Missing Energy ($\$_{T}$) at the LHC: The Dark matter Connection

Tao Han

University of Wisconsin - Madison
at Cornell University (Sept. 25, 2009)
(Collaborators: Ian-Woo Kim, J.H. Song)

Outline

Outline

Missing Energy Events

Outline

Missing Energy Events

Missing Energy and New Physics at the LHC

Outline

Missing Energy Events

Missing Energy and New Physics at the LHC

Determining the Dark Matter Mass

Outline

Missing Energy Events

Missing Energy and New Physics at the LHC

Determining the Dark Matter Mass
"Antler Decay" Kinematics

Outline

Missing Energy Events

Missing Energy and New Physics at the LHC

Determining the Dark Matter Mass
"Antler Decay" Kinematics

Summary

Missing Energy Events

Pauli's "Neutron", Fermi's "Neutrino"

Missing Energy Events

Pauli's "Neutron", Fermi's "Neutrino"

In β decay, the electron energy spectrum is continuous:*

*KATRIN experiment: ${ }^{3} H \rightarrow{ }^{3} H e^{+}+e^{-}+\nu_{e}$ (hep-ex/0109033).

Missing Energy Events

Pauli's "Neutron", Fermi's "Neutrino"

In β decay, the electron energy spectrum is continuous:*

For a 2-body decay, $M \rightarrow a b$, the kinetic energy of a :

$$
K_{a}=\frac{\left(M-m_{a}\right)^{2}-m_{b}^{2}}{2 M}
$$

Missing Energy Events

Pauli's "Neutron", Fermi's "Neutrino"

In β decay, the electron energy spectrum is continuous:*

For a 2-body decay, $M \rightarrow a b$, the kinetic energy of a :

$$
K_{a}=\frac{\left(M-m_{a}\right)^{2}-m_{b}^{2}}{2 M}
$$

For a 3-body decay, $M \rightarrow a b c$, the kinetic energy of a :

$$
0 \leq K_{a} \leq \frac{\left(M-m_{a}\right)^{2}-\left(m_{b}+m_{c}\right)^{2}}{2 M}
$$

*KATRIN experiment: ${ }^{3} \mathrm{H} \rightarrow{ }^{3} \mathrm{He}^{+}+e^{-}+\nu_{e}$ (hep-ex/0109033).

- Pauli in 1930: Although only p^{+}, e^{-}detected, there is an undetected particle "neutron".
- Pauli in 1930: Although only p^{+}, e^{-}detected, there is an undetected particle "neutron".
(Chadwick in 1932 discovered the neutron, then Irene and Frederic Joliot-Curie observed neutron $+p^{+}$reaction.)
- Pauli in 1930: Although only p^{+}, e^{-}detected, there is an undetected particle "neutron".
(Chadwick in 1932 discovered the neutron,
then Irene and Frederic Joliot-Curie observed neutron $+p^{+}$reaction.)
- Fermi in 1934 renamed it "neutrino", and formulated the weak interaction for $n \rightarrow p^{+}+e^{-}+\bar{\nu}_{e}$:

$$
\mathcal{L}=G_{F} \bar{\psi}_{p} \psi_{n} \bar{\psi}_{e} \psi_{\nu_{e}}
$$

- Pauli in 1930: Although only p^{+}, e^{-}detected, there is an undetected particle "neutron".
(Chadwick in 1932 discovered the neutron,
then Irene and Frederic Joliot-Curie observed neutron $+p^{+}$reaction.)
- Fermi in 1934 renamed it "neutrino", and formulated the weak interaction for $n \rightarrow p^{+}+e^{-}+\bar{\nu}_{e}$:

$$
\mathcal{L}=G_{F} \bar{\psi}_{p} \psi_{n} \bar{\psi}_{e} \psi_{\nu_{e}}
$$

\Rightarrow The neutrino was the $1^{\text {st }}$ example for "missing energy".

- Pauli in 1930: Although only p^{+}, e^{-}detected, there is an undetected particle "neutron".
(Chadwick in 1932 discovered the neutron,
then Irene and Frederic Joliot-Curie observed neutron $+p^{+}$reaction.)
- Fermi in 1934 renamed it "neutrino", and formulated the weak interaction for $n \rightarrow p^{+}+e^{-}+\bar{\nu}_{e}$:

$$
\mathcal{L}=G_{F} \bar{\psi}_{p} \psi_{n} \bar{\psi}_{e} \psi_{\nu_{e}}
$$

\Rightarrow The neutrino was the $1^{\text {st }}$ example for "missing energy".
\Rightarrow The non-detectable nature introduced the $1^{\text {st }}$ "dark matter".
\dagger Though not certain to be the cosmic relic dark matter.
\dagger Chadwick's neutron is NOT dark.

- Pauli in 1930: Although only p^{+}, e^{-}detected, there is an undetected particle "neutron".
(Chadwick in 1932 discovered the neutron,
then Irene and Frederic Joliot-Curie observed neutron $+p^{+}$reaction.)
- Fermi in 1934 renamed it "neutrino", and formulated the weak interaction for $n \rightarrow p^{+}+e^{-}+\bar{\nu}_{e}$:

$$
\mathcal{L}=G_{F} \bar{\psi}_{p} \psi_{n} \bar{\psi}_{e} \psi_{\nu_{e}}
$$

\Rightarrow The neutrino was the $1^{\text {st }}$ example for "missing energy".
\Rightarrow The non-detectable nature introduced the $1^{\text {st }}$ "dark matter".
\dagger Though not certain to be the cosmic relic dark matter.
\dagger Chadwick's neutron is NOT dark.

- Neutrinos were caught!
\dagger Cowan-Reines in 1956: $\bar{\nu}_{e}+p \rightarrow e^{+}+n$.
\dagger Lederman-Schwartz-Steinberger in 1962 (BNL): $\nu_{\mu}+A l \rightarrow \mu+X$.
\dagger "DODUT collaboration" in 2000 (FNAL) : $c \rightarrow \nu_{\tau}+$ target $\rightarrow \tau+X$.
- Pauli in 1930: Although only p^{+}, e^{-}detected, there is an undetected particle "neutron".
(Chadwick in 1932 discovered the neutron,
then Irene and Frederic Joliot-Curie observed neutron $+p^{+}$reaction.)
- Fermi in 1934 renamed it "neutrino", and formulated the weak interaction for $n \rightarrow p^{+}+e^{-}+\bar{\nu}_{e}$:

$$
\mathcal{L}=G_{F} \bar{\psi}_{p} \psi_{n} \bar{\psi}_{e} \psi_{\nu_{e}}
$$

\Rightarrow The neutrino was the $1^{\text {st }}$ example for "missing energy".
\Rightarrow The non-detectable nature introduced the $1^{\text {st }}$ "dark matter".
\dagger Though not certain to be the cosmic relic dark matter.
\dagger Chadwick's neutron is NOT dark.

- Neutrinos were caught!
\dagger Cowan-Reines in 1956: $\bar{\nu}_{e}+p \rightarrow e^{+}+n$.
\dagger Lederman-Schwartz-Steinberger in 1962 (BNL): $\nu_{\mu}+A l \rightarrow \mu+X$.
\dagger "DODUT collaboration" in 2000 (FNAL) : $c \rightarrow \nu_{\tau}+$ target $\rightarrow \tau+X$.
"Dark matter direct detection".

$W^{ \pm}$and Missing Energy

- The discovery of $W^{ \pm} \rightarrow \ell_{\ell}$ (UA1/UA2 in 1983):

EXPERIMENTAL OBSERVATION OF ISOLATED LARGE TRANSVERSE ENERGY ELECTRONS WITH ASSOCIATED MISSING ENERGY AT $\sqrt{s}=540 \mathrm{GeV}$

At the Tevatron Run II:

At the Tevatron Run II:

The transverse momentum of ν or e has a Jacobian peak:

$$
\begin{aligned}
p_{T} & =E \sin \theta \\
\frac{d \hat{\sigma}}{d m_{e \nu}^{2} d p_{e T}^{2}} & \propto \frac{\Gamma_{W} M_{W}}{\left(m_{e \nu}^{2}-M_{W}^{2}\right)^{2}+\Gamma_{W}^{2} M_{W}^{2}} \frac{1}{m_{e \nu}^{2} \sqrt{1-4 p_{e T}^{2} / m_{e \nu}^{2}}}
\end{aligned}
$$

Transverse mass variable $W \rightarrow e \nu$:

$$
\begin{aligned}
m_{e \nu T}^{2} & =\left(E_{e T}+E_{\nu T}\right)^{2}-\left(\vec{p}_{e T}+\vec{p}_{\nu T}\right)^{2} \\
& =2 E_{e T} E_{T}^{\operatorname{miss}}(1-\cos \phi) \leq m_{e \nu}^{2}
\end{aligned}
$$

Transverse mass variable $W \rightarrow e \nu$:

$$
\begin{aligned}
m_{e \nu T}^{2} & =\left(E_{e T}+E_{\nu T}\right)^{2}-\left(\vec{p}_{e T}+\vec{p}_{\nu T}\right)^{2} \\
& =2 E_{e T} E_{T}^{\operatorname{miss}}(1-\cos \phi) \leq m_{e \nu}^{2}
\end{aligned}
$$

\Rightarrow If $p_{T}(W)=0$, then: $m_{e \nu T}=2 E_{e T}=2 E_{T}^{m i s s}$.

Transverse mass variable $W \rightarrow e \nu$:

$$
\begin{aligned}
m_{e \nu T}^{2} & =\left(E_{e T}+E_{\nu T}\right)^{2}-\left(\vec{p}_{e T}+\vec{p}_{\nu T}\right)^{2} \\
& =2 E_{e T} E_{T}^{\operatorname{miss}}(1-\cos \phi) \leq m_{e \nu}^{2}
\end{aligned}
$$

\Rightarrow If $p_{T}(W)=0$, then: $m_{e \nu T}=2 E_{e T}=2 E_{T}^{m i s s}$.
\Rightarrow If $p_{T}(W) \neq 0$ (some transverse motion δP_{V}), then:

$$
\begin{aligned}
& p_{e T}^{\prime} \sim p_{e T}\left[1+\delta P_{V} / M_{V}\right] \\
& m_{e \nu}^{\prime 2} T \sim m_{e \nu}^{2} T\left[1-\left(\delta P_{V} / M_{V}\right)^{2}\right] \\
& m_{e \nu}^{\prime 2}=m_{e \nu}^{2}
\end{aligned}
$$

Large(r) missing energy events at the Tevatron:

SM prediction:

Large(r) missing energy events at the Tevatron:

SM prediction:

First SUSY bound: CDF with $25.3 \mathrm{nb}^{-1}$ (!) (1989)
No events found with $\Psi_{T}>40 \mathrm{GeV} \Rightarrow \sigma_{M S S M}<0.1 \mathrm{nb}$

$$
\Rightarrow m_{\tilde{g}}, m_{\tilde{q}}>80 \mathrm{GeV} .
$$

Large(r) missing energy events at the Tevatron:

SM prediction:

First SUSY bound: CDF with $25.3 \mathrm{nb}^{-1}$ (!) (1989)
No events found with $\mathbb{H}_{T}>40 \mathrm{GeV} \Rightarrow \sigma_{M S S M}<0.1 \mathrm{nb}$

$$
\Rightarrow m_{\tilde{g}}, m_{\tilde{q}}>80 \mathrm{GeV} .
$$

Current SUSY bound: CDF with $2 \mathrm{fb}^{-1}$

$$
\begin{gathered}
\Rightarrow \sigma_{M S S M}<0.1 \mathrm{pb} \\
\Rightarrow m_{\tilde{g}}>320 \mathrm{GeV}, m_{\tilde{q}}>390 \mathrm{GeV} .
\end{gathered}
$$

Missing energy events in $e^{+} e^{-}$collisions

At LEP I (L3):
Neutrino counting:
$e^{+} e^{-} \rightarrow \gamma+\nu_{i} \bar{\nu}_{i}$
$N_{\nu} \approx 3$.

Missing Energy and New Physics at LHC

New Physics Expectation in \mathbb{F}_{T} :

Missing Energy and New Physics at LHC

New Physics Expectation in \mathbb{F}_{T} :

- Setting a bound for mass scale may not be too hard.
- Establishing \not_{T} signal would be challenging, \Rightarrow that would be a revolutionary discovery for BSM physics!
†M. Mangano, arXiv:0809.1567 [hep-ph].

It has been shown quite promising (mSUGRA at ATLAS甘)

¥D. R. Tovey, Eur. Phys. J. C4, N4 (2002).

Dark matter connection: LHC vs. Cosmology

Steps to follow:

- Discover missing-energy events at a collider and estimate the mass of the WIMP.
- Observe dark matter particles in direct detection experiments and determine whether their mass is the same as that observed in collider experiments.
§Baltz, Battaglia, Peskin and Wizansky, hep-ph/0602187.

Dark matter connection: LHC vs. Cosmology

Steps to follow:

- Discover missing-energy events at a collider and estimate the mass of the WIMP.
- Observe dark matter particles in direct detection experiments and determine whether their mass is the same as that observed in collider experiments.
Cosmic relic density:

$$
\Omega_{\chi} h^{2} \propto \frac{1}{\langle\sigma v\rangle} \sim \frac{m_{\chi}^{2}}{\alpha^{2}} .
$$

By crossing, $\chi \chi$ annihilation is related to scattering.

Dark matter connection: LHC vs. Cosmology

Steps to follow:

- Discover missing-energy events at a collider and estimate the mass of the WIMP.
- Observe dark matter particles in direct detection experiments and determine whether their mass is the same as that observed in collider experiments.
Cosmic relic density:

$$
\Omega_{\chi} h^{2} \propto \frac{1}{\langle\sigma v\rangle} \sim \frac{m_{\chi}^{2}}{\alpha^{2}}
$$

By crossing, $\chi \chi$ annihilation is related to scattering.

After that,

- Determine the qualitative physics model that leads to missing-energy events.
- Determine the parameters of this model that predict the relic density.
- Determine the parameters of this model that predict the direct and indirect detection cross sections.
- Measure products of cross sections and densities from astrophysical observations to reconstruct the density distribution of dark matter.

[^0]Optimistic conclusions were obtained for mSUGRA and for MSSM parameter-determinations:U
mSUGRA $: \tan \beta=10, \mathbf{A}_{0}=0, \mu>0, m_{t}=171.4 \mathbf{G e V}$

TFor a review: Baer and Tata, arXiv:0805.1905.
"Baltz, Battaglia, Peskin and Wizansky, hep-ph/0602187.

Optimistic conclusions were obtained for mSUGRA and for MSSM parameter-determinations:U
mSUGRA $: \tan \beta=\mathbf{1 0}, \mathrm{A}_{\mathbf{0}}=\mathbf{0}, \mu>\mathbf{0}, \mathbf{m}_{\mathrm{t}}=\mathbf{1 7 1 . 4} \mathbf{G e V}$

For most general cases, situations may be much more complex:*** The "LHC inverse problem": Data \Rightarrow many possible solutions!

TFor a review: Baer and Tata, arXiv:0805.1905.
IIBaltz, Battaglia, Peskin and Wizansky, hep-ph/0602187.
**Akani-Hamed, Kane, Thaler and Wang, hep-ph/0512190.

- Model-independent approaches at colliders

Determining the Dark Matter Mass

- Model-independent approaches at colliders

The difficulties:

- Two missing particles in each event;
- Unknown parton frame leads to less constrained kinematics. visible

visible

Edges, End-points etc.

- Simple decay chain: $\dagger \dagger$

In general, $m_{\ell \ell}^{\max }=M_{Z}-M_{X}$ (gives mass difference).
If Y is also on-shell, $m_{\ell \ell}^{\max }=\sqrt{\left(M_{Z}^{2}-M_{Y}^{2}\right)\left(M_{Y}^{2}-M_{X}^{2}\right)} / M_{Y}$.

††Bachacou, Hinchliffe and Paige, arXiv:hep-ph/9907518.

- Longer decay chain \pm 田

Similarly, $m_{q \ell \ell}^{m a x}=\sqrt{\left(M_{\widetilde{q}}^{2}-M_{\tilde{\chi}_{2}}^{2}\right)\left(M_{\tilde{\chi}_{2}}^{2}-M_{\tilde{\chi}_{1}}^{2}\right)} / M_{\tilde{\chi}_{2}}$.

\#\#Bachacou, Hinchliffe and Paige, arXiv:hep-ph/9907518.

- Longer decay chain \pm 田

Similarly, $m_{q \ell \ell}^{\max }=\sqrt{\left(M_{\tilde{q}}^{2}-M_{\tilde{\chi}_{2}}^{2}\right)\left(M_{\tilde{\chi}_{2}}^{2}-M_{\tilde{\chi}_{1}}^{2}\right)} / M_{\tilde{\chi}_{2}}$.

\dagger Only probe mass differences.
\dagger May encounter combinatoric ambiguities.

Fully Constructable Kinematics

Kinematical on-shell conditions**

*Cheng, Gunion, Z. Han and McElrath, arXiv:0905.1344.

Fully Constructable Kinematics

Kinematical on-shell conditions*

Assume:

- n signal events: particles 3,5,7; 4,6,8 observed; 1, 2 missing.
- Unknowns: masses $N, X, Y, Z(4) ; 4$-momenta of $1,2(8 n) \Rightarrow 4+8 n$.

[^1]
Fully Constructable Kinematics

Kinematical on-shell conditions**

Assume:

- n signal events: particles 3,5,7; 4,6,8 observed; 1, 2 missing.
- Unknowns: masses $N, X, Y, Z(4) ; 4$-momenta of $1,2(8 n) \Rightarrow 4+8 n$.
- Constraints: missing transverse momenta (x, y): $2 n$. on-shell conditions (both chains) $8 n$. Total $\Rightarrow 10 n$.

[^2]
Fully Constructable Kinematics

Kinematical on-shell conditions**

Assume:

- n signal events: particles 3,5,7; 4,6,8 observed; 1, 2 missing.
- Unknowns: masses N, X, Y, Z (4); 4-momenta of $1,2(8 n) \Rightarrow 4+8 n$.
- Constraints: missing transverse momenta (x, y): $2 n$. on-shell conditions (both chains) $8 n$. Total $\Rightarrow 10 n$.

$$
\text { Let constraints } \geq \text { unknowns } \Rightarrow n \geq 2 \text {. }
$$

[^3]
Fully Constructable Kinematics

Kinematical on-shell conditions**

Assume:

- n signal events: particles 3,5,7; 4,6,8 observed; 1, 2 missing.
- Unknowns: masses $N, X, Y, Z(4) ; 4$-momenta of $1,2(8 n) \Rightarrow 4+8 n$.
- Constraints: missing transverse momenta (x, y): $2 n$. on-shell conditions (both chains) $8 n$. Total $\Rightarrow 10 n$.

$$
\text { Let constraints } \geq \text { unknowns } \Rightarrow n \geq 2 \text {. }
$$

\dagger With many events (n), it's an over-constrained system.
\dagger If only 3 on-shell particles in each chain, there will be fewer constraints than unknowns.

```
*Cheng, Gunion, Z. Han and McElrath, arXiv:0905.1344.
```


*Cheng, Gunion, Z. Han and McElrath, arXiv:0905.1344.

*Cheng, Gunion, Z. Han and McElrath, arXiv:0905.1344.

Remarks:

- Very selective channels.
- Very restrictive kinematics.
- Realistic experimental conditions will further dilute the solutions.

[^4]
Transverse Mass Variables $M_{T 2}$

In the attempt to determine the absolute masses (parent and missing one), without fully reconstructing the events, $M_{T 2}$ was introduced.*
*C. Lester and D. Summers, hep-ph/9906349.

Transverse Mass Variables $M_{T 2}$

In the attempt to determine the absolute masses (parent and missing one), without fully reconstructing the events, $M_{T 2}$ was introduced.*

Recall the invariant mass/transverse mass of $a b$ (or $e \nu$):

$$
m_{a b}^{2}=m_{a}^{2}+m_{b}^{2}+2\left(E_{T}^{a} E_{T}^{b} \cosh \Delta \eta-\bar{p}_{T}^{a} \cdot \bar{p}_{T}^{b}\right) \geq m_{T}^{2}
$$

Transverse Mass Variables $M_{T 2}$

In the attempt to determine the absolute masses (parent and missing one), without fully reconstructing the events, $M_{T 2}$ was introduced.*

Recall the invariant mass/transverse mass of $a b$ (or $e \nu$):

$$
m_{a b}^{2}=m_{a}^{2}+m_{b}^{2}+2\left(E_{T}^{a} E_{T}^{b} \cosh \Delta \eta-\bar{p}_{T}^{a} \cdot \bar{p}_{T}^{b}\right) \geq m_{T}^{2} .
$$

Consider a pair production/decay $D_{1} \rightarrow a_{1} b_{1}, D_{2} \rightarrow a_{2} b_{2}$:

$$
m_{D}^{2} \geq \max \left(m_{T D_{1}}^{2}, m_{T D_{2}}^{2}\right)
$$

[^5]
Transverse Mass Variables $M_{T 2}$

In the attempt to determine the absolute masses (parent and missing one), without fully reconstructing the events, $M_{T 2}$ was introduced.*

Recall the invariant mass/transverse mass of $a b$ (or $e \nu$):

$$
m_{a b}^{2}=m_{a}^{2}+m_{b}^{2}+2\left(E_{T}^{a} E_{T}^{b} \cosh \Delta \eta-\bar{p}_{T}^{a} \cdot \bar{p}_{T}^{b}\right) \geq m_{T}^{2}
$$

Consider a pair production/decay $D_{1} \rightarrow a_{1} b_{1}, D_{2} \rightarrow a_{2} b_{2}$:

$$
m_{D}^{2} \geq \max \left(m_{T D_{1}}^{2}, m_{T D_{2}}^{2}\right)
$$

$$
M_{T 2}^{2}\left(m_{a 1}, m_{a 2} ; m_{b}\right)=\min _{\left|\vec{p}_{T b 1}+\vec{p}_{T b 2}\right|=\not \&_{T}}\left[\max \left(m_{T 1}^{2}, m_{T 2}^{2}\right)\right]
$$

Transverse Mass Variables $M_{T 2}$

In the attempt to determine the absolute masses (parent and missing one), without fully reconstructing the events, $M_{T 2}$ was introduced.*

Recall the invariant mass/transverse mass of $a b$ (or $e \nu$):

$$
m_{a b}^{2}=m_{a}^{2}+m_{b}^{2}+2\left(E_{T}^{a} E_{T}^{b} \cosh \Delta \eta-\bar{p}_{T}^{a} \cdot \bar{p}_{T}^{b}\right) \geq m_{T}^{2}
$$

Consider a pair production/decay $D_{1} \rightarrow a_{1} b_{1}, D_{2} \rightarrow a_{2} b_{2}$:

$$
m_{D}^{2} \geq \max \left(m_{T D_{1}}^{2}, m_{T D_{2}}^{2}\right)
$$

Only knowing $\left|\vec{p}_{T b 1}+\vec{p}_{T b 2}\right|=$ 生 $_{T}$, one defines:

$$
M_{T 2}^{2}\left(m_{a 1}, m_{a 2} ; m_{b}\right)=\min _{\left|\vec{p}_{T b 1}+\vec{p}_{T b 2}\right|=\mathscr{H}_{T}}\left[\max \left(m_{T 1}^{2}, m_{T 2}^{2}\right)\right] .
$$

This is a "functional":
\dagger For each event (\mathbb{H}_{T}), run through trial $\vec{p}_{T b 1}$ and $\vec{p}_{T b 2}=\vec{F}_{T}-\vec{p}_{T b 1}$:
\rightarrow It is smaller than the true $\max \left(m_{T D_{1}}^{2}, m_{T D_{2}}^{2}\right)$;
\rightarrow With many events, it still doesn't go over it.

```
*C. Lester and D. Summers, hep-ph/9906349.
```

Thus, one defines:*

$$
M_{T 2}^{\max }\left(m_{b}\right)=\max _{(\text {all events })} M_{T 2}\left(m_{a 1}, m_{a 2} ; m_{b}\right)
$$

a function of the trial missing mass m_{b}.
*W.S. Cho, K. Choi, Y.G. Kim, C.B. Park, arXiv:0709.0288.

Thus, one defines:**

$$
M_{T 2}^{\max }\left(m_{b}\right)=\max _{(\text {all events })} M_{T 2}\left(m_{a 1}, m_{a 2} ; m_{b}\right)
$$

a function of the trial missing mass m_{b}.
The kink structure: \dagger
When varying the trial missing mass below to above the true value of m_{b}, the curve $M_{T 2}^{\max }\left(m_{b}\right)$ (for multi-body decay) changes the slope:

*W.S. Cho, K. Choi, Y.G. Kim, C.B. Park, arXiv:0709.0288.
†W.S. Cho, K. Choi, Y.G. Kim, C.B. Park, arXiv:0711.4526.

Thus, one defines:*

$$
M_{T 2}^{\max }\left(m_{b}\right)=\max _{(\text {all events })} M_{T 2}\left(m_{a 1}, m_{a 2} ; m_{b}\right)
$$

a function of the trial missing mass m_{b}.
The kink structure: 母
When varying the trial missing mass below to above the true value of m_{b}, the curve $M_{T 2}^{\max }\left(m_{b}\right)$ (for multi-body decay) changes the slope:

\dagger For simple 2-body decay, no clear kink;
\dagger For multi-body decays, combinatorics dilute the kink.
*W.S. Cho, K. Choi, Y.G. Kim, C.B. Park, arXiv:0709.0288.
†W.S. Cho, K. Choi, Y.G. Kim, C.B. Park, arXiv:0711.4526.

D, a SM-like particles; B, X carry a new quantum number.

D, a SM-like particles; B, X carry a new quantum number. Advantages:

- More constrained kinematics: M_{D} is known from other SM modes.

D, a SM-like particles; B, X carry a new quantum number. Advantages:
- More constrained kinematics: M_{D} is known from other SM modes.
- Many channels:

$$
: \mathrm{MSSM}: \quad H \rightarrow \tilde{\chi}_{2}^{0}+\tilde{\chi}_{2}^{0} \rightarrow Z \tilde{\chi}_{1}^{0}+Z \tilde{\chi}_{1}^{0}
$$

$$
Z^{\prime} \text { SUSY: } \quad Z^{\prime} \rightarrow \tilde{\ell}^{+}+\tilde{\ell}^{-} \rightarrow \ell^{-} \tilde{\chi}_{1}^{0}+\ell^{+} \tilde{\chi}_{1}^{0}
$$

$$
\text { UED: } \quad Z^{(2)} \rightarrow L^{(1)}+L^{(1)} \rightarrow \ell^{+} \gamma^{(1)}+\ell^{-} \gamma^{(1)}
$$

LHT: $\quad H \rightarrow t_{-}+\bar{t}_{-} \rightarrow t A_{H}+\bar{t} A_{H}$.
ILC: $\quad e^{+} e^{-} \rightarrow B_{1}+\bar{B}_{2} \rightarrow a_{1} X_{1}+a_{2} X_{2}$.

A new kinematical feature: cuspy structures!

A new kinematical feature: cuspy structures!

Pronounced "peaks" appear, suitable for observation!

Origin of the cusps:

Origin of the cusps:

Limiting cases (at the corners)

$$
a_{2} X_{2} \leftarrow B_{2} \Leftarrow D \Rightarrow B_{1} \rightarrow a_{1}
$$

- Back-to-back: $\left(\cos \theta_{1}, \cos \theta_{2}\right)=(+1,-1) \Leftarrow+\Rightarrow$

Maximum $M_{a a}$ configuration.

- Head-on: $\left(\cos \theta_{1}, \cos \theta_{2}\right)=(-1,+1) \quad \Rightarrow+\Leftarrow$

Medium $M_{a a}$ configuration.

- Parallel: $\left(\cos \theta_{1}, \cos \theta_{2}\right)=(\pm 1, \pm 1) \quad \Rightarrow+\Rightarrow, \Leftarrow+\Leftarrow$

Zero $M_{a a}$ configurations.

Origin of the cusps:

Limiting cases (at the corners)
$a_{2} X_{2} \leftarrow B_{2} \Leftarrow D \Rightarrow B_{1} \rightarrow a_{1}$

- Back-to-back: $\left(\cos \theta_{1}, \cos \theta_{2}\right)=(+1,-1) \Leftarrow+\Rightarrow$

Maximum $M_{a a}$ configuration.

- Head-on: $\left(\cos \theta_{1}, \cos \theta_{2}\right)=(-1,+1) \quad \Rightarrow+\Leftarrow$

Medium $M_{a a}$ configuration.

- Parallel: $\left(\cos \theta_{1}, \cos \theta_{2}\right)=(\pm 1, \pm 1) \quad \Rightarrow+\Rightarrow, \quad \Leftarrow+\Leftarrow$

Zero $M_{a a}$ configurations.

- Upon variable projection (losing info), singularities may be developed.
- It is purely kinematical, and new (rigorous singularity theorems in math).

The rapidities η and ζ in the parent-rest frame:

$$
\cosh \eta=\frac{m_{D}}{2 m_{B}} \equiv c_{\eta}, \quad \cosh \zeta=\frac{m_{B}^{2}-m_{X}^{2}+m_{a}^{2}}{2 m_{a} m_{B}} \equiv c_{\zeta}
$$

thus : $\quad \eta, \zeta\left(\right.$ plus $\left.m_{D}\right) \Longrightarrow m_{B}, m_{a}$.

The rapidities η and ζ in the parent-rest frame:

$$
\begin{gathered}
\cosh \eta=\frac{m_{D}}{2 m_{B}} \equiv c_{\eta}, \quad \cosh \zeta=\frac{m_{B}^{2}-m_{X}^{2}+m_{a}^{2}}{2 m_{a} m_{B}} \equiv c_{\zeta} \\
\text { thus: } \quad \eta, \zeta\left(\text { plus } m_{D}\right) \Longrightarrow m_{B}, m_{a} \\
\bullet \text { Cusp and Edge: }\left(M_{a}=0 \text { case }\right)
\end{gathered}
$$

The end-point, instead of being $M_{a a}^{\max }=m_{D}-2 m_{X}$, becomes

$$
\begin{aligned}
& M_{a a}^{\max }=m_{B}\left(1-\frac{m_{X}^{2}}{m_{B}^{2}}\right) e^{\eta} \\
& M_{a a}^{\mathrm{cusp}}=m_{B}\left(1-\frac{m_{X}^{2}}{m_{B}^{2}}\right) e^{-\eta}
\end{aligned}
$$

The rapidities η and ζ in the parent-rest frame:

$$
\cosh \eta=\frac{m_{D}}{2 m_{B}} \equiv c_{\eta}, \quad \cosh \zeta=\frac{m_{B}^{2}-m_{X}^{2}+m_{a}^{2}}{2 m_{a} m_{B}} \equiv c_{\zeta}
$$

$$
\text { thus : } \quad \eta, \zeta\left(\text { plus } m_{D}\right) \Longrightarrow m_{B}, m_{a}
$$

- Cusp and Edge: $\left(M_{a}=0\right.$ case $)$

The end-point, instead of being $M_{a a}^{\max }=m_{D}-2 m_{X}$, becomes

$$
\begin{aligned}
& M_{a a}^{\max }=m_{B}\left(1-\frac{m_{X}^{2}}{m_{B}^{2}}\right) e^{\eta} \\
& M_{a a}^{\text {cusp }}=m_{B}\left(1-\frac{m_{X}^{2}}{m_{B}^{2}}\right) e^{-\eta}
\end{aligned}
$$

Thus,

$$
\begin{aligned}
& M_{a a}^{\mathrm{max}} / M_{a a}^{\mathrm{cusp}}=e^{2 \eta}, \quad(D \rightarrow B) \\
& M_{a a}^{\max } M_{a a}^{\text {cusp }}=m_{B}^{2}\left(1-\frac{m_{X}^{2}}{m_{B}^{2}}\right)^{2} \cdot \quad(B \rightarrow X)
\end{aligned}
$$

Algebraically/graphically,

$$
\frac{d \Gamma}{d M_{a a}} \propto \begin{cases}2 \eta M_{a a}, & \text { if } 0 \leq M_{a a} \leq M_{a a}^{\text {cusp }} \\ M_{a a} \ln \frac{M_{a a}^{\max }}{M_{a a}}, & \text { if } M_{a a}^{\text {cusp }} \leq M_{a a} \leq M_{a a}^{\max }\end{cases}
$$

Algebraically/graphically,

Mass I: "near threshold case" ($Z^{(2)}$ decay in the UED model).
Mass II: "boundary case" ($m_{B} \approx 0.44 m_{D}$).
Mass III: "large mass gap case".
Mass IV: "massive case" (Z, t, \ldots in the final state).

- Massive SM final state: $\left(M_{a} \neq 0\right)$

For a massive case $a=Z, t, \ldots, d \Gamma / d M_{a a}$ may develop two cusps:

- Cusp in Angular Distribution: $\left(M_{a}=0\right)$
Θ is the angle of a visible particle (a_{1}) in the $a_{1} a_{2}$ c.m. frame with respect to the c.m. moving direction. Then

$$
\frac{d \Gamma}{d \cos \Theta} \propto \begin{cases}\sin ^{-3} \Theta, & \text { if }|\cos \Theta| \leq \tanh \eta \\ 0, & \text { otherwise } .\end{cases}
$$

- Cusp in Angular Distribution: $\left(M_{a}=0\right)$
Θ is the angle of a visible particle $\left(a_{1}\right)$ in the $a_{1} a_{2}$ c.m. frame with respect to the c.m. moving direction. Then

$$
\frac{d \Gamma}{d \cos \Theta} \propto \begin{cases}\sin ^{-3} \Theta, & \text { if }|\cos \Theta| \leq \tanh \eta \\ 0, & \text { otherwise }\end{cases}
$$

\Rightarrow a sharp end-point (another cusp) at the boundary:

$$
|\cos \Theta|_{\max }=\tanh \eta=\sqrt{1-4 m_{B}^{2} / m_{D}^{2}}
$$

Θ is the angle of a visible particle $\left(a_{1}\right)$ in the $a_{1} a_{2}$ c.m. frame with respect to the c.m. moving direction. Then

$$
\frac{d \Gamma}{d \cos \Theta} \propto \begin{cases}\sin ^{-3} \Theta, & \text { if }|\cos \Theta| \leq \tanh \eta \\ 0, & \text { otherwise }\end{cases}
$$

\Rightarrow a sharp end-point (another cusp) at the boundary:

$$
|\cos \Theta|_{\max }=\tanh \eta=\sqrt{1-4 m_{B}^{2} / m_{D}^{2}}
$$

Complementarity: Large-mass gap worse for $M_{a a}$, better for $\cos \Theta$.

- "Robustness" of the proposal
(a). Back to the lab-frame: Lorentz boost
$\Rightarrow M_{a a}$ not effected, $\cos \Theta$ peaks diluted:

(b). Dynamical effects: matrix elements, spin-correlations etc. $\Rightarrow M_{a a}, \cos \Theta$ not appreciably effected,
(c). Off-shell decays: finite width effects

$\Rightarrow \Gamma_{B} \approx 10 \%$ not good anymore.

On-going studies: \ddagger

- Reconstruct the antler kinematics:

D, a SM-like particles; B (on-shell) and

On-going studies: \dagger

- Reconstruct the antler kinematics:

D, a SM-like particles; B (on-shell) and

$$
\begin{aligned}
\text { MSSM: } & H \rightarrow \tilde{\chi}_{2}^{0}+\tilde{\chi}_{2}^{0} \rightarrow Z \tilde{\chi}_{1}^{0}+Z \tilde{\chi}_{1}^{0} ; \\
Z^{\prime} \text { SUSY: } & Z^{\prime} \rightarrow \tilde{\ell}^{+}+\tilde{\ell}^{-} \rightarrow \ell^{\chi^{-}} \tilde{\chi}_{1}^{0}+\ell^{+} \tilde{\chi}_{1}^{0} ; \\
\text { UED: } & Z^{(2)} \rightarrow L^{(1)}+L^{(1)} \rightarrow \ell^{+} \gamma^{(1)}+\ell^{-} \gamma^{(1)} ; \\
\text { LHT: } & H \rightarrow t_{-}+\bar{t}_{-} \rightarrow t A_{H}+\bar{t} A_{H} . \\
\text { ILC: } & e^{+} e^{-} \rightarrow B_{1}+\bar{B}_{2} \rightarrow a_{1} X_{1}+a_{2} X_{2} .
\end{aligned}
$$

On-going studies: \dagger

- Reconstruct the antler kinematics:

D, a SM-like particles; B (on-shell) and

$$
\begin{aligned}
\text { MSSM: } & H \rightarrow \tilde{\chi}_{2}^{0}+\tilde{\chi}_{2}^{0} \rightarrow Z \tilde{\chi}_{1}^{0}+Z \tilde{\chi}_{1}^{0} ; \\
Z^{\prime} \text { SUSY: } & Z^{\prime} \rightarrow \tilde{\ell}^{+}+\tilde{\ell}^{-} \rightarrow \ell^{-} \tilde{\chi}_{1}^{0}+\ell^{+} \tilde{\chi}_{1}^{0} ; \\
\text { UED: } & Z^{(2)} \rightarrow L^{(1)}+L^{(1)} \rightarrow \ell^{+} \gamma^{(1)}+\ell^{-} \gamma^{(1)} ; \\
\text { LHT: } & H \rightarrow t_{-}+\bar{t}_{-} \rightarrow t A_{H}+\bar{t} A_{H} . \\
\text { ILC: } & e^{+} e^{-} \rightarrow B_{1}+\bar{B}_{2} \rightarrow a_{1} X_{1}+a_{2} X_{2} .
\end{aligned}
$$

- Other channels with cusps:
\dagger Decay chain kinematics: cusps as well. \ddagger Multi-particle final states: some dilution.
\dagger †'H, I.-W. Kim and J. Song, in progress.
${ }^{\ddagger}$ A. Agashe, M. Toharia et al.; P. Osland, Miller et al.

Summary

- Determining the missing particle mass of fundamental importance.
e.g.: Ever since the neutrino was proposed and observed, its mass measurement is still actively pursued.

Summary

- Determining the missing particle mass of fundamental importance.
e.g.: Ever since the neutrino was proposed and observed, its mass measurement is still actively pursued.
- The LHC may well be the discovery machine for new physics via large(r) $⿻_{T}$, difficult for the mass determination: key information for studying cosmic relic dark matter.

Summary

- Determining the missing particle mass of fundamental importance.
e.g.: Ever since the neutrino was proposed and observed, its mass measurement is still actively pursued.
- The LHC may well be the discovery machine for new physics via large(r) \mathscr{A}_{T}, difficult for the mass determination: key information for studying cosmic relic dark matter.
- We proposed to search for new processes "antler decays", with distinctive features: kinematical "cusps", that may simultaneously determine both masses: knowing m_{D}, measuring m_{B},

Summary

- Determining the missing particle mass of fundamental importance.
e.g.: Ever since the neutrino was proposed and observed, its mass measurement is still actively pursued.
- The LHC may well be the discovery machine for new physics via large(r) $⿻^{T}$, difficult for the mass determination: key information for studying cosmic relic dark matter.
- We proposed to search for new processes "antler decays", with distinctive features: kinematical "cusps", that may simultaneously determine both masses: knowing m_{D}, measuring m_{B},

We are all eagerly waiting for the excitement from the LHC!

[^0]: §Baltz, Battaglia, Peskin and Wizansky, hep-ph/0602187.

[^1]: *Cheng, Gunion, Z. Han and McElrath, arXiv:0905.1344.

[^2]: *Cheng, Gunion, Z. Han and McElrath, arXiv:0905.1344.

[^3]: *Cheng, Gunion, Z. Han and McEIrath, arXiv:0905.1344.

[^4]: *Cheng, Gunion, Z. Han and McEIrath, arXiv:0905.1344.

[^5]: *C. Lester and D. Summers, hep-ph/9906349.

