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exponential decay

(Tol exp(—iHt)|Wo)|* ~ exp(-T'|¢|)

We will calculate this— /
V(x)

decay rate

big difference:

“false vacuum” ‘\Ifo> = ground state of perturbative Hamiltonian



Early time behavior: Probability current flows outward.




Early time behavior: Probability current flows outward.

Late time behavior: Survival probability is zero. (not pictured)



S. Coleman

inStantOn mEthOd “The uses of instantons”

(W exp(—th)|\Ifo>|2 ~ exp(—I|t|)

<$f‘e_th|xi> St /[dx]ezS[x]

This 1s the definition of the path integral
(consistent with Feynman’s pole prescription)

t — —it =-T

T/2
Sg = / (3% + V(z)) dr
~T/2 Vi) — —V(2)

le i) = [ e~

On the left: Large 7T picks On the right: We will use method of steepest
descent to calculate the late time behavior of
the low energy states.

out the lowest energy states



H = Hpert. + A

Assume no degeneracies in ., ~ (no resonances)
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has an 1imaginary part. . .
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non-perturbative correction
to false-vacuum “energy” [(To| exp(—iHt)|To)|? ~ exp(—T|t|)



Method of steepest descent
0°SE
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any number
What are the z.; ! of bounces > 0.
—V(x) “instantons’
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Each zero mode contributes a large, but finite factor 7".

T/2 .
/ / o020 T Each “dangerous” negative mode
~T/2 contributes a finy imaginary factor.

benign negative modes
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Dangerous negative
modes allow for
exponential decay

Tty [T
/ R YA

Sagredo forgot this
factor of 1/2.

Z.ero modes make a
small effect observable at
macroscopic time (extensive).

When a physical quantity appears divergent, it is defined via analytic continuation. We must choose

amongst the various branches by appealing to the physics. In the case at hand, the “unstable state” is

defined as the ground state of an analytically deformed potential. In the figure above, every maxima
marks a crossroad. Only the one leading to an actual divergence must be avoided.
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T, = m widely separated bounces

Sglzn] = Splzo] + nSp  ss =2 [V2V@) -~ Vs
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At large T
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[(Wo|exp(—iHt)| Vo) |2 ~ exp(—I'|t|)




- ground state

“small” lifting compared to....zero!?




A Stable False Vacuum!

n=1

Eq)

L, o

1. Fix 2 boundary 2. Choose energy for
conditions here convergence here




ALY

N




A/

AN




SN




/WUV\&{/



SN




VIR o/




A



JAVYS
VU




The asymmetric double well

has a stable false vacuum
V(x)

X

The (LHS) perturbative vacuum is an approximate energy
eigenstate when S > 1.
Vo) = |En)



[(zle™ ™ W) |




[(zle™ ™ W) |




The false vacuum cannot decay because there are no excited
true vacuum states with overlapping energy. This is found
experimentally in cavity QED.

ABEy, ~ T ~ e °F
AEth N 1/€

The true vacuum must
be very large
for instability to be generic.
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The 1nstanton formalism appears to predict exponential
decay. The resolution 1s that the single negative mode is

rendered benign by “compactifying”

Selxp + c_1-1]

convergent
path integrals
r=0 :

negative
mode

Gaussian_,
approximation

The double well has Euclidean
action bounded below!

se= |

the true vacuum.
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did we even *
look over here?




For the double well, “the bounce™ has a benign

benign negative mode. The lower action \
solutions to either side of “the bounce” R
are both finite. The contribution to the g Zgm
E

partition function from “the bounce” 1s

negligible. ~L"

tolobal min




The Schwinger model

vacuum electric

field = ¢ .
27T

S:—/(iF2+%lﬂ>D“@+%2<I><I>) d2x+§9/F

— — E m— S F (a scalar)
E E +e
T There 1s no photon: low energy
mesons are stable
d IMcSOon

All quarks undergo piecewise uniform

Confinement: .
acceleration



Pair production (vacuum instability)
The Schwinger model Sg 27{ m —/ €
0> >

Exponential decay of the false vacuum i1s calculated precisely as
it was in quantum mechanics:

Eout Boug = 5 = € — 1 (EQ — E2 )
Rl,l _ RQ 2

“The Bounce” = Sl domain wall in RQ

2 zero modes (translations in IR2)

Negative mode corresponds to dilatations of the bubble

Sg = 2nrm — rée

~



N
Nucleation rate per unit length
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Sp = m¢ ds + %/d%
0% >

| ek
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Sagredo’s missing factor Q
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What happens if we compactify
the Schwinger model on a circle?

/ As we dilatate the In the probe
instanton on approximation,
the cylinder, it will ~ this is irrelevant: 5

overlap itself.

Sg =2mrm — wr-e

= 1">(

The negative

mode 1s still

This can be confirmed b)’ the “danger()us”
method of Bogolyubov coefficients.

But if we include the back-reaction The negative
on the electric field, mode 1s actually

the action is bounded below. benign

=1 =0

This can be confirmed by explicit computation
of the discrete spectrum when [/ <« 1/2



3+1 d QFT in flat space

Sg = [30,00"¢ + V(¢)d*x
]R4

Integrate; out the UV: | S = u B _ o
only domain walls remain g3 B4

a.k.a. Brown - Teitelboim

Exponential decay of the false vacuum 1s calculated precisely as
it was 1n the Schwinger model:

RI,S N IR4 ds® — dr° + dz? + dy® + d2?
“The Bounce” = S° domain wall in IR%

4 zero modes (translations in ]R4)

Negative mode corresponds to dilatations of the bubble
It 1s “dangerous.”

2724
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QFT in de Sitter space
ds® = 1——)d¢ +(1——) P (dr? + r2dQ?)
S*..

[? [?
work by Polyakov

false vacuum

B4

S3
bubble wall

true vacuum

B4



Coleman - De Luccia action as

a function of bubble radius

Se(6)

Gaussian e

approximation

including F,

mode I'=0

-Scp

negative back reaction o

probe
approximation
['>0

|

F, = const.

The Coleman - De Luccia negative mode 1s benign

in de Sitter space.




Caveats

Mpl—>OO

De Sitter space 1s not a box: there 1s certainly a continuous
spectrum, so our intuition about finite volumes 1s not useful.

Just because there is a stable de Sitter false vacuum doesn’t mean
it 1s the relevant one (for, say, eternal inflation). I have argued in
favor of the existence of a de Sitter invariant false vacuum.
(There is no Poincaré invariant false vacuum in flat space.)

Formalism predicts no exponential decay in dS for any parameter
range. We can be sure this breaks down at low curvature just like
finite volume QFT, but explicit verification 1s difficult.

What about the Gibbons Hawking temperature? Is that an external
heat bath, making QFT in de Sitter space (static patch) non-unitary?
Throughout my analysis I assume GH entropy 1s entanglement
entropy, not an external heat bath.

A toy model...



An example where back-reaction can be
ignored: semi-bounded |+1d Rindler
space with a uniform electric field.

no firm boundary between:
Virtual pair production <= thermal activation €« quantum tunneling

by an argument similar to Brown & Weinberg

Schwinger pairs are produced at rest w.r.t. the initial
conditions (instantaneously generated electric field).

3,

Even a low acceleration Rindler observer will not
experience vacuum decay. |

\S]
T T




Vacuum instability

VS.
Black hole instability

an analogy

Flat Anti- de Sitter De Sitter

Flalse vacuun:)lls False vacuum unstable Eal .
awa).’s UnSFa .e if energy difference is alS€ vacuum IS
(neglecting gravitational large enough stable.
back-reaction) .
Coleman Coleman - De Luccia
Black holes eat up Black hole instability Black holes are
space at any honzero only if temperature insignificant
temperature. is large enough fluctuations
Gross - Perry - Yaffe Hawking - Page Ginsparg - Perry

unstable depends stable



Conclusion

At semi-classical level, de Sitter space is stable™
e CDL instanton does not mediate decay in dS

® Method of Bogolyubov coefficients does not predict
decay unless backreaction is ignored.

® de Sitter space is known to be stable against black hole
nucleation

This is not a question of quantum gravity, which we ignore

The global picture of the Landscape is complex, but it is far
from clear that the Coleman - De Luccia instanton is
applicable.

| assume QFT in de Sitter space is unitary,
i.e., there is no external heat bath.




