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✦ Direct info’ is limited (Tevatron)   

✦ At the LHC: 107 top/yr 

✦ SM: more than 104 top/yr with           γt ≥ 5.

✦ In the SM (& beyond) top is unique:

linked to EW breaking in natural models. 

induce most severe fine tuning;
mt ∼ 〈H〉 only ultra heavy quark, 

        controls flavor & custodial violation;

Introduction
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The challenge of highly boosted tops 

✦ Alas, above a TeV, top becomes similar to a light 
jet, signal is lost!  

(missinb + µ + ν̄µ

-  First, let’s consider NP particle       , 
whose dominant decay channel is 
ttbar: X might be heavy

New object emerges,
top jet!
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Resolution problem \w boosted tops  

✦ The hadronic calorimeters cannot go 
below R~0.4

 Why: Hadronic granularity is R~ 0.1 x 0.1
m2 = (p1 + p2)2 ∼ 2p2[1− (1−R2/2)] = p2 R2

pure geometrical mass: m ∼ R p
(say with R, p = 0.2, 500 , m ∼ 100GeV)

✦ If R between decay products of top is smaller 
than 0.4, you cannot resolve the top into daughter 
jets. (top jet = single jet)
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 Boosted top (w/z/h) jets & collimation   

At final state jets level: 

- Define collimation rate as the fraction of top 
quark which reconstruct to a jet having
140 GeV < mJ < 210 GeV

 Final state Jets Level
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 Top jets at the LHC

(missinb + µ + ν̄µ

(i) Jet mass.
(ii) Jet substructure.



✦ top-jet: call for theory, analysis & techniques

Most (naive) direct attempt - mass tagging

Skiba &Tucker-Smith, PRD(07); Holdom, JHEP (07); Frederix & Maltoni (0712.2355); Ellis, Huston, Hatakeyama, Loch & 
Tonnesmann, PPNP (08); Agashe et. al. PRD(07).

S/B~1/140, for pT(j) >1000 GeV, R=0.4
                            (~20 pb for jj+X, ~140 fb for ttbar+X)

✦ Are they different from high pT light jets?

Top-jets @ the LHC



 Rejection based on jet mass   

✦ Jet cone mass-sum of  “massless” momenta in
h-cal inside the cone: m2

J = (
∑

i∈R Pi)2, P i2 = 0

✦ Jet cone mass is non-trivial both for S & B

✦ Understand S&B distributions from 1st 
principles & compare to  MC “data”

✦ Add detector effects
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QCD cone jet mass distribution

We are interested in the following processes:

Factorized hadronic cross section:

PDF
Hard

perturbative (Born) 
cross-section

Jet function
At the 

leading order
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QCD cone jet mass distribution

Boosted QCD Jet via factorization:

Contact with Data (MC):

For large jet mass & small R,
no large logs =>

 can be calculated via
perturbative QCD!

J i
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QCD jet mass dist’ under control! 

Sherpa (CKKW)
With Full Detector 
Simulation
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QCD jet mass dist’ under control! 

✦Rejection Ratio: (#of events for mt-Δ < mJ < mt+Δ) / (total # of events)

•Can use our jet function to calculate it:

•Matches well with MC simulation (within 10%)

•For QCD dijet background, double mass tagging will 
reduce the background (typically,                ) εr ∼ 15%



QCD jet mass dist’ under control! 
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Cross Section Uncertainty
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Ex. SM ttbar vs. di-jet background! 
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Need Extra Handles 
to distinguish Signal 
from Background!



Pseudo-rapidity independence



Average Jet Mass (IR Mass cut needed)
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Jet sub-structure



Why jets?  What else?

✦ QCD amplitudes have soft-collinear singularity

✦ Observable: IR safe, smooth function of E flow

✦ Jet is a very inclusive object, defined via 
direction + pT ( + mass)

✦ Even R=0.4 contains O(100) had-cells => 
huge amount of info’ is lost

Sterman & Weinberg, PRL (77)



Jet-shapes

✦ “Jet-shapes” = inclusive observables 
dependent on energy flow within individual jets

✦ Once jet mass is fixed at a high scale 

➡ Large class of jet-shapes become 
perturbatively calculable

➡ IR safe jet-shapes combined with IR safe 
jet algorithm provide a bridge between

Direct theory prediction ⟷ Data/MC output



Jet-shapes

✦ “Jet-shapes” = inclusive observables 
dependent on energy flow within individual jets

✦ Once jet mass is fixed at a high scale 

➡ Large class of jet-shapes become 
perturbatively calculable

➡ IR safe jet-shapes combined with IR safe 
jet algorithm provide a bridge between

Direct theory prediction ⟷ Data/MC output

Can analyze a single event by a 
variety of jet shapes

=> the resolution associated with 
each one need not be dramatic!



IR-safe jet-shapes which know top from 
QCD jets?

✦ Successes in high jet mass => jet function is    
 well described by single gluon radiation

✦ QCD, top: linear, planar E-deposition in the cone

✦ IR-safe E-flow tensor:

✦ Planar flow:

Almeida, SJL, Perez,  Sterman, Sung, & Virzi, 
arXiv:0807.0234

c.f. Wang, Thale:  similar event shape, “sphericity tensor”
arXiv:0806.0023



Planar flow (Pf), QCD vs top jets

♦LO: Pf ~ 0 for QCD (2-body decay)

O(1) for top: smooth 
(for istropic ≥ 3-body decay, Pf~1)

♦NLO (due to large m):  O(   ) for QCD 
                       nominal for top

αs
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What about 2 body jet, Z/W/h  

Berger, K´ucs and Sterman (03): introduced for e+e- annihilation

✦ Angularities on a cone: Almeida, SJL, Perez,  Sterman, Sung, & Virzi, 
arXiv:0807.0234

=>



Theory: angularity, QCD vs Z  
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Madgraph: angularity, QCD vs Z  
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Top Polarization

✦ Daughter particles remember top polarization

✦ For Urel’ top:  helicity=chirality

➡Can do polarization analysis like it was done for 
the tau 

✦ Want to use PT to probe top polarization: PT is a 
directly measured quantity (c.f. For polarization method, need 

to use derived quantities with biases, like center of mass boost etc.) 
-Different from spin-spin correlation where you 
expand in s wave (for non-relativistic top)
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Figure 1: Sketches of angular momentum conservation in t→W+b decay in the top rest frame.

Simple (open) arrows denote particle direction of motion (spin). As a massless b-quark must be

left-handed, the rightmost plot is forbidden in the SM at tree level.

resulting angular lepton distributions are therefore very distinct for eachW helicity state.

As it is necessary to know the weak isospin of theW spin analyzer, the charged lepton

is the best choice since u-like jets can not be distinguished experimentally from d-like jets.

Consequently, theW polarization is better measured in dileptonic and semileptonic tt̄ channels

through the distribution of the! angle between the charged lepton direction in theW rest frame

and the W direction in the top quark rest frame. The ! angular distribution is given by the

following expression [6]:

1

N

dN

d cos!
=
3

2

[

F0

(

sin!√
2

)2

+FL

(

1− cos!
2

)2

+FR

(

1+ cos!

2

)2
]

(2)

Its SM expectation is shown in Figure 3. It reflects the superposition of the three terms of

Equation (2), corresponding to the longitudinal (sin!)2, the left-handed (1− cos!)2 and the
right-handed (1+ cos!)2W helicity states. Each term is weighted by the fraction F0, FL or FR
given in Equation (1).

3

Top Polarization
~70%~30%



W
+

W
+

W
+

Left!Handed W Longitudinal W

t t

b b

t

b

Right!Handed W

Figure 1: Sketches of angular momentum conservation in t→W+b decay in the top rest frame.

Simple (open) arrows denote particle direction of motion (spin). As a massless b-quark must be

left-handed, the rightmost plot is forbidden in the SM at tree level.

resulting angular lepton distributions are therefore very distinct for eachW helicity state.

As it is necessary to know the weak isospin of theW spin analyzer, the charged lepton

is the best choice since u-like jets can not be distinguished experimentally from d-like jets.

Consequently, theW polarization is better measured in dileptonic and semileptonic tt̄ channels

through the distribution of the! angle between the charged lepton direction in theW rest frame

and the W direction in the top quark rest frame. The ! angular distribution is given by the

following expression [6]:

1

N

dN

d cos!
=
3

2

[

F0

(

sin!√
2

)2

+FL

(

1− cos!
2

)2

+FR

(

1+ cos!

2

)2
]

(2)

Its SM expectation is shown in Figure 3. It reflects the superposition of the three terms of

Equation (2), corresponding to the longitudinal (sin!)2, the left-handed (1− cos!)2 and the
right-handed (1+ cos!)2W helicity states. Each term is weighted by the fraction F0, FL or FR
given in Equation (1).

3

Top Polarization
~70%~30%

tR



W
+

W
+

W
+

Left!Handed W Longitudinal W

t t

b b

t

b

Right!Handed W

Figure 1: Sketches of angular momentum conservation in t→W+b decay in the top rest frame.

Simple (open) arrows denote particle direction of motion (spin). As a massless b-quark must be

left-handed, the rightmost plot is forbidden in the SM at tree level.

resulting angular lepton distributions are therefore very distinct for eachW helicity state.

As it is necessary to know the weak isospin of theW spin analyzer, the charged lepton

is the best choice since u-like jets can not be distinguished experimentally from d-like jets.

Consequently, theW polarization is better measured in dileptonic and semileptonic tt̄ channels

through the distribution of the! angle between the charged lepton direction in theW rest frame

and the W direction in the top quark rest frame. The ! angular distribution is given by the

following expression [6]:

1

N

dN

d cos!
=
3

2

[

F0

(

sin!√
2

)2

+FL

(

1− cos!
2

)2

+FR

(

1+ cos!

2

)2
]

(2)

Its SM expectation is shown in Figure 3. It reflects the superposition of the three terms of

Equation (2), corresponding to the longitudinal (sin!)2, the left-handed (1− cos!)2 and the
right-handed (1+ cos!)2W helicity states. Each term is weighted by the fraction F0, FL or FR
given in Equation (1).

3

Top Polarization

✦b quark: 

- back-warded (soft PT) 
for tR

- forwarded (hard PT)    
for tL

✦For SM, parity even   
(PT distribution will be 
flat) ➔ look for new 
Physics where parity is 
violated

~70%~30%

tR
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lepton directions. Simple (open) arrows denote particle direction of motion (spin). ForW−, left
and right-handed components are inverted.
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Top Polarization

•lepton:forwarded for tR

      back-warded for tL

~70%~30%

W direction
of flight
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Top Polarization

•lepton:forwarded for tR

      back-warded for tL

~70%~30%

W direction
of flight

For Boosted Longitudinal W: letpon is forwarded

tR
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Leptonic Top charged lepton as a 
spin analyzer

pT(top) > 1TeV MG/ME

•for example with the KK gluon, you'll see suddenly only leptons/bs that follows the RH curves
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Example: KK gluon lepton PT is harder near 
the KK gluon plateau

KK 
gluon 
bump

Sherpa (CKKW)
Without Detector 
Simulation
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Example: KK gluon b-quark PT is harder near 
the KK gluon bump
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MG/ME
Without Detector 
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Summary

✦ LHC => new era, precision top physics

✦ Theory+technique to tag t/W/Z/h jets

✦ Understand jet mass, but it’s not 
enough

✦ Introduce Jet-shapes: very useful, but 
more to do (exp’+analyses+theory)



Backup: Top 
Polarization
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Figure 2: Sketches of the different W+ polarization modes in t →W+b decay and resulting

lepton directions. Simple (open) arrows denote particle direction of motion (spin). ForW−, left
and right-handed components are inverted.
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Figure 3: Angular distribution of Equation (2) in the SM. The predicted contributions from

longitudinal (0) and left-handed (L) helicity states are shown separately with dashed lines. The

right-handed contribution is null in the SM. The sum (0+L+R) is depicted with a full line.
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• Polarization: daughter particles 
of top still remembers the 
information

• b is forwarded for tL

• lepton is back-warded for tL

• lepton is in general better spin 
analyzer compared to b-quark,        
but b can be used for the 
hadronic top

W
+

W
+

W
+

Left!Handed W Longitudinal W

t t

b b

t

b

Right!Handed W

Figure 1: Sketches of angular momentum conservation in t→W+b decay in the top rest frame.

Simple (open) arrows denote particle direction of motion (spin). As a massless b-quark must be

left-handed, the rightmost plot is forbidden in the SM at tree level.

resulting angular lepton distributions are therefore very distinct for eachW helicity state.

As it is necessary to know the weak isospin of theW spin analyzer, the charged lepton

is the best choice since u-like jets can not be distinguished experimentally from d-like jets.

Consequently, theW polarization is better measured in dileptonic and semileptonic tt̄ channels

through the distribution of the! angle between the charged lepton direction in theW rest frame

and the W direction in the top quark rest frame. The ! angular distribution is given by the

following expression [6]:

1

N

dN

d cos!
=
3

2

[

F0

(

sin!√
2

)2

+FL

(

1− cos!
2

)2

+FR

(

1+ cos!

2

)2
]

(2)

Its SM expectation is shown in Figure 3. It reflects the superposition of the three terms of

Equation (2), corresponding to the longitudinal (sin!)2, the left-handed (1− cos!)2 and the
right-handed (1+ cos!)2W helicity states. Each term is weighted by the fraction F0, FL or FR
given in Equation (1).
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Backup: 30% B-tagging efficiency & 1% light jet 
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