Top Jets & Boosted QCD Jets @ the LHC

Seung J. Lee

YITP, Stony Brook University

with L. Almeida, G. Perez, G. Sterman, I. Sung, J. Virzi with L. Almeida, G. Perez, I. Sung, J. Virzi

arXiv:0807.0234, work in preparation Cornell University, September 3, 2008

Outline

- ◆ Introduction
- ◆ Emergence of high p_T top (W,Z,h) jets at the LHC
- → Jet mass: Signal & QCD BG (theory+MC)
- Jet substructure, massive jet event shapes
- → Top polarization
- → Summary

Introduction

♦ In the SM (& beyond) top is unique: only ultra heavy quark, $m_t \sim \langle H \rangle$ induce most severe fine tuning; controls flavor & custodial violation; linked to EW breaking in natural models.

Introduction

- ♦ In the SM (& beyond) top is unique: only ultra heavy quark, $m_t \sim \langle H \rangle$ induce most severe fine tuning; controls flavor & custodial violation; linked to EW breaking in natural models.
- → Direct info' is limited (Tevatron)
- ◆ At the LHC: 10⁷ top/yr
- ♦ SM: more than 10⁴ top/yr with $\gamma_t \geq 5$.

First, let's consider NP particle ,
 whose dominant decay channel is
 ttbar: X might be heavy

First, let's consider NP particle ,
 whose dominant decay channel is
 ttbar: X might be heavy

First, let's consider NP particle whose dominant decay channel is ttbar: X might be heavy

Alas, above a TeV, top becomes similar to a light

jet, signal is lost!

Resolution problem \w boosted tops

♦ The hadronic calorimeters cannot go below R~0.4 $R^2 = \Delta \eta^2 + \Delta \phi^2$

Resolution problem \w boosted tops

♦ The hadronic calorimeters cannot go below R~0.4 $R^2 = \Delta \eta^2 + \Delta \phi^2$

Why: Hadronic granularity is $R \sim 0.1 \times 0.1$

$$m^2 = (p_1 + p_2)^2 \sim 2p^2[1 - (1 - R^2/2)] = p^2 R^2$$

pure geometrical mass: $m \sim R p$
(say with $R, p = 0.2, 500, m \sim 100 \text{GeV}$)

Resolution problem \w boosted tops

♦ The hadronic calorimeters cannot go below R~0.4 $R^2 = \Delta \eta^2 + \Delta \phi^2$

Why: Hadronic granularity is R~ 0.1 x 0.1 $m^2 = (p_1 + p_2)^2 \sim 2p^2[1 - (1 - R^2/2)] = p^2 R^2$ pure geometrical mass: $m \sim R p$ (say with R, p = 0.2, 500, $m \sim 100 \text{GeV}$)

→ If R between decay products of top is smaller than 0.4, you cannot resolve the top into daughter jets. (top jet = single jet)

Boosted top (w/z/h) jets & collimation

Partonic Level

Highly Boosted Tops: High Collimations!

$$\Delta R$$
 vs. P_{T} $\Delta R = \sqrt{}$

$$\Delta R = \sqrt{\Delta \eta^2 + \Delta \phi^2}$$

Boosted top (w/z/h) jets & collimation

Top jets at the LHC

Top jets at the LHC

- (i) Jet mass.
- (ii) Jet substructure.

Top-jets @ the LHC

◆ Are they different from high p_T light jets?

 $S/B\sim 1/140$, for $p_T(j) > 1000$ GeV, R=0.4 (~20 pb for jj+X, ~140 fb for ttbar+X)

top-jet: call for theory, analysis & techniques

Most (naive) direct attempt - mass tagging

Skiba &Tucker-Smith, PRD(07); Holdom, JHEP (07); Frederix & Maltoni (0712.2355); Ellis, Huston, Hatakeyama, Loch & Tonnesmann, PPNP (08); Agashe et. al. PRD(07).

Rejection based on jet mass

- ♦ Jet cone mass-sum of "massless" momenta in h-cal inside the cone: $m_J^2 = (\sum_{i \in R} P_i)^2, \;_{Pi^2 = 0}$
- → Jet cone mass is non-trivial both for S & B

→ Understand S&B distributions from 1st principles & compare to MC "data"

Add detector effects

- ♦ Naively the signal is $J \propto \delta(m_J m_t)$
- → In practice: $m_J^t \sim m_t + \delta m_{QCD} + \delta m_{EW}$ + detector smearing.

$$J^{t}(m_{J}, m_{t}, R, p_{T}) \sim \int dm_{QCD} dm_{EW} dm_{0} \, \delta(m_{0} - m_{t}) \, \delta(m_{J} - m_{QCD} - m_{EW}) \times J^{t}_{QCD}(m_{QCD}, R, p_{T}) \times J^{t}_{EW}(m_{EW}, m_{t}/(p_{T}R)) \, .$$

- ♦ Naively the signal is $J \propto \delta(m_J m_t)$
- lacktriangle In practice: $m_J^t \sim m_t + \delta m_{QCD} + \delta m_{EW}$

Can understood perturbatively fast & small~10GeV

+ detector smearing.

$$J^{t}(m_{J}, m_{t}, R, p_{T}) \sim \int dm_{QCD} dm_{EW} dm_{0} \, \delta(m_{0} - m_{t}) \, \delta(m_{J} - m_{QCD} - m_{EW}) \times J^{t}_{QCD}(m_{QCD}, R, p_{T}) \times J^{t}_{EW}(m_{EW}, m_{t}/(p_{T}R)) \, .$$

- lack Naively the signal is $J \propto \delta(m_J m_t)$
- lacktriangle In practice: $m_J^t \sim m_t + \delta m_{QCD} + \delta m_{EW}$

Can understood perturbatively fast & small~10GeV

$$J^t(m_J, m_t, R, p_T) \sim \int dm_{QCD} dm_E$$

$$J^t_{QCD}(m_{QCD}, R, p_T)$$

+ detector smearing.

Pure kinematical bW(qq) dist' in/out cone much longer

Sherpa => Full Simulation (CKKW)

Х

Preliminary (Transfer function "Full Simulation")

We are interested in the following processes:

$$H_a(p_a) + H_b(p_b) \rightarrow J_1(m_{J_1}^2, p_{1,T}, R) + X$$

$$H_a(p_a) + H_b(p_b) \rightarrow J_1(m_{J_1}^2, p_{1,T}, R) + J_2(m_{J_2}^2, p_{2,T}, R) + X$$

We are interested in the following processes:

$$H_a(p_a) + H_b(p_b) \rightarrow J_1(m_{J_1}^2, p_{1,T}, R) + X$$

$$H_a(p_a) + H_b(p_b) \rightarrow J_1(m_{J_1}^2, p_{1,T}, R) + J_2(m_{J_2}^2, p_{2,T}, R) + X$$

Factorized hadronic cross section:

$$\frac{d\sigma_{H_AH_B\to J_1X}(R)}{dp_T dm_J d\eta} = \sum_{abc} \int dx_a \, dx_b \, \underbrace{\phi_a(x_a) \, \phi_b(x_b)}_{abc} \frac{d\hat{\sigma}_{ab\to cX}}{dp_T dm_J d\eta} (x_a, x_b, p_T, \eta, m_J, R)$$

We are interested in the following processes:

$$H_a(p_a) + H_b(p_b) \to J_1(m_{J_1}^2, p_{1,T}, R) + X$$

$$H_a(p_a) + H_b(p_b) \rightarrow J_1(m_{J_1}^2, p_{1,T}, R) + J_2(m_{J_2}^2, p_{2,T}, R) + X$$

Factorized hadronic cross section:

$$\frac{d\sigma_{H_AH_B\to J_1X}(R)}{dp_T dm_J d\eta} = \sum_{abc} \int dx_a \, dx_b \, \phi_a(x_a) \, \phi_b(x_b) \frac{d\hat{\sigma}_{ab\to cX}}{dp_T dm_J d\eta} (x_a, x_b, p_T, \eta, m_J, R)$$

perturbative (Born) **Hard** cross-section

$$\frac{d\sigma_{H_A H_B \to J_1 X}(R)}{dp_T dm_J d\eta} = \sum_{aba} \int dx_a dx_b \phi_a(x_a) \phi_b(x_b) H_{ab \to cX}(x_a, x_b, p_T, \eta, R)$$

At the

leading order

 $\times J_1^c(m_J, p_T, R)$.

Jet function

Boosted QCD Jet via factorization:

$$\int dm_J J^c = 1$$

$$\int dm_J J^c = 1 \qquad \frac{d\sigma(R)}{dp_T dm_J} = \sum_c J^c(m_J, p_T, R) \frac{d\hat{\sigma}^c(R)}{dp_T},$$

where c represents the flavour of the jet, and where

$$\frac{d\hat{\sigma}^c(R)}{dp_T} = \sum_{ab} \int dx_a \, dx_b \, \phi_a \, \phi_b \int d\eta \int dm_J \, \frac{d\hat{\sigma}_{ab \to cX}(R)}{dp_T dm_J d\eta} \, .$$

Boosted QCD Jet via factorization:

$$\int dm_J J^c = 1$$

$$\int dm_J J^c = 1 \qquad \frac{d\sigma(R)}{dp_T dm_J} = \sum_c J^c(m_J, p_T, R) \frac{d\hat{\sigma}^c(R)}{dp_T},$$

where c represents the flavour of the jet, and where

$$\frac{d\hat{\sigma}^c(R)}{dp_T} = \sum_{ab} \int dx_a \, dx_b \, \phi_a \, \phi_b \int d\eta \int dm_J \, \, \frac{d\hat{\sigma}_{ab \to cX}(R)}{dp_T dm_J d\eta} \, .$$

Contact with Data (MC):

$$\frac{d\sigma_{pred}(R)}{dp_T dm_J} = \sum_c J^c(m_J, p_T, R) \left(\frac{d\sigma^c(R)}{dp_T}\right)_{MC}$$

Boosted QCD Jet via factorization:

$$\int dm_J J^c = 1 \qquad \frac{d\sigma(R)}{dp_T dm_J} = \sum J^c(m_J, p_T, R) \frac{d\hat{\sigma}^c(R)}{dp_T},$$
 where
$$\text{ , and where }$$
 For large jet mass & small R, no large logs =>
$$J^i \text{ can be calculated via perturbative QCD!}$$

$$J^c(m_J, p_T, R) \left(\frac{d\sigma^c(R)}{dp_T} \right)_{MC}$$

Main idea: calculating mass due to two-body QCD bremsstrahlung:

$$J^{(eik),c}(m_J, p_T, R) = \alpha_s(p_T) \frac{4C_c}{\pi m_J} \log \left(\frac{1}{z} \tan \left(\frac{R}{2}\right) \sqrt{4 - z^2}\right)$$

$$\approx \alpha_s(p_T) \frac{4C_c}{\pi m_J} \log \left(\frac{R p_T}{m_J}\right),$$

Main idea: calculating mass due to two-body QCD bremsstrahlung:

Main idea: calculating mass due to two-body QCD bremsstrahlung:

$$J_{i}^{q(1)}(m_{J}^{2}, p_{0,J_{i}}, R) = \frac{C_{F}\beta_{i}}{4m_{J_{i}}^{2}} \int_{\cos(R)}^{\beta_{i}} \frac{d\cos\theta_{S}}{\pi} \frac{\alpha_{S}(k_{0}) z^{4}}{(2(1 - \beta_{i}\cos\theta_{S}) - z^{2}) (1 - \beta_{i}\cos\theta_{S})} \times \left\{ z^{2} \frac{(1 + \cos\theta_{S})^{2}}{(1 - \beta_{i}\cos\theta_{S})} \frac{1}{(2(1 + \beta_{i})(1 - \beta_{i}\cos\theta_{S}) - z^{2}(1 + \cos\theta_{S}))} + \frac{3(1 + \beta_{i})}{z^{2}} + \frac{1}{z^{4}} \frac{(2(1 + \beta_{i})(1 - \beta_{i}\cos\theta_{S}) - z^{2}(1 + \cos\theta_{S}))^{2}}{(1 + \cos\theta_{S})(1 - \beta_{i}\cos\theta_{S})} \right\},$$

$$\beta_{i} = \sqrt{1 - m_{J_{i}}^{2}/p_{0,J_{i}}^{2}} \quad z = \frac{m_{J_{i}}}{p_{0,J_{i}}}, \ p_{0,J_{i}} = \sqrt{m_{J_{i}}^{2} + p_{T}^{2}}, \ \text{and} \ k_{0} = \frac{p_{0,J_{i}}}{2} \frac{z^{2}}{1 - \beta_{i}\cos\theta_{S}}.$$

$$J_i^{g(1)}(m_J^2, p_{0,J_i}, R) = \frac{C_A \beta_i}{16m_{J_i}^2} \int_{\cos(R)}^{\beta_i} \frac{d\cos\theta_S}{\pi} \frac{\alpha_S(k_0)}{(1 - \beta\cos\theta_S)^2 (1 - \cos^2\theta_S)(2(1 + \beta) - z^2)} \times \left(z^4 (1 + \cos\theta_S)^2 + z^2 (1 - \cos^2\theta_S)(2(1 + \beta_i) - z^2) + (1 - \cos\theta_S)^2 (2(1 + \beta_i) - z^2)^2\right)^2$$

Revisiting our prediction:

$$\frac{d\sigma_{pred}(R)}{dp_T dm_J} = \sum_c J^c(m_J, p_T, R) \left(\frac{d\sigma^c(R)}{dp_T}\right)_{MC}$$

Revisiting our prediction:

$$\frac{d\sigma_{pred}(R)}{dp_T dm_J} = \sum_c J^c(m_J, p_T, R) \left(\frac{d\sigma^c(R)}{dp_T}\right)_{MC}$$

But, in practice, cannot distinguish partonic origin of a jet: can only give bounds: $J^g > J^q$

$$\frac{d\sigma_{pred}(R)}{dp_T dm_J}_{upper\ bound} = J^g(m_J, p_T, R) \sum_c \left(\frac{d\sigma^c(R)}{dp_T}\right)_{MC}$$

$$\frac{d\sigma_{pred}(R)}{dp_T dm_J}_{lower\ bound} = J^q(m_J, p_T, R) \sum_c \left(\frac{d\sigma^c(R)}{dp_T}\right)_{MC}$$

Sherpa, jet function convolved

Jet mass distribution theory vs. MC

QCD jet mass dist' under control!

Sherpa (CKKW)
With Full Detector
Simulation

QCD jet mass dist' under control!

- ♦ Rejection Ratio: (#of events for m_t -Δ < m_J < m_t +Δ) / (total # of events)
 - Can use our jet function to calculate it:

$$\sigma(R)_{upper\ bound} = \int_{p_T^{min}}^{\infty} dp_T \sum_c \left(\frac{d\sigma^c\left(R\right)}{d\ p_T}\right)_{MC} \int_{140\ GeV}^{210\ GeV} J^g\left(m_J, p_T, R\right) dm_J$$

$$\sigma(R)_{lower\ bound} = \int_{p_T^{min}}^{\infty} dp_T \sum_c \left(\frac{d\sigma^c\left(R\right)}{d\ p_T}\right)_{MC} \int_{140\ GeV}^{210\ GeV} J^q\left(m_J, p_T, R\right) dm_J$$

- Matches well with MC simulation (within 10%)
- For QCD dijet background, double mass tagging will reduce the background (typically, $\epsilon_r \sim 15\%$)

QCD jet mass dist' under control!

Cross Section Uncertainty

Process	Generator	PDF	Matching	Cross Section
$pp \to t\bar{t}(j)$	SHERPA 1.0.9	CTEQ6M	CKKW	141 fb
$pp \to t\bar{t}(j)$	SHERPA 1.1.2	CTEQ6M	CKKW	149 fb
$pp \to t\bar{t}(j)$	SHERPA 1.1.2	CTEQ6L	CKKW	281 fb
$pp \to t\bar{t}(j)$	MG/ME4	CTEQ6M	MLM	68 fb
$pp \to t\bar{t}(j)$	MG/ME4	CTEQ6L	MLM	56 fb
pp o t ar t	Pythia 6	CTEQ6L	-	157 fb
$pp o t ar{t}$	Pythia 8	CTEQ6M	-	174 fb
$pp \rightarrow jj(j)$	SHERPA 1.1.0	CTEQ6M	CKKW	10.2 pb
$pp \rightarrow jj(j)$	SHERPA 1.1.2	CTEQ6M	CKKW	21.3 pb
$pp \rightarrow jj(j)$	SHERPA 1.1.2	CTEQ6M	CKKW	15.8 pb
$pp \rightarrow jj(j)$	MG/ME4	CTEQ6L	MLM	8.54 pb
$pp \rightarrow jj(j)$	MG/ME4	CTEQ6M	MLM	9.93 pb
pp o jj	Pythia 6	CTEQ6L	-	13.7 pb
pp o jj	Pythia 8	CTEQ6M	-	13.3 pb

Table 1: Cross sections for producing final state R=0.4 leading cone jets with $p_T \geq 1\,\text{TeV}$ and $|\eta| \leq 2$. Generation level cuts were imposed as follows. Final state partons from the hard scatter were required to have $p_T \geq 20\,\text{GeV}$. For MG/ME, final state partons have $|\eta| \leq 4.5$. Processes with a trailing (j) suffix indicate that $2 \to 2$ and $2 \to 3$ processes are represented.

With transfer-functions ("full simulation")

p_T^{lead} cut	Cone	S (0% JES)	Δ_0	+5% JES	Δ_5	-5% JES	Δ_{-5}
$1000~{\rm GeV}$	C4	293	-31.5%	358	-16.4%	230	-46.3%
$1000~{\rm GeV}$	C7	478	-33.1%	616	-13.7%	358	-49.9%
1500 GeV	C4	32	-30.4%	44	-4.3%	21	-54.3%
$1500~{ m GeV}$	C7	35	-34.0%	52	-1.9%	24	-54.7%
p_T^{lead} cut	Cone	B (0% JES)	Δ_0	+5% JES	Δ_5	-5% JES	Δ_{-5}
p_T^{lead} cut 1000 GeV	Cone C4	B (0% JES) 2475	Δ_0 5.8%	+5% JES 2914	Δ_{5} 24.5%	-5% JES 1919	Δ_{-5} -18.0%
$1000~{\rm GeV}$	C4	2475	5.8%	2914	24.5%	1919	-18.0%

Double mass tagging at 25 fb⁻¹ with detector resolution and

Jet Energy Scale (JES)

look hopeless b-tagging

$$\Delta_{JES} = \frac{N_{JES} - N_{TRUTH}}{N_{TRUTH}}$$

without high efficiency!

S/B~0.11

p_T^{lead} cut	Cone	S (0% JES)	Δ_0	+5% JES	Δ_5	-5% JES	Δ_{-5}
$1000~{\rm GeV}$	C4	293	-31.5%	358	-16.4%	230	-46.3%
$1000~{\rm GeV}$	C7	478	-33.1%	616	-13.7%	358	-49.9%
1500 GeV	C4	32	-30.4%	44	-4.3%	21	-54.3%
$1500~{ m GeV}$	C7	35	-34.0%	52	-1.9%	24	-54.7%
p_T^{lead} cut	Cone	B (0% JES)	Δ_0	+5% JES	Δ_5	-5% JES	Δ_{-5}
p_T^{lead} cut 1000 GeV	Cone C4	B (0% JES) 2475	Δ_0 5.8%	+5% JES 2914	Δ_{5} 24.5%	-5% JES 1919	Δ_{-5} -18.0%
$1000~{\rm GeV}$	C4	2475	5.8%	2914	24.5%	1919	-18.0%

Double mass tagging at 25 fb⁻¹ with detector resolution and

Jet Energy Scale (JES)

look hopeless b-tagging

$$\Delta_{JES} = \frac{N_{JES} - N_{TRUTH}}{N_{TRUTH}}$$

without high efficiency!

S/B~0.11

Pseudo-rapidity independence

Average Jet Mass (IR Mass cut needed)

 $<M_J> \propto P_T, R$

Jet sub-structure

Why jets? What else?

- QCD amplitudes have soft-collinear singularity
- ◆ Observable: IR safe, smooth function of E flow Sterman & Weinberg, PRL (77)
- → Jet is a very inclusive object, defined via direction + p_T (+ mass)
- ◆ Even R=0.4 contains O(100) had-cells => huge amount of info' is lost

Jet-shapes

- "Jet-shapes" = inclusive observables dependent on energy flow within individual jets
- Once jet mass is fixed at a high scale
 - Large class of jet-shapes become perturbatively calculable
 - → IR safe jet-shapes combined with IR safe jet algorithm provide a bridge between

Direct theory prediction ← Data/MC output

Jet-shapes

IR-safe jet-shapes which know top from QCD jets?

Successes in high jet mass => jet function is well described by single gluon radiation

QCD, top: linear, planar E-deposition in the cone

Almeida, SJL, Perez, Sterman, Sung, & Virzi, arXiv:0807.0234

c.f. Wang, Thale: similar event shape, "sphericity tensor" arXiv:0806.0023

♦ IR-safe E-flow tensor: $I_w^{kl} = \frac{1}{m_J} \sum_i w_i \frac{p_{i,k}}{w_i} \frac{p_{i,l}}{w_i}$

ightharpoonup Planar flow: $Pf = \frac{4 \det(I_w)}{\operatorname{tr}(I_w)^2} = \frac{4 \lambda_1 \lambda_2}{(\lambda_1 + \lambda_2)^2}$

Planar flow (Pf), QCD vs top jets

◆LO: Pf ~ 0 for QCD (2-body decay)

$$\frac{1}{J} \left(\frac{dJ}{dPf} \right)_{2\text{body}} = \delta(Pf)$$

O(1) for top: smooth (for istropic ≥ 3-body decay, Pf~1)

ightharpoonup NLO (due to large m): $O(\alpha_s)$ for QCD nominal for top

Planar flow (Pf), QCD vs top jets

Planar flow (Pf), QCD vs top jets

What about 2 body jet, Z/W/h

Berger, K'ucs and Sterman (03): introduced for e+e- annihilation

Angularities on a cone: Almeida, SJL, Perez, Sterman, Sung, & Virzi, arXiv:0807.0234

$$\tilde{\tau}_a(R, p_T) = \frac{1}{m_J} \sum_{i \in jet} \omega_i \sin^a \left(\frac{\pi \theta_i}{2R}\right) \left[1 - \cos\left(\frac{\pi \theta_i}{2R}\right)\right]^{1-a}$$

$$P^x(\theta_s) = (dJ^x/d\theta_s)/J^x \Rightarrow P^x(\tilde{\tau}_a)$$

$$R(\tilde{\tau}_a) = \frac{P^{\text{sig}}(\tilde{\tau}_a)}{P^{\text{QCD}}(\tilde{\tau}_a)}$$

Theory: angularity, QCD vs Z

Madgraph: angularity, QCD vs Z

- Daughter particles remember top polarization
- ◆ For Urel' top: helicity=chirality
 - Can do polarization analysis like it was done for the tau
- ◆ Want to use P_T to probe top polarization: P_T is a directly measured quantity (c.f. For polarization method, need

to use derived quantities with biases, like center of mass boost etc.)

- Different from spin-spin correlation where you expand in s wave (for non-relativistic top)

Left-Handed W

Longitudinal W

Longitudinal W

Left-Handed W

- →b quark:
 - back-warded (soft P_T)
 for t_R
 - forwarded (hard P_T) for t_L
- ◆For SM, parity even (PT distribution will be flat) → look for new Physics where parity is violated

Longitudinal W

lepton:forwarded for t_R
 back-warded for t_L

Longitudinal W

Left-Handed W

lepton:forwarded for t_R
 back-warded for t_I

~30%

~70%

For Boosted Longitudinal W: letpon is forwarded

P_T(b) is limited by W boson mass

Hadronic Top

b quark as a spin analyzer

•for example with the KK gluon, you'll see suddenly only leptons/bs that follows the RH curves

Leptonic Top

charged lepton as a spin analyzer

Example: KK gluon

lepton PT is harder near the KK gluon plateau

Also relevant for SUSY: heavy stop decaying into top and wino, etc...

Example: KK gluon

lepton PT is harder near the KK gluon plateau

Example: KK gluon

b-quark PT is harder near the KK gluon bump

Also relevant for SUSY: heavy stop decaying into top and wino, etc...

Example: KK gluon

b-quark PT is harder near the KK gluon bump

Summary

- ◆ LHC => new era, precision top physics
- ◆ Theory+technique to tag t/W/Z/h jets
- Understand jet mass, but it's not enough
- ◆ Introduce Jet-shapes: very useful, but more to do (exp'+analyses+theory)

Backup: Top Polarization

 Polarization: daughter particles of top still remembers the information

b is forwarded for t_L

lepton is back-warded for t_L

 lepton is in general better spin analyzer compared to b-quark, but b can be used for the hadronic top

Backup: 30% B-tagging efficiency & 1% light jet

