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Quantum Phase Transition is
A (continuous) transition between different phases at T = 0, as a
function of an external parameter (B, Pressure,x , . . .)

g
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Conventional approach: apply usual (T 6= 0) Landau Ginzburg
Wilsonian (LGW) symmetry breaking paradigm:

I Phases characterized by different symmetry breaking patterns.
I Fluctuations described by order parameter O(x)
I Close to critical point, correlation length diverges

ξ ∼ (g − gc)−ν 〈0|O(x)O(0)|0〉 ∼ e−x/ξ

I Lattice effects wash away leaving a continuum field theory
I At g = gc one finds a scale invariant theory (sometimes a

CFT) with an operator O, and one relevant perturbation
corresponding to (g − gc)
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Conventional approach: apply usual (T 6= 0) Landau Ginzburg
Wilsonian (LGW) symmetry breaking paradigm:

I Phases characterized by different symmetry breaking patterns.

I Fluctuations described by order parameter O(x)

I Close to critical point, correlation length diverges

ξ ∼ (g − gc)−ν 〈0|O(x)O(0)|0〉 ∼ e−x/ξ

I Lattice effects wash away leaving a continuum field theory

I At g = gc one finds a scale invariant theory (sometimes a
CFT) with an operator O, and one relevant perturbation
corresponding to (g − gc)



Quantum Phase Transition (QPT)

New phenomena compared to T 6= 0 ( even within LGW paradigm)

I Dynamical critical exponent of CFT

~x → λ~x t → λz t

ξ ∼ (g − gc)−ν Eg ∼ (g − gc)νz



Quantum Phase Transition (QPT)

New phenomena compared to T 6= 0 ( even within LGW paradigm)

I Finite temperature crossovers:
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I QPT becomes nonzero T phase transition

I Scale invariance implies Tc ∼ (g − gc)νz .



Quantum Phase Transition (QPT)

New phenomena compared to T 6= 0 ( even within LGW paradigm)

I Finite temperature crossovers:
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I QC region controlled by CFT in thermal ensemble:

I Two competing energy scales T and (g − gc)νz .

I For T � (g − gc)νz , ignore relevant perturbation, set g → gc .



Quantum Phase Transition (QPT)

New phenomena compared to T 6= 0 ( even within LGW paradigm)

I Finite temperature crossovers:
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I CFT description only valid up to some cutoff Λ (lattice scale).



Quantum Phase Transitions - Heavy Fermion Criticality
For example:

Schroder et al Custers et al.

I Heavy Fermion: mass of electron strongly renormalized. But
still conventional Fermi Liquid (ρ ∼ T 2)

I Ordered phase: Antiferromagnetic (AF) order

I Non fermi liquid occurs in vicinity of QC (ρ ∼ T )

I LGW fails to describe QCP



Quantum Phase Transitions - AdS/CFT?
Natural to try to use AdS/CFT to describe QC region. Sachdev,

Muller, Kovtun, Hartnoll, Son, . . .

I Holography (AdS/CFT): Some field theories in d-dimensions
dual to a gravitational theory in d + 1-dimensions

I At the heart of Holographic duality: extra dimension is RG
scale (z)
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Figure 1: The extra (‘radial’) dimension of the bulk is the resolution scale of the field theory.

The left figure indicates a series of block spin transformations labelled by a parameter z.

The right figure is a cartoon of AdS space, which organizes the field theory information

in the same way. In this sense, the bulk picture is a hologram: excitations with different

wavelengths get put in different places in the bulk image. The connection between these two

pictures is pursued further in [15]. This paper contains a useful discussion of many features of

the correspondence for those familiar with the real-space RG techniques developed recently

from quantum information theory.

of length. Although this is a dimensionful parameter, a scale transformation xµ → λxµ can

be absorbed by rescaling the radial coordinate u→ u/λ (by design); we will see below more

explicitly how this is consistent with scale invariance of the dual theory. It is convenient to

do one more change of coordinates, to z ≡ L2

u
, in which the metric takes the form

ds2 =

(
L

z

)2 (
ηµνdxµdxν + dz2

)
. (2.1)

These coordinates are better because fewer symbols are required to write the metric. z will

map to the length scale in the dual theory.

So it seems that a d-dimensional conformal field theory (CFT) should be related to a

theory of gravity on AdSd+1. This metric (2.1) solves the equations of motion of the following

action (and many others)4

Sbulk[g, . . . ] =
1

16πGN

∫
dd+1x

√
g (−2Λ + R+ . . . ) . (2.2)

Here,
√

g ≡
√
| det g| makes the integral coordinate-invariant, and R is the Ricci scalar

but there is no proof for d > 1 + 1. Without Poincaré invariance, scale invariance definitely does not imply
conformal invariance; indeed there are scale-invariant metrics without Poincaré symmetry, which do not have
have special conformal symmetry [16].

4For verifying statements like this, it can be helpful to use Mathematica or some such thing.
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I Challenge: define local theory on higher dimensional space

I No general understanding although see: Lee ; Douglas, Mazzucato,

Razamat

I Indirect string theory arguments: explicit realizations.



Quantum Phase Transitions - AdS/CFT?

Refined statement:

I Gravity in AdSd+1 gives a description of a set of strongly
interacting CFTds

I Use these strongly interacting CFTs as calculable toy models
of Quantum Criticality

I QC region ↔ AdS black hole

AdS Black Hole has built into it (at leading order):

I Thermodynamics, Dissipation, Hydrodynamics, Response
functions

I All of this without using quasi-particle description

I Many features universal to this set of CFTs

I Extract general lessons/organizing principle?

I Famous example: (η/s)BH = 1/(4π) compare to
(η/s)qp = 1/g4



Quantum Phase Transitions - AdS/CFT?

I Non-Fermi Liquid (NFL) phase found dual to a charged AdS
black hole Lee; Cubrovic, Schalm, Zaanen; TF, Iqbal, Liu, McGreevy, Vegh

I Fermionic greens functions have distinctly NFL scalings close
to Fermi Surface

ImG (ω, k) =

0 < ν < 1/2 ν = 1/2 ν > 1/2

I NFL a striking feature of heavy fermion QC region - these
gravitational toy models may have some relevance here?



Some goals/Outline

Part 0: Simple field theory example of a QPT: Gross-Neveu model

Part 1: extend AdS/CFT program outside of QC region. Especially
to QPT.

I general setup for symmetry breaking in AdS

I identify useful relevant deformations: double trace
deformation

I compute critical exponents/ finite-T crossovers

Part 2: extend QPT to non-zero charge density

I relate to previously found NFL behavior?

I bonus: find non-trivial scaling for the order parameter two
point function: same form as in heavy fermion criticality!!



Simple field theory example: Gross-Neveu model

I Large-N vector model -N Dirac fermions - d dimensions

I Typical example of a QPT (analogous to our AdS/CFT
results)

L = N

(
iψ̄i/∂ψi +

1

2
g
(
ψ̄iψi

)2
)

I Discrete Z2 symmetry: ψ̄iψi → −ψ̄iψi (parity in d = 3)

I Dimensional analysis (free fixed point):

[ψ] = (d − 1)/2
[
ψ̄ψ
]

= (d − 1) [g ] = (2− d)

I For d > 2 then g is irrelevant. Free fermions: IR fixed point.

I For g > gc symmetry breaking occurs. New UV fixed point
at g = gc .



Simple field theory example: Gross-Neveu model

I To analyze the critical point use Hubbard Stratonovich
decoupling

L = N

(
iψ̄i/∂ψi − αψ̄iψi −

α2

2g

)

I Integrate out fermions - Effective potential

1

N
Veff(α) =

α2

2g
+

∫
ddp

(2π)d
ln(p2 + α2)

I Vacuum: V ′eff = 0 → 〈α〉 = −g
〈
ψ̄ψ
〉

I Dimensional regularization:

1

N
Veff(α) =

1

2g
|α|2 + sd |α|d sd =

Γ(−d/2)

(4π)d/2



Simple field theory example: Gross-Neveu model

1

N
Veff(α) =

1

2g
|α|2 + sd |α|d

I UV fixed point at gc =∞
I redefine κ = 1/g so κc = 0

I ∃ symmetry breaking solutions V ′eff(α) = 0 for κ < 0

〈
ψ̄ψ
〉
∼ α ∼ (−κ)1/(d−2)

I Note [κ] = −[g ] = (d − 2) is our relevant pertrubation

I κ = 0 ↔ UV fixed point ↔ QPT ↔ QCP

I Finite temperature: Tc ∼ (−κ)1/(d−2)
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ds2 =
−dt2 + d~x2 + dz2

z2

(d − 1) + 1−dimensional CFT ↔ string theory on AdSd+1

strong coupling, large N ↔ classical gravity on AdSd+1

scale invariance ↔ t → λt, ~x → λ~x , z → zλ
RG scale ↔ radial coordinate z
IR (UV) ↔ z →∞ (z → 0)

Field theory space time ↔ boundary of AdS (z = 0)
Operators ↔ Bulk fields



Some aspects of AdS/CFT

Comments:

I Work in d = 3 (3 + 1 in the bulk / 2 + 1 on the boundary)

I Different bulk gravity theories (matter content, bulk couplings
etc.) correspond to different CFTs

I CFT deformations correspond to changing boundary
conditions at the AdS boundary

I Many dual pairs known, typically gauge theories with N colors
I Bulk fields ↔ single trace operators

O ∼ 1

N
Tr (M . . .) M : adjoint of SU(N)

I Large-N limit: N2 ∝ 1/GN →∞
I We will take phenomenological approach: try to describe large

number of CFT’s by sticking to general ingredients.

I Ultimately need to derive these ingredients from string theory



Symmetry breaking in AdS/CFT

A wishlist:

Non perturbative description
of an interacting CFT2+1

Global symmetry G
Current: Ja

µ

Order parameter: Oi

Relevant deformation: (g − gc)



Symmetry breaking in AdS/CFT

A wishlist:

Non perturbative description Gravitational theory on AdS4

of an interacting CFT2+1

Global symmetry G Guage symmetry G
Current: Ja

µ Bulk gauge field: Aa
µ

Order parameter: Oi Charged field: φi

Relevant deformation: (g − gc) ??

Sgrav =
1

GN

∫
d4x
√−g

(
R + 6− 1

4
F 2 − |Dφ|2 − V (|φ|2)

)

Dφ = ∂φ+ iqAφ V (|φ|2) = m2|φ|2 + . . .

AdS4 solution is stable for m2 > −(3/2)2 (BF bound.) So no
symmetry breaking yet. Look for a relevant deformation which
does not explicitly break G .



Possible relevant deformations

H → H +

∫
d2x

(
µJ t + κO†O

)

Note:

I Chemical potential µ, only allowed for G = U(1)

I Double trace coupling κ, only relevant for ∆(O) < 3/2.

I Generally must consider both unless symmetry protects it (say
µ = 0 by charge conjugation symmetry or relativistic
invariance.)



Double trace deformations

H → H +

∫
d2xκO†O



Boundary conditions ↔ CFT deformations

I AdS4 has a boundary at z = 0

I For well defined theory, impose boundary conditions here

I Equation of motion for φ

∇2φ−m2φ = 0

I Solve for small z

φ(r) = αz∆−(1 + . . .) + βz∆+(1 + . . .)

∆± = 3/2±
√

(3/2)2 + m2

I Take m2 = −2 with ∆+ = 2 and ∆− = 1 for concreteness



Single trace deformation

φ(z) = αz1(1 + . . .) + βz2(1 + . . .)

I Usually fix leading term α as z → 0. Let β fluctuate.

I Defining identity of AdS/CFT:

Zgrav[α] = ZCFT[α]

Zgrav[α] =

∫

bulk
Dφ(r ,~x)αe−Sgrav ZCFT[α] =

〈
e−

R
d3xαO

〉

I Classical gravity GN → 0

Zgrav[α] =
(
e−Sgrav

)
φsoln,α

≡ eW (α)

I Can show that W ′(α) = −β, such that 〈O〉α = β

I Dimensions: [β] = 2 → [O] = 2



Double trace deformations

I Previous discussion only works for single trace deformation

I Follow the Gross-Neveu example:

SCFT → SCFT +

∫
d3x gO†O = SCFT −

∫
d3x

(
αO +

|α|2
2g

)

I Now can compute using AdS/CFT: (g = 1/κ)

Veff(α) =
κ

2
|α|2 + W (α)

I Again vacuum: V ′eff(α) = 0. Using: β = −W ′(α) we find:

β = κα

I Well known fact in AdS/CFT: linear boundary conditions ≡
double trace deformations Witten; Aharony, Berkooz, Silverstein

I Note: κ = 0 corresponds to fixing β (= 0)



To summarize:

Again like in the GN model there are two fixed points:
IR Fixed Point ( CFT +), g = 0 (κ =∞) , α fixed

I Characterized by an operator O with scaling dimension 2 and
an irrelevant double trace interaction (dimension 4.)

UV Fixed Point (CFT−), κ = 0 (g =∞), β fixed

I Characterized by an operator O with scaling dimension 1 and
a relevant double trace interaction (dimension 2.)

Turning on κ in the UV CFT−, one flows to the IR CFT +

3

κ

CFT
3

−
CFT

+

Claim: CFT− should be associated with a QPT and κ the relevant
direction. How do we see the ordered phase when κ < 0?
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Symmetry breaking TF, Horowitz, Roberts

Look for state where φ(z) 6= 0. Consider bulk potential:

V

φ

Solve Einstein’s equations with scalar φ matter.

I φ = 0 is stable if m2 > m2
BF = −(3/2)2 and κ > 0.

I if κ < 0: domain wall solution: (only non singular solution)

ds2 = (−dt2 + d~x2 + dz2)/f (z)

(z → 0) f (z) = z2 , φ(z) = 0 AdS4

(z →∞) f (z) = #z2 , φ(z) = φ0 ÃdS4

+

κ

CFT
3

CFT
3

−
CFT

3
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Domain wall flow
I Characterize the flow by (z → 0):

φ→ αz1 + βz2 + . . .

where the DW solution determines a relationship between the
two: β = βDW (α).

I Previous studies of DW solution looked at single trace
deformations where one looks for solutions with β = J fixed.
Explicitly breaks the symmetry.

Α

Β



Domain wall flow

I Reinterpret in terms of double trace coupling

I For a given double trace κ, to find the vev 〈O〉 ∼ α look for
solution of:

βDW (α) = κα

Α

Β

I only solution for κ < 0. Consistent with stability analysis.

I Scale invariance: βDW = −scα
2sign(α)→ α ∼ ±(−κ/sc).



Effective potential

WDW = −
∫ α

0
βDW (α′)dα′ Veff(α) = WDW (α) + (1/2)κα2

WDW =
2sc
3
|α|3



Effective potential

WDW = −
∫ α

0
βDW (α′)dα′ Veff(α) = WDW (α) + (1/2)κα2

WDW =
2sc∆−

3
|α|3/∆−



Finite temperature

I Heat up DW solution and restore symmetry for T > Tc .

I Ordered state: “hairy black hole”

I Disordered state: AdS-BH with funny boundary conditions

I Phase boundary: look for linearized instability of φ fluctuating
on the AdS-BH as a function of T , κ

I Scale invariance: Tc ∝ (−κ)

Κ

T

Domain Wall

Hairy BH Φ = 0

AdS+

AdS-BH

gc



Finite temperature

I Heat up DW solution and restore symmetry for T > Tc .

I Ordered state: “hairy black hole”

I Disordered state: AdS-BH with funny boundary conditions

I Phase boundary: look for linearized instability of φ fluctuating
on the AdS-BH as a function of T , κ

I Scale invariance:
Tc ∝ (−κ)1/(∆+−∆−) 〈O〉 ∝ (−κ)∆−/(∆+−∆−)
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Part 2. Both deformations

H → H +

∫
d2x

(
µJ t + κO†O

)



New phase diagram

Disordered phase φ = 0 corresponds to the Charged Black Hole
(Reissner Nordstrom solution)

I Phase boundary: again look for linearized instability of φ
fluctuations to determine Tc

I Depending on bulk parameters (q,m2, . . .), two behaviors:

-0.5 0.0 0.5 1.0
0.00

0.05

0.10

0.15

0.20

Κ�Μ

Tc

Μ

I QPT shifted to κc . Actually QCP dramatically different:



Dissecting new QCP
To study QCP close to κ ≈ κc examine physics at small energies
ω, momenta ~p and temperature T compared to µ:

I At T = 0, charged black hole close to the horizon z → z?
develops an AdS2 × R2 throat:

ds2 =
−dt2 + dζ2

6ζ2
+ d~x2 ζ = 1/(z − z?)

I From AdS/CFT lore, IR is controlled by AdS2.
I AdS2 is dual to a (mysterious) 0 + 1 dimensional CFT1.
I Emergent conformal symmetry:

t → t/λ ~x → ~x and ζ → ζ/λ

I µ induces a flow from CFT2+1 to CFT1.

h

4
AdS

2
R2

µ δ

AdS

I Claim: new QCP controlled by CFT1.



Dissecting new QCP - Two point function

I To see this examine two point function of O at low energies

Gκ(ω,~p) ≈ Z

(κ− κc)− Σ(ω,T )

I where Σ is a scaling function:

Σ(ω,T ) = T 2νg(ω/T ) Σ(T = 0) = #ω2ν

I these are scale invariant in terms of the CFT1 scaling:

ω → λω , T → λT , ~k → ~k

O → λ1/2−νO (κ− κc)→ λ2ν(κ− κc)

I Suggests under RG:

O → O0+1 κ→ κ0+1 = (κ− κc)



Dissecting new QCP - Two point function

I To see this examine two point function of O at low energies

Gκ(ω,~p) ≈ Z

(κ− κc)− Σ(ω,T ) + cp~p2 + cωω2 + cTT

I where Σ is a scaling function:

Σ(ω,T ) = T 2νg(ω/T ) Σ(T = 0) = #ω2ν

I these are scale invariant in terms of the CFT1 scaling:

ω → λω , T → λT , ~k → ~k

O → λ1/2−νO (κ− κc)→ λ2ν(κ− κc)

I Suggests under RG:

O → O0+1 κ→ κ0+1 = (κ− κc)



Phase boundary - analytic results

I use Gκ to search for unstable mode (pole in UHP)

I find Tc :

(ν < 1/2) Tc ∼ (−κ+ κc)1/2ν (universal)

(ν > 1/2) Tc ∼ (−κ+ κc) (universality spoiled)

I Confirmed numerically:
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Dynamical critical exponent

G (ω,~p) ≈ Z

(κ− κc)−#ω2ν + cp~p2 + cωω2
(T = 0)

I At the critical point κ = κc there is a gapless mode

I Disperses as:

ω ∼ |~p|z z = max
(

1,
1

ν

)

I Away from criticality κ > κc there is a “mass gap”:

Eg ∼ (κ− κc)1/2ν

I Correlation length ξ ∼ (κ− κc)−1/2 ∼ E
−1/z
g



Locally quantum critical
For ν < 1/2 find the 2 point function at the critical point:

G (ω,~p) ≈ Z

cp~p2 − T 2νg(ω/T )

I Analytic in ~p2, self energy independent of ~p. Locally critical.

I Same form as measured for the two point function of the
SDW order parameter in Heavy Fermion criticality with
ν ≈ 0.37 (z ≈ 2.7) Schroder et al
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I Similar result found in the Kondo lattice model using d →∞,
Si, Rabello, Ingersent, Smith



Comments and conclusions

I The AdS2 × R2 phase which controls the QC region has been
previously shown to be associated with Non-Fermi Liquid
(NFL) behavior TF, Liu, McGreevy, Vegh

I 2 point function of Fermionic operators in this phase shows
gapless fermi surface type excitations with NFL like dispersion

I NFL behavior is generally associated with Heavy Fermion
criticality.

I We found a QPT out of this phase which displays other
similarities with a certain Heavy Fermion system

I Promising signs! However: where is the Heavy Fermion phase
in our system??

I Also what is the connection between AdS2 and DMFT?



RG Interpretation (0 < δ− < 1/2)
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I matching along dashed line:

〈O〉 = α ∼ (−κ+ κc)
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Ordered phase

I Metric ansatz for domain wall solution

ds2 = −f (r)dt2+dr2/f (r)+h2(r)d~x2, A = At(r)dt, ϕ = ϕ(r)

I Adjust δ1,2 at the (deep) IR fixed point. Shoot (backwards)
close to the critical point.
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I read off β = βDW (α). Solve βDW (α) = κβ for 〈O〉 = α(κ).
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