Supersymmetric bound states

Tomas Rube
Stanford Institute for Theoretical Physics
trube@stanford.edu
March 18, 2011, Cornell

Outline

Motivation

Dark Matter
Mesons from AdS/CFT
Supersymmetric hydrogen
Intuitive SUSY $m_{p} \rightarrow \infty$ solution
Finite m_{p}
Supersymmetric spectroscopy
Weakly broken SUSY
Spectral features
Toy model
Conclusion
Based on
0912.2543: Jay Wacker, TR
1009.3523: Siavosh Behbahani, Martin Jankowiak, Jay Wacker, TR

Motivation I: Dark Matter

2-6 keV

Hierarchy of scales.

CiDM/Atomic DM

- D. Alves et. al. [0903.3945]: Composite (inelastic) DM is meson in hidden $\operatorname{SU}\left(N_{c}\right)$ theory.
- D. Kaplan et. al. [0909.0753]: DM is hidden $U(1)$ atomic boundstate.

Hyperfine interaction gives $\delta \sim 100 \mathrm{keV}$.

Symmetry breaking from kinetic mixing

- Induces effective F.I. $\zeta_{A}^{2}=\epsilon D_{Y} \Rightarrow U(1)_{A}$ higgsed.
- Loop and ϵ suppressed soft masses can give tiny SUSY breaking

What is the spectrum of (approximately) SUSY bound states?

Motivation II: Heavy-Light $\mathcal{N}=2$ mesons in AdS/CFT

Christopher Herzog, Thomas Klose [0802.2956], [0912.0733]

No hyperfine!

Motivation 3

It's fun!!

Undergrad quantum mechanics: Principal structure

$$
\text { Electron }=>, \quad \text { Proton }=0
$$

- $E=-\frac{m_{e} \alpha^{2}}{2 n^{2}}$
- Binding energy independent of L.

Undergrad quantum mechanics: Fine structure

Terms contributing to $\mathcal{O}\left(m_{e} \alpha^{4}\right) \sim 10^{-4} \mathrm{eV}$:

- Energy from two terms:

$$
-\frac{m_{e} \alpha^{2}}{2 n^{2}}-\frac{m_{e} \alpha^{4}}{2 n^{4}}\left(\frac{n}{l+1 / 2}-\frac{3}{4}\right)
$$

- Adding Spin-orbit coupling and Darwin term:

$$
-\frac{m_{e} \alpha^{2}}{2 n^{2}}-\frac{m_{e} \alpha^{4}}{2 n^{4}}\left(\frac{n}{j+1 / 2}-\frac{3}{4}\right)
$$

Undergrad quantum mechanics: Hyperfine strure

At $\mathcal{O}\left(\alpha^{4}\right)$ there are terms suppressed in $\frac{m_{e}}{m_{p}}$, e.g. $\frac{\alpha \overrightarrow{S_{e}} \cdot \overrightarrow{S_{p}}}{m_{e} m_{p} r^{3}}$

- Hyperfine splits $1 s_{1 / 2}$. Gives 21 cm line.

- Also splits $2 s_{1 / 2}$ and $2 p_{1 / 2}$. Smaller than Lamb shift, but lower order in α.

Undergrad quantum mechanics cont.

The next order in α is

$$
\sum_{\sum}^{\frac{\mu}{2}} \mathcal{H}_{\alpha^{2}}=\frac{4 \alpha^{2}}{3 m_{e}^{2}}\left(-2 \ln \alpha+\frac{5}{6}-\ln K\right) \delta(\vec{r})+\ldots
$$

Lamb shift: $\mathcal{O}\left(m_{e} \alpha^{5}\right) \sim 10^{-5} \mathrm{eV}$

Intuitive $m_{p} \rightarrow \infty$ solution

SQED matter content:

$$
\begin{array}{llrll}
& \text { Superfield } & U(1)_{V} & \text { Fermions } & \text { Bosons } \\
\text { "Electrons" } & E, \bar{E}^{c} & -1 & e \bigodot & \tilde{e}_{1}, \tilde{e}_{2}=-: \\
" \text { "Protons" } & P, \bar{P}^{c} & 1 & p & \tilde{p}_{1}, \tilde{p}_{2}= \\
\text { "Photons" } & V & & \lambda & A^{\mu} \\
& & & \\
\mathcal{K}=|E|^{2}+\left|E^{c}\right|^{2}+|P|^{2}+\left|P^{c}\right|^{2} & \mathcal{W}=m_{e} E E^{c}+m_{p} P P^{c}
\end{array}
$$

$\mathcal{L}=($ Charged scalar $\&$ fermion kinetic terms) + (Gauge and gaugino kinetic terms)

$$
+i e \lambda\left(p \tilde{p}_{1}^{\dagger}+\ldots\right)-e^{2}\left(\left|\tilde{p}_{1}\right|^{2}-\left|\tilde{p}_{2}\right|^{2}+\ldots\right)^{2}
$$

SUSY interaction vanish in non-relativistic limit

Non-relativistic fields

$$
\tilde{p}_{1,2}=\frac{e^{i m_{\rho} t}}{\sqrt{2 m_{p}}} \phi_{\tilde{p}_{1,2}}, \quad \Psi_{p}^{D}=e^{i m_{\rho} t}\binom{\psi_{p}}{\frac{i \vec{\sigma} \cdot \vec{\nabla}}{2 m_{p}} \psi_{p}}
$$

Charged scalar \& fermion kinetic terms:

$$
\bar{\psi}_{p}\left(i \partial_{t}-\frac{\nabla^{2}}{2 m_{p}}\right) \psi_{p}+\bar{\phi}_{p}\left(i \partial_{t}-\frac{\nabla^{2}}{2 m_{p}}\right) \phi_{p}+(\text { Charge terms })
$$

Supersymmetric interactions:

$$
e \bar{\lambda}\left(\frac{1}{\sqrt{m_{p}}}\left(\psi_{p} \phi_{p}\right)+\ldots\right)+\text { h.c. }-e^{2}\left(\frac{1}{m_{p}}\left(\left|\phi_{\tilde{p}_{1}}\right|^{2}-\left|\phi_{\tilde{p}_{2}}\right|^{2}\right)+\ldots\right)^{2}
$$

Proton SUSY interactions suppressed by $1 / \sqrt{m_{p}}$.

Principal splitting

Spectrum insensitive to spin to $\mathcal{O}\left(m_{e} \alpha^{2}\right)$:

SUSY finestructure, $m_{p} \rightarrow \infty$ limit

- From before we know the spectrum for fermion/boson is:

$$
\begin{array}{r}
E_{n, j_{e}}=-\frac{m_{e} \alpha^{2}}{2 n^{2}}-\frac{m_{e} \alpha^{4}}{2 n^{4}}\left(\frac{n}{j_{e}+\frac{1}{2}}+\frac{3}{4}\right), \quad J=1 / 2 \quad \\
J=0 \quad 1 \\
\hline
\end{array}
$$

SUSY finestructure, $m_{p} \rightarrow \infty$ limit

- From before we know the spectrum for fermion/boson is:

$$
\begin{array}{r}
E_{n, j_{e}}=-\frac{m_{e} \alpha^{2}}{2 n^{2}}-\frac{m_{e} \alpha^{4}}{2 n^{4}}\left(\frac{n}{j_{e}+\frac{1}{2}}+\frac{3}{4}\right), \quad J=1 / 2 \quad \\
J=0 \quad 1 \\
\hline 1 s_{1 / 2} \\
1
\end{array}
$$

- SUSY transformation: $Q p \sim Q \tilde{p}_{1,2} \sim \sqrt{m_{p}} \gg Q e$

Matching to representations

The massive SUSY representations classified according to the spin of the Clifford vacuum. Counting gives

s	0	$\frac{1}{2}$	1	$\frac{3}{2}$	2
Ω_{0}	2	1			
$\Omega_{\frac{1}{2}}$	1	2	1		
Ω_{1}		1	2	1	
$\Omega_{\frac{3}{2}}$			1	2	1

SUSY finestructure, $m_{p} \rightarrow \infty$ limit

Spectrum of SUSY hydrogen, m_{p} finite

SUSY positronium
'82: Buchmller, Love \& Peccei
'85: Di Vecchia \& Schuchhart
Hydrogen calculation

$$
\begin{aligned}
& E_{n j}=-\frac{\mu \alpha^{2}}{2 n^{2}}+\frac{\mu \alpha^{4}}{n^{3}}\left[\frac{3}{8 n}-\frac{\mu^{2}}{m_{p} m_{e} n}-\frac{1}{2 j+1}\right] \\
& j=\text { spin of SUSY representation } \\
& \mu=\text { reduced mass }
\end{aligned}
$$

Spectrum of SUSY hydrogen cont.

- For $m_{p} \rightarrow \infty, \Omega_{1 / 2}$ contains both fermion-fermion states. Split for finite m_{p} in regular hydrogen, but protected in SUSY. Instead eigenstates rotate $\cos (2 \theta)\left|(p e)_{0}\right\rangle+\sin (2 \theta)\left(\left|\tilde{p}_{2} \tilde{e}_{1}\right\rangle-\left|\tilde{p}_{1} \tilde{e}_{2}\right\rangle\right) / \sqrt{2}, \quad \tan (\theta) \equiv \frac{m_{e}}{m_{p}}$
- No apparent symmetry explains $n=2, \Omega_{1 / 2}$ degeneracy.

Q: How can we understand the wave function above?

Supersymmetric spectroscopy

Assumption:
Binding dynamics is spin independent at $\mathcal{O}\left(\mu \alpha^{2}\right)$

The eigenstates then factorize
$\left|\Psi_{n \mid \mathcal{S}}\right\rangle=\left|\psi_{n \prime}(r)\right\rangle \otimes|\mathcal{S}\rangle+\mathcal{O}(\alpha)$
At $\mathcal{O}\left(\mu \alpha^{4}\right)$ irreducible reps. generally split

Plan:

1. Decompose \mathcal{S} for $L=0$
2. Decompose $L \otimes \mathcal{S}$ for $L>0$

Decomposition of $\mathcal{S}=\Omega_{0}^{p} \otimes \Omega_{0}^{e} \simeq 2 \Omega_{0} \oplus \Omega_{1 / 2}, L=0$

When hard, use superfields!!!!

- Use superfields with on-shell d.o.f.

$$
E(y, \theta)=\tilde{e}_{1}+\sqrt{2} \theta^{\alpha} e_{\alpha}-\theta^{2} m_{e} \tilde{e}_{2}, \ldots
$$

- Non-relativistic normalization: $e \rightarrow \psi_{e}, \tilde{e}_{1,2} \rightarrow \phi_{\tilde{e}_{1 / 2}}$
- SUSY acts on spatial wavefunction $\psi(r)$ through $\vec{\nabla} \sim v \sim \alpha \Rightarrow$ Ignore spatial dependence
- Write down neutral bilinears

$$
P E, P \bar{E}^{c}, \bar{P}^{c} E, \bar{P}^{c} \bar{E}^{c}, P \mathcal{D}^{\alpha} E, \ldots
$$

- Decompose using standard projection operators:

$$
\mathcal{P}_{1}=\frac{\overline{\mathcal{D}}^{2} \mathcal{D}^{2}}{16 \square}, \quad \mathcal{P}_{2}=\frac{\mathcal{D}^{2} \overline{\mathcal{D}}^{2}}{16 \square}, \quad \mathcal{P}_{T}=-\frac{\mathcal{D} \overline{\mathcal{D}}^{2} \mathcal{D}}{8 \square}
$$

Decomposition of $\mathcal{S}=\Omega_{0}^{p} \otimes \Omega_{0}^{e}$ cont.

All states contained in three superfields:

$$
\begin{aligned}
& \mathcal{P}_{1} P E=P E \propto \phi_{\tilde{p}_{1}} \phi_{\tilde{e}_{1}}+\sqrt{2} \Theta^{a}\left(c_{\theta} \psi_{p}^{a} \phi_{\tilde{e}_{1}}+s_{\theta} \phi_{\tilde{p}_{1}} \psi_{e}^{a}\right) \\
&-\Theta^{2}\left(s_{\theta}^{2} \phi_{\tilde{p}_{1}} \phi_{\tilde{e}_{2}}+c_{\theta}^{2} \phi_{\tilde{p}_{2}} \phi_{\tilde{e}_{1}}-s_{2 \theta}\left(\psi_{p} \psi_{e}\right)_{0}\right),
\end{aligned}
$$

$\mathcal{P}_{2} \bar{P}^{c} \bar{E}^{c}=\bar{P}^{c} \bar{E}^{c} \propto \ldots$

$$
\left.\begin{array}{c}
\mathcal{P}_{T} P \bar{E}^{c}=\left\{\begin{array}{l}
D \propto \\
c_{2 \theta}\left(\psi_{p} \psi_{e}\right)_{0}+s_{2 \theta}\left(\phi_{\tilde{r}_{2}} \phi_{\tilde{e}_{1}}-\phi_{\tilde{p}_{1}} \phi_{\tilde{e}_{2}}\right) / \sqrt{2} \\
\bar{\lambda}_{1} \propto \\
s_{\theta} \psi_{p} \phi_{\tilde{e}_{2}}-c_{\theta} \phi_{\tilde{p}_{2}} \psi_{e} \\
\lambda_{2} \propto \\
v_{\theta} \psi_{\boldsymbol{p}} \phi_{e}-c_{\theta} \phi_{p} \psi_{e} \\
v^{\mu} \propto
\end{array} \psi_{p} \vec{\sigma} \psi_{e}\right.
\end{array}\right\} \begin{gathered}
\tan ^{2} \theta=\frac{m_{e}}{m_{p}}, \bar{\Theta}^{\alpha}=\sqrt{m_{p}+m_{e}} \theta^{\alpha} . \\
m_{p} \rightarrow \infty \mathrm{OK} .
\end{gathered}
$$

R-symmetry and Parity

Two symmetries besides SUSY:

- $U(1)_{R}: R[P]=R[E]=1, R\left[\bar{P}^{c}\right]=R\left[\bar{E}^{c}\right]=-1$
- Parity $\mathcal{P}: \mathcal{P} P=\bar{P}^{c}, \mathcal{P} E=\bar{E}^{c}$.

In particular, $\mathcal{P} \tilde{e}_{1}=\tilde{e}_{2}$ but $R\left[\tilde{e}_{1}\right]=-R\left[\tilde{e}_{2}\right]$

$$
\begin{gathered}
\Rightarrow\left[U(1)_{R}, \mathcal{P}\right] \neq 0 \\
U(1)_{R} \rtimes P \cong O(2)_{R}
\end{gathered}
$$

Conclusions:

- $\Omega_{0}^{p} \otimes \Omega_{0}^{e}$ decomposes into one hyper multiplet $\mathscr{H}=\left\{P E, \bar{P}^{c} \bar{E}^{c}\right\}$ and one vector $\mathscr{V}=\mathcal{P}_{T} P \bar{E}^{c}$.
- Same method can be used for baryons, positronium, super Yukawa bound states etc..
- $L>0$ analogous

What is spectrum of weakly broken SUSY bound states?

SUSY breaking effects:

- Binding dynamics, e.g. gaugino interactions etc. Velocity suppressed.
- Soft masses
- $O(2)_{R}$ preserving masses, e.g. $\Delta^{2}\left(\left|\tilde{e}_{1}\right|+\left|\tilde{e}_{2}\right|^{2}\right)$
- $O(2)_{R}$ violating masses, e.g. $B m_{e} \tilde{e}_{1} \tilde{e}_{2}^{*}+c . c$

Effect of soft masses captured in

$$
\delta H_{\mathrm{soft}}=\delta m_{e \pm}\left|\phi_{e \pm}\right\rangle\left\langle\phi_{e \pm}\right|+\delta m_{p \pm}\left|\phi_{p \pm}\right\rangle\left\langle\phi_{p \pm}\right|
$$

Assumption:
Soft masses smaller than principal splitting $\mu \alpha^{2}$
\Rightarrow Spectrum given by diagonalizing by finite dimensional matrix

What is spectrum of weakly broken SUSY bound states?

SUSY breaking effects:

SUSY breaking

Matter

Gaugino \leftarrow Velocity suppressed
$O(2)_{R} \quad O(2)_{R}$

Effect of soft masses

Soft mass terms:

- $O(2)_{R}$ preserving masses, e.g. $\Delta^{2}\left(\left|\tilde{e}_{1}\right|+\left|\tilde{e}_{2}\right|^{2}+\left|p_{1}\right|^{2}+\left|p_{2}\right|^{2}\right)$
- $O(2)_{R}$ violating masses, e.g. $B\left(m_{e} \tilde{e}_{1} \tilde{e}_{2}^{*}+m_{p} \tilde{p}_{1} \tilde{p}_{2}^{*}\right)+c . c$.

$$
\delta m=\sqrt{m^{2}+\delta m^{2}} \simeq m+\frac{\delta m^{2}}{m}
$$

Effect of soft masses captured in

$$
\delta H_{\mathrm{soft}}=\delta m_{e \pm}\left|\phi_{e \pm}\right\rangle\left\langle\phi_{e \pm}\right|+\delta m_{p \pm}\left|\phi_{p \pm}\right\rangle\left\langle\phi_{p \pm}\right|
$$

Assumption:
Soft masses smaller than principal splitting $\mu \alpha^{2}$
\Rightarrow Spectrum given by diagonalizing by finite dimensional matrix

Example: Ground state

In ground state, splitting between \mathscr{H} and \mathscr{V}, denoted $m_{\text {FS }}$, fixed by dynamics. Spin/particle eigenstates determined by SUSY.
Wealth of scales:

- Principal splitting $m_{\text {prin. }}$
- Fine structure m_{FS}
- $O(2)_{R}$ preserving $m_{\text {soft }} \sim \Delta^{2} / m_{e}$.
- States protected by $O(2)_{R}$ split by B

Lowest state $\mathcal{P}=-1$ scalar.

Splittings insensitive to details of binding dynamics.

Toy model

$$
\mathcal{W}=S\left(\Phi \Phi^{c}-\mu^{2}\right)+y_{p} \Phi P P^{c}+y_{e} \Phi^{c} E E^{c}
$$

Kinnetic mixing gives effective Fayet-lliopoulos term:

$$
D_{A}=\epsilon D_{Y}-2 g_{A}\left(|\Phi|^{2}-\left|\Phi^{c}\right|^{2}+\ldots\right)
$$

At SUSY minimum:

$$
\left|\Phi_{c}\right| \sim|\Phi| \sim \mathcal{O}(100 \mathrm{GeV}), m_{p} \sim m_{e} \sim m_{A} \sim \mathcal{O}(\mathrm{GeV})
$$

SUSY breaking

$U(1)_{R^{-} \text {-preserving mass: }} \Delta_{e}^{2} \simeq \Delta_{p}^{2} \simeq \epsilon^{2} \frac{\alpha_{A}}{\alpha_{Y}} M_{\widetilde{e}, S M}^{2}$
$U(1)_{R}$-breaking operator: $\lambda_{A} \frac{\epsilon^{2} M_{1} \square}{\square+M_{1}^{2}} \lambda_{A} \Rightarrow B \simeq \frac{\epsilon^{2} \alpha_{A} M_{1}}{\pi} \log \frac{\Lambda_{U V}}{M_{1}}$
$U(1)_{V}$ gaugino receives a tiny soft mass $m_{\lambda V} \sim \frac{\alpha_{V}}{4 \pi^{2}} B$

$$
m_{\text {principal }} \gg \Delta^{2} / m_{e} \gg B \gg m_{\lambda V}
$$

Benchmark point

- $m_{p} \sim 50 \mathrm{GeV}$
- $m_{e} \sim 3 \mathrm{GeV}$
- $\alpha_{V} \sim 0.15$
- $m_{\text {Prin }} \sim 50 \mathrm{MeV}$
- $m_{\mathrm{FS}} \sim 1.5 \mathrm{MeV}$
- $m_{\text {soft }} \sim 270 \mathrm{keV}$
- $B \sim 5 \mathrm{eV}$

Conclusion:

- SUSY hydrogen spectrum almost identical to that of Dirac/Klein-Gordon equation, to $\mathcal{O}\left(\mu \alpha^{4}\right)$.
- $2 s_{1 / 2}$ and $2 p_{1 / 2}$ degenerate, even for finite proton mass.
- Superfield methods useful to calculate states and explain degeneracies.
- Supersymmetry breaking gives a wealth of scales.

Backup slides

Outlook

SUSY molecules:
Can supersymmetric matter form molecules and complex structure?
Problem: Boson binding energy scales as $E \sim N^{7 / 5}$
(c.f. fermions: $E \sim N$). $D \sim N^{-1 / 5}$.

Structure Collapses. Black hole formations?
$(S U S Y)^{2}$ hydrogen?
$-\frac{\alpha}{r} \Rightarrow$ Runge-Lenz Vector \Rightarrow QM SUSY
Dirac eq. $-\frac{\alpha}{r} \Rightarrow$ Johnson-Lippmann
operator \Rightarrow QM SUSY
SUSY QM: Singled groundstate + doublet excited states

Decomposing $L \otimes \mathcal{S}$ into irreducible reps.

- Remember: Massive particle multiplet SUSY multiplet spanned by

$$
\left|\Omega_{j}\right\rangle, Q^{\dagger}\left|\Omega_{j}\right\rangle, Q^{\dagger 2}\left|\Omega_{j}\right\rangle
$$

$\left|\Omega_{j}\right\rangle$ irrep. with total angular momentum j.

- Previous slides: On shell SUSY field multiplets spanned by

$$
\left.\{n I\rangle \otimes\left|\Omega_{s}\right\rangle, \quad|n I\rangle \otimes\left(Q^{\dagger} \otimes\left|\Omega_{s}\right\rangle\right), \quad|n I\rangle \otimes\left(Q^{\dagger 2}\left|\Omega_{s}\right\rangle\right)\right\}
$$

to lowest order in α. Reducible rep. of rotation group for $L>0$.

- Interpret non-relativistic fields as one particle wave functions:

$$
\left\{|n I\rangle \otimes\left|\Omega_{s}\right\rangle, \quad Q^{\dagger} \otimes\left(|n I\rangle \otimes\left|\Omega_{s}\right\rangle\right), \quad Q^{\dagger 2}\left(|n I\rangle \otimes\left|\Omega_{s}\right\rangle\right)\right\}
$$

$-|n I\rangle \otimes\left|\Omega_{s}\right\rangle$ decomposes into $\left|\Omega_{|I-s|}\right\rangle, \ldots,\left|\Omega_{I+s}\right\rangle$

Decomposing $L \otimes \mathcal{S}$ into irreducible reps. cont.

This gives the decomposition

$$
I \otimes \Omega_{s}=\Omega_{|I-s|} \otimes \ldots \otimes \Omega_{|I+s|}
$$

In our case

$$
I>0: \quad I \otimes \Omega_{0}^{p} \otimes \Omega_{0}^{e}=I \otimes\left(2 \Omega_{0} \oplus \Omega_{1 / 2}\right)=\Omega_{I-1 / 2} \oplus 2 \Omega_{I} \oplus \Omega_{l+1 / 2}
$$

