATIONS

- Results for single-field model
- Simulation stats:
- $(1024)^{3}$ particles
- $\mathrm{L}_{\text {box }}=2400 \mathrm{~h}^{-1} \mathrm{Mpc}$
- $\mathrm{M}_{\mathrm{p}}=9.65 \times 10^{11} \mathrm{~h}^{-1} \mathrm{M}_{\text {sun }}$
- 8 realizations (Gaussian, non-

Gaussian)

RESULTS: LOW MASS

Shandera, 17 Nov 2010, Cornell

Compare High Mass

$$
f_{N L}\left(k_{p}\right)=300
$$

VI. PUTTING IT ALL TOGETHER

QUALITATIVE EFFECT IS THERE...BUT...

- Compare with theory
- Plot from the simulations:

$$
\mathcal{F}^{\operatorname{sim}} \equiv \frac{b\left(f_{N L}=300, n_{f}^{(s)}=0.6\right)-b\left(f_{N L}=0\right)}{b\left(f_{N L}=300, n_{f}^{(s)}=0\right)-b\left(f_{N L}=0\right)}=\frac{\Delta b\left(n_{f}^{(s)}\right)}{\Delta b\left(n_{f}^{(s)}=0\right)}
$$

Agreement?

A Different View

FUTURE

- Encouraging for observations if correct
- Overlap with CMB (Planck!)
- Previous analysis (different ansatz); CMB (Planck) alone: (Sefusati e ta)

$$
f_{N L}^{\text {local }}=50 \quad \Delta n_{f}=0.1
$$

NG ON SMALLER SCALES

FUTURE

- Encouraging for observations if correct
- Overlap with CMB (Planck?)
- Important to use different mass tracers!
- Explanation related to initial peak profile?
- Peaks at high $\sigma(M)$ are peakier (so sensitive to smaller scales than naive expectation) (BBKs; Dala, Lithwick, Kuhlen)

CONCLUSIONS

* Much to look forward to from LSS!
* Fundamental theory can better inform cosmologists' approach
* Beyond the tree-level

2-point! Theorists rejoice!

* Coming soon:

Properties of NG!

