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Plan

We will present a perturbative expansion scheme

for solving general boundary value problems in

IIB "ISD" (define latter) flux compactifications.
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Motivation: Local Model Building
"Compactifying" the extra dimensions of String Theory:

S. Gandhi (Cornell University) Perturbing Flux Compactifications September 9, 2011 4 / 40



Motivation: Local Model Building
"Compactifying" the extra dimensions of String Theory:

ds2 = e2A(y)ηµνdxµdx ν + e−2A(y)gmndymdyn

S. Gandhi (Cornell University) Perturbing Flux Compactifications September 9, 2011 4 / 40



Motivation: Local Model Building
"Compactifying" the extra dimensions of String Theory:

ds2 = e2A(y)ηµνdxµdx ν + e−2A(y)gmndymdyn

S. Gandhi (Cornell University) Perturbing Flux Compactifications September 9, 2011 4 / 40



Motivation: Local Model Building
"Compactifying" the extra dimensions of String Theory:

ds2 = e2A(y)ηµνdxµdx ν + e−2A(y)gmndymdyn

S. Gandhi (Cornell University) Perturbing Flux Compactifications September 9, 2011 4 / 40



Motivation: Local Model Building
"Compactifying" the extra dimensions of String Theory:

ds2 = e2A(y)ηµνdxµdx ν + e−2A(y)gmndymdyn

S. Gandhi (Cornell University) Perturbing Flux Compactifications September 9, 2011 4 / 40



Motivation: Local Model Building
Problems for model building:

Compact Calabi-Yaus (CY) are complicated and we generally
don’t know solutions explicitly.
If we try to build a system in a generic region we can’t explicitly
obtain the effective action.
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Motivation: Local Model Building
Warped Throats

We do have explicit solutions for certain noncompact CY’s called
"Throats."
Far from the tip the geometry is AdS5 × (AngularSpace)5.
At tip AdS is smoothly terminated.
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Motivation: Local Model Building
Gluing a throat into a compact CY:

We can create a region of the compact CY that looks like a
warped throat.
If we put a large number of D-branes at some point...
They will dramatically distort the space in their vicinity.

S. Gandhi (Cornell University) Perturbing Flux Compactifications September 9, 2011 7 / 40



Motivation: Local Model Building
Gluing a throat into a compact CY:

We can create a region of the compact CY that looks like a
warped throat.

If we put a large number of D-branes at some point...
They will dramatically distort the space in their vicinity.

S. Gandhi (Cornell University) Perturbing Flux Compactifications September 9, 2011 7 / 40



Motivation: Local Model Building
Gluing a throat into a compact CY:

We can create a region of the compact CY that looks like a
warped throat.
If we put a large number of D-branes at some point...

They will dramatically distort the space in their vicinity.

S. Gandhi (Cornell University) Perturbing Flux Compactifications September 9, 2011 7 / 40



Motivation: Local Model Building
Gluing a throat into a compact CY:

We can create a region of the compact CY that looks like a
warped throat.
If we put a large number of D-branes at some point...
They will dramatically distort the space in their vicinity.

S. Gandhi (Cornell University) Perturbing Flux Compactifications September 9, 2011 7 / 40



Motivation: Local Model Building
The String Theory Realization of RS:

UV brane corresponds to the bulk compactification.
IR brane corresponds to the tip.
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Motivation: Local Model Building
Local model building: consider a system deep in a warped throat
region of compactification.
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Motivation: Local Model Building
Deep in the IR, it looks like the non-compact throat.
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Motivation: Local Model Building
Zeroth order approximation:

replace warped region with a finite segment of an infinite throat
geometry.
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Motivation: Local Model Building
There will be deviations due to gluing into the bulk:
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Motivation: Local Model Building
Take inspiration from field theory:

AdS5 is dual to a CFT4.
UV brane is dual to ΛUV in the CFT.
IR brane is dual to a mass gap.
Fields in AdS are dual to operators in the CFT.
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Motivation: Local Model Building
Take inspiration from field theory:

Warped throat region ⇐⇒ gauge theory.
Terminate throat and glue into bulk ⇐⇒ cutoff gauge theory at
ΛUV = RUV/`

2
s and couple to UV physics.

Bulk ⇐⇒ unknown UV physics.
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Motivation: Local Model Building
Wilson’s RG Flow:

Integrate out UV physics.

Obtain some general deformations of the Lagrangian at ΛUV:
LUV = LCFT + δLUV.

Only the relevant modes survive when run down to the IR:
LIR = LCFT +

∑
∆≤4 c∆O∆.

LIR is highly constrained by renormalizability and symmetries.

Unknown UV physics ⇒ c∆.

In our case, the CFT is strongly coupled!
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Motivation: Local Model Building
Do it in the gravity picture:

Consider arbitrary deformations of the throat in the UV.
Propagate to the IR by solving the SUGRA equations.
In the IR, each SUGRA field is well approximated by the handful
of relevant modes: δϕ(r ,Ψ) ≈ ∑∆≤4 c∆ r∆−4 Y∆(Ψ).
We can estimate the orders of magnitude of the c∆’s on general
grounds.
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Motivation: Local Model Building
RS analogy:

Impose arbitrary boundary conditions for the fields at UV brane.
Propagate fields to the IR brane.
Only fields corresponding to relevant operators have IR localized
wave functions.
Not trivial in our scenario because of the 5 angular directions.
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Motivation: Local Model Building

Bulk Compactification ⇐⇒ Boundary Conditions

Implement by:

Developing a systematic perturbation scheme to generate
solutions for arbitrary boundary values.

Turns out to be more general:

Applies to general boundary value problems in ANY "ISD"
flux compactification.

S. Gandhi (Cornell University) Perturbing Flux Compactifications September 9, 2011 18 / 40



Motivation: Local Model Building

Bulk Compactification ⇐⇒ Boundary Conditions
Implement by:

Developing a systematic perturbation scheme to generate
solutions for arbitrary boundary values.

Turns out to be more general:

Applies to general boundary value problems in ANY "ISD"
flux compactification.

S. Gandhi (Cornell University) Perturbing Flux Compactifications September 9, 2011 18 / 40



Motivation: Local Model Building

Bulk Compactification ⇐⇒ Boundary Conditions
Implement by:

Developing a systematic perturbation scheme to generate
solutions for arbitrary boundary values.

Turns out to be more general:

Applies to general boundary value problems in ANY "ISD"
flux compactification.

S. Gandhi (Cornell University) Perturbing Flux Compactifications September 9, 2011 18 / 40



Motivation: Local Model Building

Bulk Compactification ⇐⇒ Boundary Conditions
Implement by:

Developing a systematic perturbation scheme to generate
solutions for arbitrary boundary values.

Turns out to be more general:

Applies to general boundary value problems in ANY "ISD"
flux compactification.

S. Gandhi (Cornell University) Perturbing Flux Compactifications September 9, 2011 18 / 40



Motivation: Local Model Building

Bulk Compactification ⇐⇒ Boundary Conditions
Implement by:

Developing a systematic perturbation scheme to generate
solutions for arbitrary boundary values.

Turns out to be more general:

Applies to general boundary value problems in ANY "ISD"
flux compactification.

S. Gandhi (Cornell University) Perturbing Flux Compactifications September 9, 2011 18 / 40



Triangularity: Setup and Assumptions

We consider IIB warped compactifications:

F̃5 = (1 + ?10) dα(y) ∧
√
− det gµν dx0 ∧ dx1 ∧ dx2 ∧ dx3

Gmnl = Gmnl(y) , m, n, l = 4, . . . 9

GµNL = 0 , µ = 0, . . . 3 , N , L = 0, . . . 9

τ = τ(y)
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Triangularity: Setup and Assumptions

ds2 = e2A(y)gµνdxµdx ν + e−2A(y)gmndymdyn

F̃5 = (1 + ?10) dα(y) ∧
√
− det gµν dx0 ∧ dx1 ∧ dx2 ∧ dx3

Gmnl = Gmnl(y) , m, n, l = 4, . . . 9
GµNL = 0 , µ = 0, . . . 3 , N , L = 0, . . . 9
τ = τ(y)

The background is Imaginary-Self-Dual (ISD):

G− = Φ− = 0, Φ± =
(
e4A ± α

)
, G± = (?6 ± i) G3

The fully corrected solution has small deviations from ISD.
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Gmnl = Gmnl(y) , m, n, l = 4, . . . 9
GµNL = 0 , µ = 0, . . . 3 , N , L = 0, . . . 9
τ = τ(y)

The background g (0)
mn is CY.

The fully corrected gmn can be distorted.
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Triangularity: Setup and Assumptions

ds2 = e2A(y)gµνdxµdx ν + e−2A(y)gmndymdyn

F̃5 = (1 + ?10) dα(y) ∧
√
− det gµν dx0 ∧ dx1 ∧ dx2 ∧ dx3

Gmnl = Gmnl(y) , m, n, l = 4, . . . 9
GµNL = 0 , µ = 0, . . . 3 , N , L = 0, . . . 9
τ = τ(y)

The background has constant axio-dilaton:

∇τ = 0

Corrected solution can have small running of τ .
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Triangularity: Setup and Assumptions

ds2 = e2A(y)gµνdxµdx ν + e−2A(y)gmndymdyn

F̃5 = (1 + ?10) dα(y) ∧
√
− det gµν dx0 ∧ dx1 ∧ dx2 ∧ dx3

Gmnl = Gmnl(y) , m, n, l = 4, . . . 9
GµNL = 0 , µ = 0, . . . 3 , N , L = 0, . . . 9
τ = τ(y)

We will perform an expansion in the small deviations from
ISD.
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Triangularity: Setup and Assumptions
Where do these assumptions come from:

Compactifications that are ISD have been exhibited by Giddings,
Kachru, and Polchinski (GKP): hep-th/0105097.
However there are moduli related to the size of the
compactification that remain massless.
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Triangularity: Setup and Assumptions
One solution:
Kachru-Kallosh-Linde-Trivedi (KKLT) Compactifications
(hep-th/0301240v2)

Start out with GKP compactification (ISD).
Add NonPerturbative (NP) effects to stabilize moduli.
Add anti-branes to break SUSY.
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Triangularity: Setup and Assumptions
KKLT Compactifications:

Both NP effects and anti-branes violate ISD conditions.
NP effects and SUSY breaking from antibranes come in at
suppressed scale.
=⇒ They produce tiny perturbations to the ISD background.
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Triangularity: Setup and Assumptions

More generally:

For all known stabilization scenarios, deviations from ISD are
suppressed.

=⇒ We have a well defined expansion in the size of these
deviations.
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Triangularity

For a general background, the IIB equations are intricately
coupled.

We show that the IIB equations about an ISD background take
a triangular form.

=⇒ We can decouple the equations easily.
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Triangularity: Scalar Example
Simple example:

k scalar functions ϕA(t) of one variable t.

d
dtϕ

(n)
A = N B

A ϕ
(n)
B + S(n)

A

where

N B
A = N B

A

(
ϕ(0)(t)

)
S(n)

A = S(n)
A

(
ϕ(m<n)(t)

)

Triangularity: N B
A =


• 0... . . .
• . . . •


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Triangularity: Scalar Example
If already solved for ϕ(m<n):

d
dtϕ

(n)
1 = N 1

1 ϕ
(n)
1 + S1 ⇒ ϕ

(n)
1 =

∫
dt ′ G1(t, t ′)S1(t ′) + ϕH1 (t)

Substitute
⇓

d
dtϕ

(n)
2 = N 2

2 ϕ
(n)
2 + N 1

2 ϕ
(n)
1 + S2 ⇒ ϕ

(n)
2 =

∫
dr ′G2(t, t ′)

×
(
N 2
2 ϕ

(n)
1 + S1

)
+ ϕH2 (t)

etc . . .
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Triangularity: In IIB Flux Compactifications
We find that, in natural variables (Φ±, G±, τ , gmn), the IIB equations
about an ISD background take a triangular form
(S.G., L McAllister, S Sjörs, ArXiv:1106.0002):

∇2
(0) Φ

(n)
− = SΦ− (φ(m<n))

d
(

Φ
(0)
+

G(n)
−

)
= −d

(
Φ

(n)
− G(0)

+
+ SG−, 1(φ(m<n))

)
+ SG−, 2(φ(m<n))

(?
(0)
6 + i) G(n)

− = SG−, 3(φ(m<n))

∇2
(0)τ(n) =

Φ
(0)
+

48i
G(0)

+
· G(n)

− + Sτ (φ(m<n))

−
1
2

∆
(0)

K g(n)
mn = −

Φ
(0)
+

32Im τ

(
G(0) pq

+ (m Ḡ(n)

− n) pq + G(n) pq
− (m Ḡ(0)

+ n) pq

)
+ 2(Φ−2

+ )(0)∇(mΦ
(0)
+
∇n)Φ

(n)
− + Sg (φ(m<n))

d
(

G(n)
+

)
= d
(

G(n)
− − 2i τ(n) H(0)

3 − SG+, 1(φ(m<n))
)

(?
(0)
6 − i) G(n)

+
= SG+, 2(φ(m<n))

−∇2
(0)(Φ−1

+ )(n) = ∇2
(n)(Φ−1

+ )(0) −
g2

s
96

Im τ
(n)|G(0)

+
|2

+
gs

96

(
G(0)

+
· Ḡ(n)

+
+ G(n)

+
· Ḡ(0)

+
+ 3G(0)

+ m1n1 l1
Ḡ(0)

+ m2n2 l2
gm1m2

(0)
gn1n2

(0)
g l1 l2

(n)

)
+
( gs

48
(Φ−1

+ )(0) |G+|2(0) − 2(Φ−4
+ )(0) (∇Φ+)2(0)

)
Φ

(n)
− + SΦ+

(φ(m<n))
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· Ḡ(n)

+
+ G(n)

+
· Ḡ(0)
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Triangularity: Summary of Method for Generating
Solutions

Basic ingredients: homogeneous solutions, ϕHA (t), Green’s
functions, GA(t, t ′) for individual, uncoupled equations.

First work down triangle for order 1, then plug in for order 2
sources, etc.

Solutions to the full nonlinear equations are determined
algebraically as functions of the homogeneous solutions.

The forms of the homogeneous solutions are set by boundary
conditions.
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Warped Throats: Explicit Solution for AdS Region
In the AdS5 × (Angular Space)5 region of the throat:

We can explicitly exhibit the basic ingredients.
Homogeneous Solutions:

φH(r ,Ψ) =
∑

I
cI

( r
rUV

)∆(I)−4
YI(Ψ)

Green’s Functions:

G(r ,Ψ; r ′,Ψ′) =
∑

I
g(r , r ′) Y ∗I (Ψ′) YI(Ψ)

In terms of angular harmonics on base B (see A. Ceresole, G.
Dall’Agata, R. D’Auria, S. Ferrara, hep-th/9907216, 9905226 for
T 1,1).
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Warped Throats: Explicit Solution for AdS Region

(I. Klebanov, A. Murugan, hep-th/0701064): Scalar homogeneous
solutions and Green’s function.

(Baumann, Dymarsky, Kachru, Klebanov, McAllister,
arXiv:1001.5028): Flux homogeneous solution.

(S.G., L. McAllister, S. Sjörs, arXiv:1106.0002): Flux Green’s
function, metric homogeneous solution and Green’s funciton.
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Warped Throat: Consistency

For a warped throat:

Modes scale with r as φH ∼ c∆

(
r

rUV

)∆−4
.

∆ is dimension of corresponding operator.

We a priori expect c∆ ∼ 1.

Then modes with ∆ ≤ 4 destroy the tip.

We need seemingly unnatural values for the coefficients,
c∆ .

(
rIR
rUV

)4−∆
.
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Warped Throat: Consistency
Natural suppression mechanism: KKLT Compactification

Background Klebanov-Strassler (KS) throat: ISD and SUSY.
Adding NP effects and uplifting breaks the background SUSY of the
throat.
Both effects come in at a small scale ∼

(
rIR
rUV

)
ΛUV.(

rIR
rUV

)
is typically exponentially small.
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Warped Throat: Consistency

For a KS throat, all relevant modes violate background SUSY.

=⇒ All these modes are sourced by NP effects or uplifting.

=⇒ All the c∆ for ∆ ≤ 4 are suppressed by powers of
(

rIR
rUV

)
.

Can show using a spurion analysis that c∆ .
(

rIR
rUV

)4−∆
for all

∆ ≤ 4.

Should be extendable to more general scenarios.
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Should be extendable to more general scenarios.

S. Gandhi (Cornell University) Perturbing Flux Compactifications September 9, 2011 34 / 40



Warped Throat: Consistency

For a KS throat, all relevant modes violate background SUSY.

=⇒ All these modes are sourced by NP effects or uplifting.

=⇒ All the c∆ for ∆ ≤ 4 are suppressed by powers of
(

rIR
rUV

)
.

Can show using a spurion analysis that c∆ .
(

rIR
rUV

)4−∆
for all

∆ ≤ 4.

Should be extendable to more general scenarios.

S. Gandhi (Cornell University) Perturbing Flux Compactifications September 9, 2011 34 / 40



Warped Throat: Consistency

For a KS throat, all relevant modes violate background SUSY.

=⇒ All these modes are sourced by NP effects or uplifting.

=⇒ All the c∆ for ∆ ≤ 4 are suppressed by powers of
(

rIR
rUV

)
.

Can show using a spurion analysis that c∆ .
(

rIR
rUV

)4−∆
for all

∆ ≤ 4.

Should be extendable to more general scenarios.

S. Gandhi (Cornell University) Perturbing Flux Compactifications September 9, 2011 34 / 40



Warped Throat: Consistency

For a KS throat, all relevant modes violate background SUSY.

=⇒ All these modes are sourced by NP effects or uplifting.

=⇒ All the c∆ for ∆ ≤ 4 are suppressed by powers of
(

rIR
rUV

)
.

Can show using a spurion analysis that c∆ .
(

rIR
rUV

)4−∆
for all

∆ ≤ 4.

Should be extendable to more general scenarios.

S. Gandhi (Cornell University) Perturbing Flux Compactifications September 9, 2011 34 / 40



Applications: Local Model Building
Local Model Building:

Elements in the bulk produce corrections to the effective action
for a system in the throat.
How do we get a handle on these?
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Applications: Local Model Building
To Incorporate:

Consider arbitrary deformations of the UV boundary conditions.
Propagate to the IR by solving SUGRA equations.
In the IR, each SUGRA field is well approximated by the handful
of relevant modes: ϕ(r ,Ψ) ≈ ∑∆≤4 c∆ f∆(r) Y∆(Ψ).
We can estimate the orders of magnitude of the c∆’s on general
grounds.
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Application: Deformations of Supersymmetric
Throats

V. Borokhov and S. Gubser, hep-th/0206098:

Considered deformations of KS solution preserving the
background isometries (Papadopoulos-Tseytlin ansatz).

Obtained first order radial equations with an ‘almost triangular’
structure.

Can solve in terms of simple integrals over the whole KS throat.
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Application: Deformations of Supersymmetric
Throats

In our approach:

We allow for arbitrary angular dependence (not just the singlet
modes).

Our solution can be extended to all orders.

Only valid in the approximately AdS region of the throat.
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Application: Deformations of Supersymmetric
Throats

Could apply to:

Non-SUSY AdS/CFT dual pairs:

S. Kuperstein and J. Sonnenschein, hep-th/0309011.

Supergravity solutions for anti-branes at the tip:

O. DeWolfe, S. Kachru and M. Mulligan, arXiv:0801.1520;
I. Bena, M. Graña and N. Halmagyi, arXiv:0912.3519;
A. Dymarsky, arXiv:1102.1734.
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Conclusion

We find that the IIB equations on an ISD background are
triangular.

This implies that we can solve for all fields / orders in terms of
ϕH(y), G(y , y ′).

For CY cones we have explicitly exhibited ϕHA (y), GA(y , y ′).

Could be useful for local model building, studying deformations
of supersymmetric throats, . . .

Open questions: Global constraints? Consistency beyond KKLT?
Solutions on more general CY’s.
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