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Missing Energy Events

Pauli’s “Neutron”, Fermi’s “Neutrino”

In β decay, the electron energy spectrum is continuous:∗

For a 2-body decay, M → ab, the kinetic energy of a:

Ka =
(M −ma)2 −m2

b

2M
.

For a 3-body decay, M → abc, the kinetic energy of a:

0 ≤ Ka ≤
(M −ma)2 − (mb +mc)2

2M
.

∗KATRIN experiment: 3H → 3He+ + e−+ νe (hep-ex/0109033).
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• Neutrinos were caught!
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“Dark matter direct detection”.



W± and Missing Energy

• The discovery of W± → ℓνℓ (UA1/UA2 in 1983):
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The transverse momentum of ν or e has a Jacobian peak:

pT = E sin θ ,
dσ̂
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eν dp
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Transverse mass variable W → eν :

m2
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⇒ If pT (W ) = 0, then: meν T = 2EeT = 2EmissT .

⇒ If pT (W ) 6= 0 (some transverse motion δPV ), then:

p′eT ∼ peT [1 + δPV /MV ],

m′2eν T ∼ m
2
eν T [1− (δPV /MV )2],

m
′2
eν = m2

eν.
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First SUSY bound: CDF with 25.3 nb−1 (!) (1989)

No events found with E/T > 40 GeV ⇒ σMSSM < 0.1 nb
⇒ mg̃, mq̃ > 80 GeV.

Current SUSY bound: CDF with 2 fb−1

⇒ σMSSM < 0.1 pb

⇒ mg̃ > 320 GeV, mq̃ > 390 GeV.



Missing energy events in e+e− collisions

At LEP I (L3):

Neutrino counting:

e+e− → γ + νiν̄i
Nν ≈ 3.
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Missing Energy and New Physics at LHC

New Physics Expectation in E/T :
†

• Setting a bound for mass scale may not be too hard.

• Establishing E/T signal would be challenging,

⇒ that would be a revolutionary discovery for BSM physics!

†M. Mangano, arXiv:0809.1567 [hep-ph].



It has been shown quite promising (mSUGRA at ATLAS‡)

‡D. R. Tovey, Eur. Phys. J. C4, N4 (2002).
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Steps to follow:§

• Discover missing-energy events at a collider and estimate the mass of the WIMP.

• Observe dark matter particles in direct detection experiments and determine whether

their mass is the same as that observed in collider experiments.

Cosmic relic density:
Ωχh

2 ∝
1

〈σv〉
∼
m2
χ

α2
.

By crossing, χχ annihilation is related to scattering.

After that,

• Determine the qualitative physics model that leads to missing-energy events.

• Determine the parameters of this model that predict the relic density.

• Determine the parameters of this model that predict the direct and indirect detection

cross sections.

• Measure products of cross sections and densities from astrophysical observations to

reconstruct the density distribution of dark matter.

§Baltz, Battaglia, Peskin and Wizansky, hep-ph/0602187.



Optimistic conclusions were obtained for mSUGRA¶

and for MSSM parameter-determinations:‖

mSUGRA : tanβ=10, A0=0, µ>0, mt=171.4 GeV
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For most general cases, situations may be much more complex:∗∗

The “LHC inverse problem”: Data ⇒ many possible solutions!

¶For a review: Baer and Tata, arXiv:0805.1905.
‖Baltz, Battaglia, Peskin and Wizansky, hep-ph/0602187.
∗∗Akani-Hamed, Kane, Thaler and Wang, hep-ph/0512190.
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Determining the Dark Matter Mass

– Model-independent approaches at colliders

The difficulties:

• Two missing particles in each event;
• Unknown parton frame leads to less constrained kinematics.



Edges, End-points etc.

• Simple decay chain:††

Z Y X

ln lf

In general, mmax
ℓℓ = MZ −MX (gives mass difference).
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††Bachacou, Hinchliffe and Paige, arXiv:hep-ph/9907518.



• Longer decay chain:‡‡
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† Only probe mass differences.

† May encounter combinatoric ambiguities.

‡‡Bachacou, Hinchliffe and Paige, arXiv:hep-ph/9907518.
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Fully Constructable Kinematics

Kinematical on-shell conditions∗

Assume:

• n signal events: particles 3,5,7; 4,6,8 observed; 1, 2 missing.

• Unknowns: masses N,X, Y, Z (4); 4-momenta of 1, 2 (8n) ⇒ 4 + 8n.

• Constraints: missing transverse momenta (x,y): 2n.

on-shell conditions (both chains) 8n. Total ⇒ 10n.

Let constraints ≥ unknowns ⇒ n ≥ 2.

† With many events (n), it’s an over-constrained system.

† If only 3 on-shell particles in each chain,

there will be fewer constraints than unknowns.
∗Cheng, Gunion, Z. Han and McElrath, arXiv:0905.1344.
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Remarks:

• Very selective channels.

• Very restrictive kinematics.

• Realistic experimental conditions will further dilute the solutions.

∗Cheng, Gunion, Z. Han and McElrath, arXiv:0905.1344.
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In the attempt to determine the absolute masses (parent and missing one),

without fully reconstructing the events, MT2 was introduced.∗

Recall the invariant mass/transverse mass of ab (or eν):

m2
ab = m2

a +m2
b + 2(EaTE

b
T cosh∆η − ~paT · ~p

b
T ) ≥ m2

T .

Consider a pair production/decay D1 → a1 b1, D2 → a2 b2:

m2
D ≥ max(m2

TD1
, m2

TD2
).

Only knowing |~pTb1 + ~pTb2| = E/T , one defines:

M2
T2(ma1,ma2; mb) = min|~pTb1+~pTb2|=E/T

[max(m2
T1, m

2
T2)].

This is a “functional”:

† For each event (E/T ), run through trial ~pTb1 and ~pTb2 = ~E/T − ~pTb1:

→ It is smaller than the true max(m2
TD1

, m2
TD2

);

→ With many events, it still doesn’t go over it.

∗C. Lester and D. Summers, hep-ph/9906349.



Thus, one defines:∗

Mmax
T2 (mb) = max(all events)MT2(ma1,ma2; mb).

a function of the trial missing mass mb.

∗W.S. Cho, K. Choi, Y.G. Kim, C.B. Park, arXiv:0709.0288.
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The kink structure: †

When varying the trial missing mass below to above the true value of mb,

the curve Mmax
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†W.S. Cho, K. Choi, Y.G. Kim, C.B. Park, arXiv:0711.4526.
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The kink structure: †

When varying the trial missing mass below to above the true value of mb,

the curve Mmax
T2 (mb) (for multi-body decay) changes the slope:
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† For simple 2-body decay, no clear kink;

† For multi-body decays, combinatorics dilute the kink.

∗W.S. Cho, K. Choi, Y.G. Kim, C.B. Park, arXiv:0709.0288.
†W.S. Cho, K. Choi, Y.G. Kim, C.B. Park, arXiv:0711.4526.
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The “Antler decay” †

D, a SM-like particles; B,X carry a new quantum number.

†TH, I.-W. Kim and J. Song, arXiv:0906.5009.
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“Antler Decay” Kinematics

The “Antler decay” †

D, a SM-like particles; B,X carry a new quantum number.

Advantages:
• More constrained kinematics: MD is known from other SM modes.
• Many channels:

MSSM: H → χ̃0
2 + χ̃0

2 → Zχ̃0
1 + Zχ̃0

1;

Z ′ SUSY: Z ′ → ℓ̃+ + ℓ̃− → ℓ−χ̃0
1 + ℓ+χ̃0

1;

UED: Z(2) → L(1) + L(1) → ℓ+γ(1) + ℓ−γ(1);

LHT: H → t−+ t̄− → tAH + t̄AH.

ILC: e+e− → B1 + B̄2 → a1X1 + a2X2.

†TH, I.-W. Kim and J. Song, arXiv:0906.5009.



A new kinematical feature: cuspy structures!
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Pronounced “peaks” appear, suitable for observation!
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Limiting cases (at the corners)

a2X2 ← B2 ⇐ D ⇒ B1 → a1X1

• Back-to-back: (cos θ1, cos θ2) = (+1,−1) ⇐ +⇒

Maximum Maa configuration.

• Head-on: (cos θ1, cos θ2) = (−1,+1) ⇒ +⇐

Medium Maa configuration.

• Parallel: (cos θ1, cos θ2) = (±1,±1) ⇒ +⇒, ⇐ +⇐

Zero Maa configurations.



Origin of the cusps:

Limiting cases (at the corners)

a2X2 ← B2 ⇐ D ⇒ B1 → a1X1

• Back-to-back: (cos θ1, cos θ2) = (+1,−1) ⇐ +⇒

Maximum Maa configuration.

• Head-on: (cos θ1, cos θ2) = (−1,+1) ⇒ +⇐

Medium Maa configuration.

• Parallel: (cos θ1, cos θ2) = (±1,±1) ⇒ +⇒, ⇐ +⇐

Zero Maa configurations.

• Upon variable projection (losing info), singularities may be developed.

• It is purely kinematical, and new (rigorous singularity theorems in math).



The rapidities η and ζ in the parent-rest frame:

cosh η =
mD

2mB
≡ cη, cosh ζ =

m2
B −m

2
X +m2

a

2mamB
≡ cζ,

thus : η, ζ (plus mD) =⇒ mB, ma.
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The end-point, instead of being Mmax
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• Cusp and Edge: (Ma = 0 case)

The end-point, instead of being Mmax
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(
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)

eη,

Mcusp
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Thus,

Mmax
aa /Mcusp

aa = e2η, (D → B)

Mmax
aa Mcusp

aa = m2
B
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1−
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X

m2
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)2

. (B → X)



Algebraically/graphically,

dΓ

dMaa
∝

{
2ηMaa, if 0 ≤Maa ≤Mcusp

aa ;

Maa ln
Mmax

aa

Maa
, if Mcusp

aa ≤Maa ≤Mmax
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{
2ηMaa, if 0 ≤Maa ≤Mcusp

aa ;

Maa ln
Mmax

aa
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, if Mcusp

aa ≤Maa ≤Mmax
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mD (GeV) mB (GeV) ma (GeV) mX (GeV)
Mass I 1250 600 0 550
Mass II 1000 440 0 300
Mass III 1000 350 0 200
Mass IV 600 250 mZ 100

Mass I: “near threshold case” (Z(2) decay in the UED model).

Mass II: “boundary case” (mB ≈ 0.44mD).

Mass III: “large mass gap case”.

Mass IV: “massive case” (Z, t, ... in the final state).



• Massive SM final state: (Ma 6= 0)

For a massive case a = Z, t, ... , dΓ/dMaa may develop two cusps:
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• Cusp in Angular Distribution: (Ma = 0)

Θ is the angle of a visible particle (a1) in the a1a2 c.m. frame with respect

to the c.m. moving direction. Then

dΓ

d cosΘ
∝

{
sin−3 Θ, if | cosΘ| ≤ tanh η,
0, otherwise.
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Complementarity: Large-mass gap worse for Maa, better for cosΘ.



• “Robustness” of the proposal

(a). Back to the lab-frame: Lorentz boost

⇒ Maa not effected, cosΘ peaks diluted:
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(b). Dynamical effects: matrix elements, spin-correlations etc.

⇒ Maa, cosΘ not appreciably effected,



(c). Off-shell decays: finite width effects

mB = 600 GeV

300 GeV
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5 GeV
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⇒ ΓB ≈ 10% not good anymore.
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†TH, I.-W. Kim and J. Song, in progress.
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On-going studies: †

• Reconstruct the antler kinematics:

D, a SM-like particles; B (on-shell) and X (missing).

MSSM: H → χ̃0
2 + χ̃0

2 → Zχ̃0
1 + Zχ̃0

1;

Z ′ SUSY: Z ′ → ℓ̃+ + ℓ̃− → ℓ−χ̃0
1 + ℓ+χ̃0

1;

UED: Z(2) → L(1) + L(1) → ℓ+γ(1) + ℓ−γ(1);

LHT: H → t−+ t̄− → tAH + t̄AH.

ILC: e+e− → B1 + B̄2 → a1X1 + a2X2.

• Other channels with cusps:

† Decay chain kinematics: cusps as well. ‡

† Multi-particle final states: some dilution.

†TH, I.-W. Kim and J. Song, in progress.
‡A. Agashe, M. Toharia et al.; P. Osland, Miller et al.
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Summary

• Determining the missing particle mass of fundamental importance.

e.g.: Ever since the neutrino was proposed and observed,

its mass measurement is still actively pursued.

• The LHC may well be the discovery machine for new physics

via large(r) E/T , difficult for the mass determination:

key information for studying cosmic relic dark matter.

• We proposed to search for new processes “antler decays”,

with distinctive features: kinematical “cusps”,

that may simultaneously determine both masses:

knowing mD, measuring mB, mX.

We are all eagerly waiting for the excitement from the LHC!


