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Quantum Phase Transition is
A (continuous) transition between different phases at T =0, as a
function of an external parameter (B, Pressure,x, .. .)
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Quantum Phase Transition is
A (continuous) transition between different phases at T =0, as a
function of an external parameter (B, Pressure,x, .. .)
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Conventional approach: apply usual (T # 0) Landau Ginzburg
Wilsonian (LGW) symmetry breaking paradigm:

» Phases characterized by different symmetry breaking patterns.
» Fluctuations described by order parameter O(x)
» Close to critical point, correlation length diverges

E~(g—g)™"  (00(x)0(0)[0) ~ e/¢

» Lattice effects wash away leaving a continuum field theory

» At g = gc one finds a scale invariant theory (sometimes a
CFT) with an operator O, and one relevant perturbation
corresponding to (g — g¢)



Quantum Phase Transition (QPT)

New phenomena compared to T # 0 ( even within LGW paradigm)
» Dynamical critical exponent of CFT
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Quantum Phase Transition (QPT)

New phenomena compared to T # 0 ( even within LGW paradigm)

» Finite temperature crossovers:
T

QC
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» QPT becomes nonzero T phase transition

» Scale invariance implies T, ~ (g — gc)">.



Quantum Phase Transition (QPT)
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» QC region controlled by CFT in thermal ensemble:
» Two competing energy scales T and (g — gc)"*.

» For T > (g — gc)"?, ignore relevant perturbation, set g — ge.



Quantum Phase Transition (QPT)

New phenomena compared to T # 0 ( even within LGW paradigm)

» Finite temperature crossovers:
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» CFT description only valid up to some cutoff A (lattice scale).



Quantum Phase Transitions - Heavy Fermion Criticality
For example:
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» Heavy Fermion: mass of electron strongly renormalized. But
still conventional Fermi Liquid (p ~ T2)

» Ordered phase: Antiferromagnetic (AF) order
» Non fermi liquid occurs in vicinity of QC (p ~ T)
» LGW fails to describe QCP



Quantum Phase Transitions - AdS/CFT?
Natural to try to use AdS/CFT to describe QC region.

» Holography (AdS/CFT): Some field theories in d-dimensions
dual to a gravitational theory in d + 1-dimensions
> At the heart of Holographic duality: extra dimension is RG

scale (z)

» Challenge: define local theory on higher dimensional space

» No general understanding

» Indirect string theory arguments: explicit realizations.



Quantum Phase Transitions - AdS/CFT?

Refined statement:

» Gravity in AdS441 gives a description of a set of strongly
interacting CFTys

» Use these strongly interacting CFTs as calculable toy models
of Quantum Criticality

» QC region <« AdS black hole
AdS Black Hole has built into it (at leading order):

» Thermodynamics, Dissipation, Hydrodynamics, Response
functions

» All of this without using quasi-particle description
» Many features universal to this set of CFTs
» Extract general lessons/organizing principle?

» Famous example: (n/s)gy = 1/(47) compare to
(n/s)qp = 1/8*



Quantum Phase Transitions - AdS/CFT?

» Non-Fermi Liquid (NFL) phase found dual to a charged AdS
black hole Lee; Cubrovic, Schalm, Zaanen: TF, Igbal, Liu, McGreevy, Vegh

» Fermionic greens functions have distinctly NFL scalings close

to Fermi Surface
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» NFL a striking feature of heavy fermion QC region - these
gravitational toy models may have some relevance here?
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Some goals/Outline

Part 0: Simple field theory example of a QPT: Gross-Neveu model

Part 1: extend AdS/CFT program outside of QC region. Especially
to QPT.

» general setup for symmetry breaking in AdS

» identify useful relevant deformations: double trace
deformation

» compute critical exponents/ finite-T crossovers

Part 2: extend QPT to non-zero charge density
» relate to previously found NFL behavior?

» bonus: find non-trivial scaling for the order parameter two
point function: same form as in heavy fermion criticality!!



Simple field theory example: Gross-Neveu model

» Large-N vector model -N Dirac fermions - d dimensions

> Typical example of a QPT (analogous to our AdS/CFT
results)

L=N (i&"@w; + %g (zZ’wf)2>

» Discrete Zo symmetry: ¢/1p; — —1pie); (parity in d = 3)

» Dimensional analysis (free fixed point):

Wl=(d-1)/2 [¢¢]=(d-1) [g]=(2~d)

» For d > 2 then g is irrelevant. Free fermions: IR fixed point.
» For g > g. symmetry breaking occurs. New UV fixed point
at g = ge.



Simple field theory example: Gross-Neveu model

» To analyze the critical point use Hubbard Stratonovich
decoupling

.y - a?
£ = (i - ol - 5 )
» Integrate out fermions - Effective potential

1 a? dp 2., 2
N eff(a)—zg-l—/wln(p +O[)

» Vacuum: Vg =0 — (o) =—g (¢1))
» Dimensional regularization:

1
N

r(=d/2)

1
Veff(O[) = g’a‘z + 5d|0(|d Sd = W



Simple field theory example: Gross-Neveu model

1

1
NVeff(a) = 2\0&\2 + Sd]a]d

» UV fixed point at g. = o0

> redefine k =1/g so k. =0



Simple field theory example: Gross-Neveu model

1
3 Verr(@) = Slal + sqlal”

v

UV fixed point at g = o

v

redefine k = 1/g so kc =0

v

3 symmetry breaking solutions V() = 0 for k < 0

(YY) ~ o ~ (—r) /72

Note [k] = —[g] = (d — 2) is our relevant pertrubation
k =0 < UV fixed point «— QPT «— QCP
Finite temperature: T, ~ (—r)1/(d=2)
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Some aspects of AdS/CFT

AdSH-l

—dt? + dx? + dz?
- o=

(d — 1) + 1—dimensional CFT < string theory on AdSy1
strong coupling, large N« classical gravity on AdSy1
scale invariance «— t— At, X — AX, z — z\
RG scale <« radial coordinate z
IR(UV) < z—00(z—0)
Field theory space time <« boundary of AdS (z =0)
Operators <« Bulk fields



Some aspects of AdS/CFT

Comments:

>

>

Work in d =3 (3+ 1 in the bulk / 2+ 1 on the boundary)

Different bulk gravity theories (matter content, bulk couplings
etc.) correspond to different CFTs

CFT deformations correspond to changing boundary
conditions at the AdS boundary

Many dual pairs known, typically gauge theories with N colors
» Bulk fields < single trace operators

1
O~ NTr(l\/l...) M : adjoint of SU(N)

» Large-N limit: N2 oc 1/Gy —

We will take phenomenological approach: try to describe large
number of CFT's by sticking to general ingredients.

Ultimately need to derive these ingredients from string theory



Symmetry breaking in AdS/CFT

A wishlist:

Non perturbative description
of an interacting CFT241

Global symmetry G
Current: J3

Order parameter: O;

Relevant deformation: (g — gc)




Symmetry breaking in AdS/CFT

A wishlist:
Non perturbative description Gravitational theory on AdS,
of an interacting CFT241
Global symmetry G Guage symmetry G
Current: J3 Bulk gauge field: A
Order parameter: O; Charged field: ¢;
Relevant deformation: (g — g¢) 7

_i 4, /— _1 2 2 2
Sum = g [ @y =E (R0 172 = Do — V(i)

Do =8¢ +igAp  V(|¢*) = m*|g]> + ...

AdS, solution is stable for m?> > —(3/2)? (BF bound.) So no
symmetry breaking yet. Look for a relevant deformation which
does not explicitly break G.



Possible relevant deformations

H— H+ / d*x (pJ* + kO'0)

Note:
» Chemical potential /i, only allowed for G = U(1)
» Double trace coupling x, only relevant for A(O) < 3/2.

» Generally must consider both unless symmetry protects it (say
1 = 0 by charge conjugation symmetry or relativistic
invariance.)



Double trace deformations

H — H+/d2m(9T(9



Boundary conditions < CFT deformations

v

AdS,4 has a boundary at z =10

For well defined theory, impose boundary conditions here

v

v

Equation of motion for ¢

V26— m?p=0

v

Solve for small z
o(r) = azA—(l—i—...)—l—ﬂzA*(l—i—...)

As =3/24/(3/2)2 + m?

v

Take m? = —2 with A, =2 and A_ = 1 for concreteness



Single trace deformation
o(z) = az'(1+...)+62%(1+...)

v

Usually fix leading term « as z — 0. Let § fluctuate.
Defining identity of AdS/CFT:

v

Zgrav [O[] = ZcFT [Ol]

Zgrav[a] = qu(r,)?)ae_sgrav Zepr|o] = <e—fd3xa(’)>
bulk

v

Classical gravity Gy — 0

Lyl = (e5) =M

(bsoln,a

v

Can show that W/(«) = —f3, such that (O),
Dimensions: [f]=2 — [0]=2

I
@

v



Double trace deformations

» Previous discussion only works for single trace deformation

» Follow the Gross-Neveu example:

2
Scrr — SCFT+/ d*xg0'0 = SCFT—/d3x <a(’) + g)

» Now can compute using AdS/CFT: (g =1/k)
Vetr(a) = Slal? + W(a)
> Again vacuum: V/(a) = 0. Using: = —W’(a) we find:

0 = ka

v

Well known fact in AdS/CFT: linear boundary conditions =
double trace deformations

» Note: x = 0 corresponds to fixing 5 (= 0)



To summarize:

Again like in the GN model there are two fixed points:
IR Fixed Point ( CFTT), g =0 (k = 00) , « fixed

» Characterized by an operator O with scaling dimension 2 and
an irrelevant double trace interaction (dimension 4.)
UV Fixed Point (CFT™), k =0 (g = o0), (3 fixed
» Characterized by an operator O with scaling dimension 1 and
a relevant double trace interaction (dimension 2.)




To summarize:

Again like in the GN model there are two fixed points:
IR Fixed Point ( CFTT), g =0 (k = 00) , « fixed

» Characterized by an operator O with scaling dimension 2 and
an irrelevant double trace interaction (dimension 4.)
UV Fixed Point (CFT™), k =0 (g = o0), (3 fixed
» Characterized by an operator O with scaling dimension 1 and
a relevant double trace interaction (dimension 2.)
Turning on x in the UV CFT—, one flows to the IR CFT ™

CFT, CFTS
® > >
K

Claim: CFT_ should be associated with a QPT and & the relevant
direction. How do we see the ordered phase when xk < 07



Symmetry breaking
Look for state where ¢(z) # 0. Consider bulk potential:

\ A v /

Solve Einstein's equations with scalar ¢ matter.
» ¢ =0 is stable if m®> > m% = —(3/2)? and > 0.



Symmetry breaking
Look for state where ¢(z) # 0. Consider bulk potential:

\ A v /

Solve Einstein's equations with scalar ¢ matter.
» ¢ =0 is stable if m? > m% = —(3/2)? and k > 0.
» if K < 0: domain wall solution: (only non singular solution)
ds? = (—dt? + d=2 + dz°)/f(z2)
(z—0) f(z)=2°, ¢(z)=0 AdSy
(z—00) f2)=#2", d(z2)=do  AdS,



Symmetry breaking
Look for state where ¢(z) # 0. Consider bulk potential:

\ A v /

Solve Einstein's equations with scalar ¢ matter.
» ¢ =0 is stable if m? > m% = —(3/2)? and k > 0.
» if K < 0: domain wall solution: (only non singular solution)
ds? = (—dt? + d=2 + dz°)/f(z2)
(z—0) f(z)=2°, ¢(z)=0 AdSy
(z—00) f2)=#2", d(z2)=do  AdS,
CFT, CFT; CFTY
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Domain wall flow

» Characterize the flow by (z — 0):
¢ — azt + 2%+ ...
where the DW solution determines a relationship between the
two: = ﬁDw(Oé).
» Previous studies of DW solution looked at single trace

deformations where one looks for solutions with 3 = J fixed.
Explicitly breaks the symmetry.




Domain wall flow

» Reinterpret in terms of double trace coupling

» For a given double trace , to find the vev (O) ~ « look for
solution of:

Bow(a) = ka

» only solution for k < 0. Consistent with stability analysis.

» Scale invariance: Spw = —sca’sign(a) — a ~ £(—r/sc).



Effective potential




Effective potential




Finite temperature

» Heat up DW solution and restore symmetry for T > T..
» Ordered state: “hairy black hole”
» Disordered state: AdS-BH with funny boundary conditions

» Phase boundary: look for linearized instability of ¢ fluctuating
on the AdS-BH as a function of T,k

» Scale invariance: T, x (—k)

T

AdS_BH

Hairy BH o 4=0

Domanwal \' AdS,




Finite temperature

» Heat up DW solution and restore symmetry for T > T..
» Ordered state: “hairy black hole”
» Disordered state: AdS-BH with funny boundary conditions

» Phase boundary: look for linearized instability of ¢ fluctuating
on the AdS-BH as a function of T,k

» Scale invariance:
Te o (—k)V/(B+=82)  (O)  (—k)A-/(Bs=0-)




Part 2. Both deformations

H— H+ / d*x (,LLJt + /@'C’)TO)



New phase diagram

Disordered phase ¢ = 0 corresponds to the Charged Black Hole
(Reissner Nordstrom solution)

» Phase boundary: again look for linearized instability of ¢
fluctuations to determine T,

» Depending on bulk parameters (g, m?,...), two behaviors:

005}

0.00

> QPT shifted to k.. Actually QCP dramatically different:



Dissecting new QCP
To study QCP close to k = k. examine physics at small energies
w, momenta p and temperature T compared to u:

» At T =0, charged black hole close to the horizon z — z,
develops an AdS, x R? throat:

g2~ +dE
T

From AdS/CFT lore, IR is controlled by AdS,.
AdS; is dual to a (mysterious) 0+ 1 dimensional CFT;.
Emergent conformal symmetry:

t—t/A X—Xx and (— (/A

+ dx? (=1/(z—-z)

vyYyy

» 1 induces a flow from CFT,y1 to CFT;.
AdS, AdS, R

Y
[

— -

u &,

Claim: new QCP controlled by CFT;.

v



Dissecting new QCP - Two point function

» To see this examine two point function of O at low energies

Z
Kk—ke)—X(w, T)

Gi(w, P) = (
» where ¥ is a scaling function:
Y(w, T)=T¥gw/T) (T =0)=#uw"
> these are scale invariant in terms of the CFT; scaling:
w— A, T—=AT, k—k

O — \Y2ro (k — Kke) = A (k — Ke)
» Suggests under RG:

O — Ogp1 K — Kot1 = (K — Ke)



Dissecting new QCP - Two point function

> To see this examine two point function of O at low energies

el )~ i
KA P T (k—ke) = X(w, T) 4+ pB? + ol +cr T

» where ¥ is a scaling function:
Y(w,T)=T"g(w/T) (T =0)=#w*
> these are scale invariant in terms of the CFT; scaling:
w—w, T —AT, k—k

O — /2o (k — ke) — A (K — Ke)
» Suggests under RG:

O — Ogp1 K — Kot1 = (K — Ke)



Phase boundary - analytic results

» use G, to search for unstable mode (pole in UHP)
» find T.:

(v<1/2) Ten~(—k+ k)Y (universal)

(v>1/2) T.~(—kK+kKe) (universality spoiled)

» Confirmed numerically:

(K=Kc)/p



Dynamical critical exponent

Z

G(w, B) ~ (T =

(k — Ke) — #w? + cpP? + Cuw?

» At the critical point k = k. there is a gapless mode

1
w ~ |pI* z = max (1,)
v

» Away from criticality k > k. there is a “mass gap":

» Disperses as:

Eg ~ (H _ RC)1/2I/

> Correlation length ¢ ~ (k — k)12 ~ E; /%



Locally quantum critical

For v < 1/2 find the 2 point function at the critical point:
V4

p>— T g(w/T)

> Analytic in 52, self energy independent of 5. Locally critical.

G(w,P) ~
P

» Same form as measured for the two point function of the
SDW order parameter in Heavy Fermion criticality with
v~ 0.37 (z~27)
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» Similar result found in the Kondo lattice model using d — oo,



Comments and conclusions

» The AdS, x R? phase which controls the QC region has been
previously shown to be associated with Non-Fermi Liquid
(NFL) behavior

» 2 point function of Fermionic operators in this phase shows
gapless fermi surface type excitations with NFL like dispersion

» NFL behavior is generally associated with Heavy Fermion
criticality.

» We found a QPT out of this phase which displays other
similarities with a certain Heavy Fermion system

» Promising signs! However: where is the Heavy Fermion phase
in our system??

» Also what is the connection between AdS, and DMFT?



RG Interpretation (0 < §_ < 1/2)
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» matching along dashed line:



Ordered phase

» Metric ansatz for domain wall solution
ds® = —f(r)dt®+dr?/f(r)+h?(r)d=2, A= Alr)dt, ©=o(r)

> Adjust d1 7 at the (deep) IR fixed point. Shoot (backwards)
close to the critical point.
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» read off 3 = Bpw(a). Solve Bpw(a) = kf for (O) = a(k).
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