Supersymmetric bound states

Tomas Rube

Stanford Institute for Theoretical Physics trube@stanford.edu

March 18, 2011, Cornell

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Outline

Motivation

Dark Matter Mesons from AdS/CFT

Supersymmetric hydrogen

Intuitive SUSY $m_p \to \infty$ solution Finite m_p Supersymmetric spectroscopy

Weakly broken SUSY

Spectral features Toy model

Conclusion

Based on 0912.2543: Jay Wacker, TR 1009.3523: Siavosh Behbahani, Martin Jankowiak, Jay Wacker, TR

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Motivation I: Dark Matter

・ロト ・聞ト ・ヨト ・ヨト

æ

CiDM/Atomic DM

- ► D. Alves et. al. [0903.3945]: Composite (inelastic) DM is meson in hidden SU(N_c) theory.
- ► D. Kaplan et. al. [0909.0753]: DM is hidden U(1) atomic boundstate.

Hyperfine interaction gives $\delta \sim 100$ keV.

Symmetry breaking from kinetic mixing

- Induces effective F.I. $\zeta_A^2 = \epsilon D_Y \Rightarrow U(1)_A$ higgsed.
- Loop and
 e suppressed soft masses can give tiny SUSY breaking

What is the spectrum of (approximately) SUSY bound states?

Motivation II: Heavy-Light $\mathcal{N} = 2$ mesons in AdS/CFT

Christopher Herzog, Thomas Klose [0802.2956], [0912.0733]

No hyperfine!

・ロト ・聞ト ・ヨト ・ヨト

Motivation 3

lt's fun!!

Undergrad quantum mechanics: Principal structure

▲ロト ▲園ト ▲ヨト ▲ヨト ニヨー のへ(で)

Undergrad quantum mechanics: Fine structure

Terms contributing to $\mathcal{O}(m_e \alpha^4) \sim 10^{-4} \text{eV}$:

$$\mathcal{H}_{\alpha} = -\frac{\alpha}{r} - \frac{p^4}{8m_e^3} + \frac{\alpha \vec{L} \cdot \vec{S_e}}{2m_e^2 r^3} + \frac{\alpha \pi}{2m_e^2} \delta(\vec{r}) + \dots$$

Energy from two terms:

$$-\frac{m_e\alpha^2}{2n^2} - \frac{m_e\alpha^4}{2n^4}\left(\frac{n}{l+1/2} - \frac{3}{4}\right)$$

 Adding Spin-orbit coupling and Darwin term:

$$-\frac{m_e\alpha^2}{2n^2} - \frac{m_e\alpha^4}{2n^4}\left(\frac{n}{j+1/2} - \frac{3}{4}\right)$$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Undergrad quantum mechanics: Hyperfine strure

At $\mathcal{O}(\alpha^4)$ there are terms suppressed in $\frac{m_e}{m_p}$, e.g. $\frac{\alpha S_e \cdot S_p}{m_e m_p r^3}$

• Hyperfine splits $1s_{1/2}$. Gives 21 cm line.

 Also splits 2s_{1/2} and 2p_{1/2}. Smaller than Lamb shift, but lower order in α. Undergrad quantum mechanics cont.

The next order in
$$\alpha$$
 is

$$\mathcal{H}_{\alpha^{2}} = \frac{4\alpha^{2}}{3m_{e}^{2}} \left(-2\ln\alpha + \frac{5}{6} - \ln K\right) \delta(\vec{r}) + \dots$$
Lamb shift: $\mathcal{O}\left(m_{e}\alpha^{5}\right) \sim 10^{-5} \text{eV}$

$$\int_{\mathbf{Q}} \int_{\mathbf{Q}} \int_{$$

◆□ → ◆□ → ◆三 → ◆三 → ◆□ →

Intuitive $m_p \rightarrow \infty$ solution

SQED matter content:

	Superfield	$U(1)_V$	Fermions	Bosons
"Electrons"	E, \bar{E}^c	-1	e	$\tilde{e}_1, \tilde{e}_2 $
"Protons"	P, \bar{P}^c	1	p 으	$\widetilde{p}_1, \widetilde{p}_2$ 🙄
" Photons"	V		λ	${\cal A}^{\mu}$

$$\mathcal{K} = |E|^2 + |E^c|^2 + |P|^2 + |P^c|^2$$
 $\mathcal{W} = m_e E E^c + m_p P P^c$

$$\begin{split} \mathcal{L} = & (\text{Charged scalar \& fermion kinetic terms}) \\ &+ (\text{Gauge and gaugino kinetic terms}) \\ &+ ie\lambda(p\tilde{p}_1^{\dagger} + ...) - e^2 \left(|\tilde{p}_1|^2 - |\tilde{p}_2|^2 + ...\right)^2 \end{split}$$

SUSY interaction vanish in non-relativistic limit

Non-relativistic fields

$$\tilde{p}_{1,2} = \frac{e^{im_p t}}{\sqrt{2m_p}} \phi_{\tilde{p}_{1,2}}, \quad \Psi_p^D = e^{im_p t} \begin{pmatrix} \psi_p \\ \frac{i\vec{\sigma} \cdot \vec{\nabla}}{2m_p} \psi_p \end{pmatrix}$$

Charged scalar & fermion kinetic terms:

$$\bar{\psi}_{p}\left(i\partial_{t}-\frac{\nabla^{2}}{2m_{p}}\right)\psi_{p}+\bar{\phi}_{p}\left(i\partial_{t}-\frac{\nabla^{2}}{2m_{p}}\right)\phi_{p}+(\text{Charge terms})$$

Supersymmetric interactions:

$$e\bar{\lambda}\left(\frac{1}{\sqrt{m_p}}(\psi_p\phi_p)+...\right)+h.c.-e^2\left(\frac{1}{m_p}\left(|\phi_{\tilde{p}_1}|^2-|\phi_{\tilde{p}_2}|^2\right)+...\right)^2$$

Proton SUSY interactions suppressed by $1/\sqrt{m_p}$.

・ロト・西ト・モート ヨー シタク

Principal splitting

▲ロト ▲聞 ト ▲ 臣 ト ▲ 臣 ト 一臣 - の Q ()~

SUSY finestructure, $m_p \rightarrow \infty$ limit

From before we know the spectrum for fermion/boson is:

$$E_{n,j_e} = -\frac{m_e \alpha^2}{2n^2} - \frac{m_e \alpha^4}{2n^4} \left(\frac{n}{j_e + \frac{1}{2}} + \frac{3}{4} \right),$$

$$J = 0 \qquad J = 1/2 \qquad J = 1$$

$$1s_{1/2}$$

$$1s_0$$

SUSY finestructure, $m_p
ightarrow \infty$ limit

From before we know the spectrum for fermion/boson is:

$$E_{n,j_e} = -\frac{m_e \alpha^2}{2n^2} - \frac{m_e \alpha^4}{2n^4} \left(\frac{n}{j_e + \frac{1}{2}} + \frac{3}{4} \right),$$

$$J = 0 \qquad J = 1/2 \qquad J = 1$$

$$1s_{1/2}$$

$$1s_0$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• SUSY transformation: $Qp \sim Q \widetilde{p}_{1,2} \sim \sqrt{m_p} \gg Qe$

Matching to representations

The massive SUSY representations classified according to the spin of the Clifford vacuum. Counting gives

S	0	$\frac{1}{2}$	1	$\frac{3}{2}$	2
Ω_0	2	1			
$\Omega_{\frac{1}{2}}$	1	2	1		
Ω_1^2		1	2	1	
$\Omega_{\frac{3}{2}}$			1	2	1

イロト 不得 トイヨト イヨト

э

SUSY finestructure, $m_p \rightarrow \infty$ limit

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Spectrum of SUSY hydrogen, m_p finite

SUSY positronium

'82: Buchmller, Love & Peccei'85: Di Vecchia & Schuchhart

Hydrogen calculation

$$E_{nj} = -\frac{\mu\alpha^2}{2n^2} + \frac{\mu\alpha^4}{n^3} \left[\frac{3}{8n} - \frac{\mu^2}{m_p m_e n} - \frac{1}{2j+1}\right]$$

j = spin of SUSY representation $\mu = \text{reduced mass}$ Spectrum of SUSY hydrogen cont.

$$n = 2 \underbrace{\begin{array}{c} E \\ 2 \Omega_0, \Omega_{1/2}, \Omega_{1/2}, \Omega_{1/2} \\ n = 1 \underbrace{\begin{array}{c} 2 \Omega_0, \Omega_{1/2} \\ 2 \Omega_0, \Omega_{1/2} \\ L = 0 \end{array}}_{L = 1}$$

► For $m_p \rightarrow \infty$, $\Omega_{1/2}$ contains both fermion-fermion states. Split for finite m_p in regular hydrogen, but protected in SUSY. Instead eigenstates rotate

$$\cos(2\theta)|(pe)_0\rangle + \sin(2\theta)(|\tilde{p}_2\tilde{e}_1\rangle - |\tilde{p}_1\tilde{e}_2\rangle)/\sqrt{2}, \quad \tan(\theta) \equiv \frac{m_e}{m_p}$$

- ► No apparent symmetry explains n=2, $\Omega_{1/2}$ degeneracy.
 - Q: How can we understand the wave function above?

Supersymmetric spectroscopy

Assumption:

Binding dynamics is spin independent at $\mathcal{O}(\mu\alpha^2)$

The eigenstates then factorize

$$|\Psi_{nlS}\rangle = |\psi_{nl}(r)\rangle \otimes |S\rangle + \mathcal{O}(\alpha)$$

At $\mathcal{O}(\mu \alpha^4)$ irreducible reps. generally split

Plan:

- 1. Decompose S for L = 0
- 2. Decompose $L \otimes S$ for L > 0

Decomposition of $S = \Omega_0^p \otimes \Omega_0^e \simeq 2\Omega_0 \oplus \Omega_{1/2}, \ L = 0$

When hard, use superfields!!!!

Use superfields with on-shell d.o.f.

$$E(y, heta) = ilde{e}_1 + \sqrt{2} heta^lpha e_lpha - heta^2 m_e \, ilde{e}_2, \, ...$$

- ▶ Non-relativistic normalization: $e \rightarrow \psi_e$, $\tilde{e}_{1,2} \rightarrow \phi_{\tilde{e}_{1/2}}$
- ► SUSY acts on spatial wavefunction $\psi(r)$ through $\vec{\nabla} \sim \mathbf{v} \sim \alpha \Rightarrow$ Ignore spatial dependence
- Write down neutral bilinears

$$PE, P\bar{E}^{c}, \bar{P}^{c}E, \bar{P}^{c}\bar{E}^{c}, P\mathcal{D}^{\alpha}E, \dots$$

Decompose using standard projection operators:

$$\mathcal{P}_1 = \frac{\bar{\mathcal{D}}^2 \mathcal{D}^2}{16 \Box}, \quad \mathcal{P}_2 = \frac{\mathcal{D}^2 \bar{\mathcal{D}}^2}{16 \Box}, \quad \mathcal{P}_T = -\frac{\mathcal{D} \bar{\mathcal{D}}^2 \mathcal{D}}{8 \Box}.$$

Decomposition of $S = \Omega_0^p \otimes \Omega_0^e$ cont.

All states contained in three superfields:

$$\begin{aligned} \mathcal{P}_1 PE &= PE \propto \phi_{\tilde{p}_1} \phi_{\tilde{e}_1} + \sqrt{2} \Theta^a \left(c_\theta \psi_p^a \phi_{\tilde{e}_1} + s_\theta \phi_{\tilde{p}_1} \psi_e^a \right) \\ &- \Theta^2 \left(s_\theta^2 \phi_{\tilde{p}_1} \phi_{\tilde{e}_2} + c_\theta^2 \phi_{\tilde{p}_2} \phi_{\tilde{e}_1} - s_{2\theta} (\psi_p \psi_e)_0 \right), \end{aligned}$$

 $\mathcal{P}_2\bar{P}^c\bar{E}^c=~\bar{P}^c\bar{E}^c\propto ...$

$$\mathcal{P}_{T}P\bar{E}^{c} = \begin{cases} D \propto c_{2\theta}(\psi_{p}\psi_{e})_{0} + s_{2\theta}(\phi_{\tilde{p}_{2}}\phi_{\tilde{e}_{1}} - \phi_{\tilde{p}_{1}}\phi_{\tilde{e}_{2}})/\sqrt{2} \\ \bar{\lambda}_{1} \propto s_{\theta}\psi_{p}\phi_{\tilde{e}_{2}} - c_{\theta}\phi_{\tilde{p}_{2}}\psi_{e} \\ \lambda_{2} \propto s_{\theta}\psi_{p}\phi_{e} - c_{\theta}\phi_{p}\psi_{e} \\ v^{\mu} \propto \psi_{p}\vec{\sigma}\psi_{e} \end{cases}$$

$$an^2 heta = rac{m_e}{m_p}, \; ar{\Theta}^lpha = \sqrt{m_p + m_e} heta^lpha.$$
 $m_p o \infty \; {
m OK}.$

R-symmetry and Parity

Two symmetries besides SUSY:

•
$$U(1)_R : R[P] = R[E] = 1, R[\bar{P}^c] = R[\bar{E}^c] = -1$$

• Parity
$$\mathcal{P}: \mathcal{P}P = \bar{P}^c, \mathcal{P}E = \bar{E}^c$$
.

In particular,
$$\mathcal{P}\tilde{e}_1 = \tilde{e}_2$$
 but $R[\tilde{e}_1] = -R[\tilde{e}_2]$
 $\Rightarrow [U(1)_R, \mathcal{P}] \neq 0$
 $U(1)_R \rtimes P \cong O(2)_R$

Conclusions:

- $\Omega_0^p \otimes \Omega_0^e$ decomposes into one hyper multiplet $\mathscr{H} = \{PE, \overline{P}^c \overline{E}^c\}$ and one vector $\mathscr{V} = \mathcal{P}_T P \overline{E}^c$.
- Same method can be used for baryons, positronium, super Yukawa bound states etc..
- L > 0 analogous

What is spectrum of weakly broken SUSY bound states?

SUSY breaking effects:

- Binding dynamics, e.g. gaugino interactions etc. Velocity suppressed.
- Soft masses
 - $O(2)_R$ preserving masses, e.g. $\Delta^2(|\tilde{e}_1| + |\tilde{e}_2|^2)$
 - $O(2)_R$ violating masses, e.g. $Bm_e \tilde{e}_1 \tilde{e}_2^* + c.c$

Effect of soft masses captured in

$$\delta H_{\rm soft} \,=\, \delta m_{e\pm} |\phi_{e\pm}\rangle \langle \phi_{e\pm}| \,+\, \delta m_{p\pm} |\phi_{p\pm}\rangle \langle \phi_{p\pm}|$$

Assumption:

Soft masses smaller than principal splitting $\mu \alpha^2$

 \Rightarrow Spectrum given by diagonalizing by finite dimensional matrix

What is spectrum of weakly broken SUSY bound states?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Effect of soft masses

Soft mass terms:

- $O(2)_R$ preserving masses, e.g. $\Delta^2(|\tilde{e}_1| + |\tilde{e}_2|^2 + |p_1|^2 + |p_2|^2)$
- $O(2)_R$ violating masses, e.g. $B(m_e \tilde{e}_1 \tilde{e}_2^* + m_p \tilde{p}_1 \tilde{p}_2^*) + c.c.$

$$\delta m = \sqrt{m^2 + \delta m^2} \simeq m + \frac{\delta m^2}{m}$$

Effect of soft masses captured in

$$\delta H_{\rm soft} = \delta m_{e\pm} |\phi_{e\pm}\rangle \langle \phi_{e\pm}| + \delta m_{p\pm} |\phi_{p\pm}\rangle \langle \phi_{p\pm}|$$

Assumption:

Soft masses smaller than principal splitting $\mu \alpha^2$

 \Rightarrow Spectrum given by diagonalizing by finite dimensional matrix

Example: Ground state

In ground state, splitting between \mathscr{H} and \mathscr{V} , denoted m_{FS} , fixed by dynamics. Spin/particle eigenstates determined by SUSY. Wealth of scales:

Principal splitting $\frac{1}{2}m_{\text{soft}}s_{2\theta}^2$ B m_{prin.} $\frac{1}{2}m_{\text{soft}}s_{2\theta}^2$ Fine structure m_{FS} vector multiplet v_{μ} \triangleright $O(2)_R$ preserving $m_{\rm soft} \sim \Delta^2/m_{\rm e}$. States protected by $O(2)_R$ split by B B - B - B $m_{\rm FS}$ Lowest state $\mathcal{P} = -1$ $\frac{1}{2}m_{\text{soft}}s_{2\theta}^2$ Bscalar. $\frac{1}{2}m_{\text{soft}}s_{2\theta}^2$ Splittings insensitive to details of binding $m_{\text{soft}}c_{2\theta}^2$

hypermultiplet

dynamics.

Toy model

$$\mathcal{W} = S(\Phi\Phi^{c} - \mu^{2}) + y_{p}\Phi PP^{c} + y_{e}\Phi^{c}EE^{c}$$

Kinnetic mixing gives effective Fayet-Iliopoulos term:

$$D_A = \epsilon D_Y - 2g_A(|\Phi|^2 - |\Phi^c|^2 + \dots)$$

At SUSY minimum:

 $|\Phi_c| \sim |\Phi| \sim \mathcal{O}(100 \text{GeV}), \ m_p \sim m_e \sim m_A \sim \mathcal{O}(\text{GeV})$

SUSY breaking

 $U(1)_{R}\text{-preserving mass: } \Delta_{e}^{2} \simeq \Delta_{p}^{2} \simeq \epsilon^{2} \frac{\alpha_{A}}{\alpha_{Y}} M_{\tilde{e},SM}^{2}$ $U(1)_{R}\text{-breaking operator: } \lambda_{A} \frac{\epsilon^{2} M_{1} \Box}{\Box + M_{1}^{2}} \lambda_{A} \Rightarrow B \simeq \frac{\epsilon^{2} \alpha_{A} M_{1}}{\pi} \log \frac{\Lambda_{UV}}{M_{1}}$ $U(1)_{V} \text{ gaugino receives a tiny soft mass } m_{\lambda V} \sim \frac{\alpha_{V}}{4\pi^{2}} B$ $m_{\text{principal}} \gg \Delta^{2} / m_{e} \gg B \gg m_{\lambda V}$

Benchmark point

▲ロ > ▲母 > ▲目 > ▲目 > ▲目 > ④ < ④ >

Conclusion:

- SUSY hydrogen spectrum almost identical to that of Dirac/Klein-Gordon equation, to O(μα⁴).
- ▶ $2s_{1/2}$ and $2p_{1/2}$ degenerate, even for finite proton mass.
- Superfield methods useful to calculate states and explain degeneracies.

Supersymmetry breaking gives a wealth of scales.

Backup slides

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●

Outlook

SUSY molecules:

Can supersymmetric matter form molecules and complex structure?

Problem: Boson binding energy scales as $E \sim N^{7/5}$ (c.f. fermions: $E \sim N$). $D \sim N^{-1/5}$.

Structure Collapses. Black hole formations?

$(SUSY)^2$ hydrogen?

$$-rac{lpha}{r} \Rightarrow \mathsf{Runge-Lenz} \ \mathsf{Vector} \Rightarrow \mathsf{QM} \ \mathsf{SUSY}$$

Dirac eq. - $\frac{\alpha}{r} \Rightarrow$ Johnson-Lippmann operator \Rightarrow QM SUSY

SUSY QM: Singled groundstate + doublet excited states

Decomposing $L \otimes S$ into irreducible reps.

Remember: Massive particle multiplet SUSY multiplet spanned by

 $|\Omega_j\rangle, \ Q^{\dagger}|\Omega_j\rangle, \ Q^{\dagger 2}|\Omega_j\rangle, \ Q^{\dagger 2}|\Omega_j\rangle,$

 $|\Omega_j\rangle$ irrep. with **total** angular momentum *j*.

Previous slides: On shell SUSY field multiplets spanned by

$$\left\{ \textit{nl} \rangle \otimes |\Omega_s \rangle, \quad |\textit{nl} \rangle \otimes \left(\textit{Q}^{\dagger} \otimes |\Omega_s \rangle \right), \quad |\textit{nl} \rangle \otimes \left(\textit{Q}^{\dagger 2} |\Omega_s \rangle \right) \right\},$$

to lowest order in $\alpha.$ Reducible rep. of rotation group for L>0.

Interpret non-relativistic fields as one particle wave functions:

$$\left\{ |nl\rangle\otimes|\Omega_{s}
angle, \quad Q^{\dagger}\otimes\left(|nl\rangle\otimes|\Omega_{s}
angle
ight), \quad Q^{\dagger2}\left(|nl\rangle\otimes|\Omega_{s}
angle
ight)
ight\}$$

• $|nl\rangle \otimes |\Omega_s\rangle$ decomposes into $|\Omega_{|I-s|}\rangle, ..., |\Omega_{I+s}\rangle$

Decomposing $L \otimes S$ into irreducible reps. cont.

This gives the decomposition

$$I\otimes \Omega_{s}=\Omega_{|I-s|}\otimes ...\otimes \Omega_{|I+s|}$$

In our case

$$I > 0: \quad I \otimes \Omega_0^p \otimes \Omega_0^e = I \otimes \left(2 \,\Omega_0 \oplus \Omega_{1/2} \right) = \Omega_{I-1/2} \oplus 2 \,\Omega_I \oplus \Omega_{I+1/2}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?