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We demonstrate that possession of a single negative mode is not a sufficient criterion for an instanton
to mediate exponential decay. For example, de Sitter space is generically stable against decay via
the Coleman – De Luccia instanton. This is analogous to the semi-classical stability of de Sitter
space against black hole nucleation.

A warm-up with quantum mechanics It is well
known that certain quantum mechanical states are meta-
stable, an example of which is illustrated in Fig. 1 below.
(We assume the reader is familiar with the seminal review
by S. Coleman[1].)
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FIG. 1: A quantum mechanical potential exhibiting exponen-
tial decay. |〈Ψ0| exp(−iHt)|Ψ0〉|2 ≈ exp(−Γ|t|) .

We can calculate the decay rate using the Euclidean
path integral formalism:

〈
x0|e−HT |x0

〉
=

∫
[dx] e−SE [x] . (1)

Evaluating the Euclidean action for the simplest non-
trivial instanton is equivalent to integrating

∫
p dx across

the barrier and back. Thus ‘the bounce’ action is given
by

SB = 2
∫ x1

x0

dx
√

2m(V (x)− V0) , (2)

and the decay rate is obtained by examining the dilute
instanton correction to the perturbative ground state’s
energy:

Enonpert. ∼ − i

4
exp(−SB) . (3)

The decay rate is thus

Γ ∼ 1
2e−SB . (4)
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We have preserved an important factor of 1/2 in the
decay rate for illustrative purposes later on. The semi-
classical approximation allows the path integral to be
evaluated in the Gaussian approximation, i.e., as the
square root of a functional determinant, except care must
be taken with the negative and zero eigenvalues.

Heuristically speaking, the energy of the false vacuum
|Ψ0〉 has nonzero imaginary part. More precisely, if the
false vacuum is normalizable, and the energy eigenstates
are not, the false vacuum cannot be thought of as an
approximate energy eigenstate, no matter how sharply
peaked it is in the energy basis. Such an initial state will
experience exponential decay. However, if the false vac-
uum |Ψ0〉 is spectrally composed of the discrete portion
of the Hamiltonian H, no decay will occur. An example
of such a stable “false vacuum” is given by the potential
in Fig. 2.
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FIG. 2: A quantum mechanical potential with a stable “false
vacuum” |Ψ0〉. We assume e−SB % 1.

By changing a portion of the potential far away from
“the bounce,” we have nevertheless stabilized the false
vacuum. The false vacuum can now be thought of as
an approximate energy eigenstate. In the Euclidean for-
malism, this is because despite having a negative mode
locally, the path integral is convergent, and so only real
contours are integrated over.

A convenient basis for the space of Euclidean paths is
given by ϕλ, the eigensolutions to the second functional
variation of the action about the one-instanton solution
xB (the bounce). It is here where the single negative
mode is manifest, and we plot the Euclidean action for
the above two potentials in Fig. 3 below. The same in-
stanton has vastly different interpretations for the two

decay rate

=  ground state of perturbative Hamiltonian|Ψ0〉

〈Ψ0|Ψ0〉 = 1
〈Efv|Efv〉 = ∞

We will calculate this

There is no energy eigenstate which 
resembles the false vacuum.

“false vacuum”

〈Efv|x|Efv〉 = ∞

big difference:



Early time behavior:   Probability current flows outward.



animation

Early time behavior:   Probability current flows outward.

Late time behavior:   Survival probability is zero.  (not pictured)
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〈
xf |e−iHt|xi

〉
=

∫
[dx]eiS[x]

This is the definition of the path integral
(consistent with Feynman’s pole prescription)

SE =
∫ T/2

−T/2

(
1
2 ẋ2 + V (x)

)
dτ

On the left: Large      picks
 out the lowest energy states  

V (x)→ −V (x)
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T On the right: We will use method of steepest 
descent to calculate the late time behavior of 

the low energy states.

S. Coleman 
“The uses of instantons”

t→ −it = −T



→ e−(Efv+δfv)T |〈x0|Ψ0〉|2

Assume no degeneracies in 

non-perturbative correction
 to false-vacuum “energy”

(no resonances)

Tlarge

〈
x0|e−HT |x0

〉
=

∑

n

〈x0| e−(Hpert.+∆)T |n〉 〈n|x0〉
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If we treat        like an 
eigenstate of     , its energy 

has an imaginary part.

Actually,      has off-
diagonal terms which 

preserve unitarity.

Ψ0
H

∆

Hpert.

H = Hpert. + ∆

Degeneracies mean          basis has 
arbitrariness which may be totally 

destroyed by effects of       . ∆
δfv = − i

2
Γ

Hpert.

   is 
unbounded below

H



Method of steepest descent
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xcl

SE [xcl] +
1
2
δx
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δx2

∣∣∣∣
xcl

δx
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≈
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xcl

e−SE [xcl]

√√√√
1

det
[

δ2SE
δx2

]
∫

[dx]e−SE [x]

SE [x]

SE

many minima

many Gaussians

e−SE
∫ ∞

−∞

dx√
π
e−λx2

= 1√
λ

δ2SE

δx2

∣∣∣∣
xcl

= −∂2
τ + V ′′ (xcl(τ))

Fluctuations 
=   measure
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any number
of bounces       .≥ 0

perturbative

non-perturbative

SE =
∫ T/2

−T/2

(
1
2 ẋ2 + V (x)

)
dτ

first result: E = V (x0)

x0
|

+ !
2

√
V ′′(x0) + O(!2)

x1

x0

x2

x3

SE [x0] = V0T

SE [x1] = V0T + SB

SE [xn] = V0T + nSB

SB = 2
∫ √

2 (V (x)− V0)dx

≈
∑

xcl

e−SE [xcl]

√√√√
1

det
[

δ2SE
δx2

]

∫
[dx]e−SE [x]

zero modes!     .

negative modes!
n
n

“instantons”

zero mode negative
mode



SE

e−SE

Each zero mode contributes a large, but finite factor     .
Each “dangerous” negative mode 

contributes a tiny imaginary factor.

T

Zero modes make a 
small effect observable at

 macroscopic time (extensive).

Dangerous negative 
modes allow for 

exponential decay

When a physical quantity appears divergent, it is defined via analytic continuation.  We must choose 
amongst the various branches by appealing to the physics.  In the case at hand, the “unstable state” is 
defined as the ground state of an analytically deformed potential.  In the figure above, every maxima 

marks a crossroad.  Only the one leading to an actual divergence must be avoided.  

benign negative modes
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−∞
e+|λ|x2
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i

2

√
π

|λ|

∫ T/2

−T/2
e−0τ2

dτ = T
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factor of 1/2. 
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The asymmetric double well

ground stateV (x)

En

|E0 〉

not a perturbation of the symmetric double well!

“small” lifting compared to....zero?



|E1 〉

1. Fix 2 boundary 
conditions here

2. Choose energy for 
convergence here

3. We are left with no free parameters.  All wave 
functions will have a growing and a decaying

mode with         coefficients.  One of them will thus 
always dominate, and all solutions are primarily 

supported on the left, or the right.

O(1)

A Stable False Vacuum!



















The asymmetric double well 
has a stable false vacuum
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The (LHS) perturbative vacuum is an approximate energy 
eigenstate when               .SB ! 1

|Ψ0 〉 ≈ |En 〉



∣∣〈x|e−iHt|Ψ0

〉∣∣2



∣∣〈x|e−iHt|Ψ0

〉∣∣2



V!x"

The false vacuum cannot decay because there are no excited 
true vacuum states with overlapping energy.  This is found 

experimentally in cavity QED.

∆Etv ∼ 1/!
∆EΨ0 ≈ Γ ∼ e−SB

The true vacuum must 
be very large 

for instability to be generic.
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density of states set 
by volume peak width      set by Γ e−SB

Γ ∼ e−SB
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! SB

convergent
path integral
" # 0

divergent
path integral
" $ 0

negative
mode

perturbative
vacuum Gaussian

approximation

Sagredo's
missing 1!2

c%1

SE"xB & c%1'%1#

x

V!x"

The instanton formalism appears to predict exponential 
decay.  The resolution is that the single negative mode is 

rendered benign by “compactifying” the true vacuum.

SE =
∫ T/2

−T/2

(
1
2 ẋ2 + V (x)

)
dτ

The double well has Euclidean 
action bounded below!

did we even 
look over here?



For the double well, “the bounce” has a 
benign negative mode.  The lower action 
solutions to either side of “the bounce” 
are both finite.  The contribution to the 
partition function from “the bounce” is 

negligible. 
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The Schwinger model

S = −
∫ (

1
4F 2 + 1

2DµΦDµΦ + m2

2 Φ̄Φ
)

d2x + e
2π θ

∫
F−−−

!E = ∗F
!E !E + e

(a scalar)
!E

+ −

Confinement:

a meson

All quarks undergo piecewise uniform 
acceleration

vacuum electric 
field  =       . θe

2π

m m
There is no photon: low energy 

mesons are stable



Pair production (vacuum instability)

Exponential decay of the false vacuum is calculated precisely as 
it was in quantum mechanics:

“The Bounce” = 

2 zero modes (translations in      )
Negative mode corresponds to dilatations of the bubble

domain wall in 2

1,1 → 2

2

SE = 2πrm− πr2ε

!Eout − !Ein = ±e

The Schwinger model SE =
∮

∂Σ
m−

∫

Σ
ε

S1
!Ein

!Eout ε =
1
2

(
"E2

out − "E2
in

)

rB =
m

ε



Nucleation rate per unit length
〈

!E
∣∣e−HXT

∣∣ !E
〉

=
∫

[dΣ]e−SE [Σ]

decay rate per unit volume

Sagredo’s missing factor

Γ =
1
2

det
[∣∣∣ δ2SE

δ∂Σ2

∣∣∣
]
e−SB

− 1
2′

〈H〉 =
1
2

!E2 − i
e !E

4π
exp

(
−πm2/e !E

)

=
e !E

2π
exp

(
−πm2/e !E

)

SE = m

∮

∂Σ
ds + "E2

2

∫

Σ
d2x

!Ein − !Eout = ±e



What happens if we compactify 
the Schwinger model on a circle?

As we dilatate the 
instanton on 

the cylinder,  it will 
overlap itself. 

In the probe 
approximation, 

this is irrelevant:

But if we include the back-reaction
 on the electric field, 

the action is bounded below.

SE = 2πrm− πr2ε

⇒ Γ = 0

⇒ Γ > 0

The negative 
mode is actually 

“benign”

This can be confirmed by the 
method of Bogolyubov coefficients.

This can be confirmed by explicit computation 
of the discrete spectrum when

The negative 
mode is still 
“dangerous”

Γ!! 1/!



3+1 d QFT in flat space

Exponential decay of the false vacuum is calculated precisely as 
it was in the Schwinger model:

Negative mode corresponds to dilatations of the bubble

Γ ∼ e−SB

1,3 → 4

4 zero modes (translations in        )4

SB =
27π2µ4

2ε3

“The Bounce” = S3 4domain wall in

ds2 → dτ2 + dx2 + dy2 + dz2

SE = µ

∫

S3
d3x − ε

∫

B4
d4xIntegrate out the UV:

only domain walls remain

SE =
∫

4

1
2∂µφ∂µφ + V (φ)d4x

It is “dangerous.”

a.k.a. Brown - Teitelboim



QFT in de Sitter space

S1 =
∫

dφ
√

2V0(φ)

S1 =
∫

dφ
√

V0(φ) (2− f(φ)V0(φ))

S1 =
∫

π1ddφ

S1 =
∫

πφ
1ddφ

∫
dH1d = −ε

Hφ
1d(φ) Hφ

1d(ρ)

H1d =
1− γ

f
− V

H1d = −V+ +O(ε)

Hφ
1d(ρ) :=

∫
dHφ

1d = −3
∫

ȧ

a

(πφ
1d)

2

γ
dρ

H1d = E +O(ε)︸ ︷︷ ︸
−Hφ

1d = V+ −O(ε)

H = 0

ε ≈ −3
ȧ(ρ̄)
a(ρ̄)

S1

dH

dρ
= −∂L

∂ρ

S1 × S3 S4

a(ρ) $ sin(

√
−Hφ

1d

3M2
P

ρ)

a(ρ) $ sinh(

√
Hφ

1d

3M2
P

ρ)

=⇒ ȧ

a
>

√
Hφ

1d

3M2
P

ε ≤

√
−3V+

M2
P

S1 =⇒

Tµν

V0 ≈
2
f
− IRscale =⇒ S1 ∼

√
2IRscale∆φ

λ = g2
Y MN ( 1 mW = φ

Poincaré + SE.H.
E + some messy grav. corrections since φ(ρ) begins and ends at rest (γ = 1). φ(ρ)

becomes multi-valued. φ(ρ) becomes multi-valued. φ(ρ) becomes multi-valued!

3

false vacuum

bubble wall

true vacuum

B4

B4

S4
ds2 = (1− r2

l2
)dτ2 + (1− r2

l2
)−1

(
dr2 + r2dΩ2

)

see, however, recent 
work by Polyakov



!SCDL

including
back reaction
" # 0

probe
approximation
" $ 0

negative
mode

Gaussian
approximation

Sagredo's
missing 1!2

!Π Π 2 Π
Θ

SE"Θ #
Coleman - De Luccia action as 

a function of bubble radius

The Coleman - De Luccia negative mode is benign
in de Sitter space.

F4

F4 = const.



Caveats
De Sitter space is not a box: there is certainly a continuous 

spectrum, so our intuition about finite volumes is not useful.

Just because there is a stable de Sitter false vacuum doesn’t mean 
it is the relevant one (for, say, eternal inflation).  I have argued in 

favor of the existence of a de Sitter invariant false vacuum.  
(There is no Poincare invariant false vacuum in flat space.)′

Formalism predicts no exponential decay in dS for any parameter 
range.  We can be sure this breaks down at low curvature just like 

finite volume QFT, but explicit verification is difficult.

MPl →∞

What about the Gibbons Hawking temperature?  Is that an external 
heat bath, making QFT in de Sitter space (static patch) non-unitary?  

Throughout my analysis I assume GH entropy is entanglement 
entropy, not an external heat bath.

A toy model...



!1 1 2 3

!3

!2

!1

1

2

3

An example where back-reaction can be 
ignored:  semi-bounded 1+1d Rindler 

space with a uniform electric field.

Schwinger pairs are produced at rest w.r.t. the initial 
conditions (instantaneously generated electric field).

Even a low acceleration Rindler observer will not 
experience vacuum decay.

Virtual pair production           thermal activation            quantum tunneling

by an argument similar to Brown & Weinberg

no firm boundary between:

!E = 0

!E = e



Anti- de SitterFlat De Sitter
False vacuum is 
always unstable

(neglecting gravitational
back-reaction)

False vacuum unstable 
if energy difference is 

large enough

False vacuum is 
stable.  

Black holes eat up 
space at any nonzero 

temperature.

Black hole instability 
only if temperature 

is large enough

Vacuum instability 
Black hole instability

vs.

Gross - Perry - Yaffe

Black holes are 
insignificant 
fluctuations

stable

Ginsparg - Perry Hawking - Page

Coleman Coleman - De Luccia

unstable depends

an analogy



Conclusion
• At semi-classical level, de Sitter space is stable

• CDL instanton does not mediate decay in dS

• Method of Bogolyubov coefficients does not predict 
decay unless backreaction is ignored. 

• de Sitter space is known to be stable against black hole 
nucleation

• This is not a question of quantum gravity, which we ignore

• The global picture of the Landscape is complex, but it is far 
from clear that the Coleman - De Luccia instanton is 
applicable.

*

*I assume QFT in de Sitter space is unitary, 
i.e., there is no external heat bath.


