Top Jets & Boosted QCD Jets @ the LHC

Seung J. Lee
YITP, Stony Brook University

with L. Almeida, G. Perez, G. Sterman, I. Sung, J. Virzi
with L. Almeida, G. Perez, I. Sung, J. Virzi

Cornell University, September 3, 2008
Outline

✦ Introduction
✦ Emergence of high p_T top (W,Z,h) jets at the LHC
✦ Jet mass: Signal & QCD BG (theory+MC)
✦ Jet substructure, massive jet event shapes
✦ Top polarization
✦ Summary
Introduction

In the SM (& beyond) top is unique: only ultra heavy quark, $m_t \sim \langle H \rangle$ induce most severe fine tuning; controls flavor & custodial violation; linked to EW breaking in natural models.
Introduction

- In the SM (& beyond) top is unique: only ultra heavy quark, $m_t \sim \langle H \rangle$
 induce most severe fine tuning;
 controls flavor & custodial violation;
 linked to EW breaking in natural models.

- Direct info’ is limited (Tevatron)

- At the LHC: 10^7 top/yr

- SM: more than 10^4 top/yr with $\gamma_t \geq 5$.
The challenge of highly boosted tops

- First, let’s consider NP particle X, whose dominant decay channel is $t\bar{t}b\bar{b}$: X might be heavy.
The challenge of highly boosted tops

First, let’s consider NP particle X, whose dominant decay channel is $t\bar{t}b\bar{b}$: X might be heavy.
The challenge of highly boosted tops

First, let’s consider NP particle X, whose dominant decay channel is $t\bar{t}$: X might be heavy.

Alas, above a TeV, top becomes similar to a light jet, signal is lost!
The challenge of highly boosted tops

First, let’s consider a new particle whose dominant decay channel is $t\bar{t}$.

New object emerges, top jet!
 Resolution problem \w boosted tops

- The hadronic calorimeters cannot go below $R \sim 0.4$

\[R^2 = \Delta \eta^2 + \Delta \phi^2 \]
The hadronic calorimeters cannot go below $R \approx 0.4$

$$R^2 = \Delta \eta^2 + \Delta \phi^2$$

Why: Hadronic granularity is $R \approx 0.1 \times 0.1$

$$m^2 = (p_1 + p_2)^2 \sim 2p^2 \left[1 - (1 - R^2/2) \right] = p^2 R^2$$

pure geometrical mass: $m \sim R p$

(say with $R, p = 0.2, 500, \ m \sim 100\text{GeV}$)
The hadronic calorimeters cannot go below $R \sim 0.4$

$$R^2 = \Delta \eta^2 + \Delta \phi^2$$

Why: Hadronic granularity is $R \sim 0.1 \times 0.1$

$$m^2 = (p_1 + p_2)^2 \sim 2p^2[1 - (1 - R^2/2)] = p^2 R^2$$

Pure geometrical mass: $m \sim R p$

(say with $R, p = 0.2, 500, m \sim 100\text{GeV}$)

If R between decay products of top is smaller than 0.4, you cannot resolve the top into daughter jets. (top jet = single jet)
Boosted top (w/z/h) jets & collimation

Partonic Level

Highly Boosted Tops: High Collimations!

$\Delta R = \sqrt{\Delta \eta^2 + \Delta \phi^2}$
Boosted top (w/z/h) jets & collimation

At final state jets level:
- Define collimation rate as the fraction of top quark which reconstruct to a jet having $140 \text{ GeV} < m_J < 210 \text{ GeV}$.
Top jets at the LHC
Top jets at the LHC

(i) Jet mass.
(ii) Jet substructure.
Top-jets @ the LHC

Are they different from high p_T light jets?

$S/B \sim 1/140$, for $p_T(j) > 1000$ GeV, $R=0.4$

(~ 20 pb for jj+X, ~ 140 fb for ttbar+X)

top-jet: call for theory, analysis & techniques

Most (naive) direct attempt - mass tagging

Skiba & Tucker-Smith, PRD(07); Holdom, JHEP (07); Frederix & Maltoni (0712.2355); Ellis, Huston, Hatakeyama, Loch & Tonnesmann, PPNP (08); Agashe et. al. PRD(07).
Rejection based on jet mass

✦ Jet cone mass - sum of "massless" momenta in h-cal inside the cone: \(m_J^2 = \left(\sum_{i \in R} P_i \right)^2, P_i^2 = 0 \)

✦ Jet cone mass is non-trivial both for S & B

✦ Understand S&B distributions from 1st principles & compare to MC "data"

✦ Add detector effects
Cone top-jet mass distribution

Naively the signal is $J \propto \delta(m_J - m_t)$

In practice: $m_J^t \sim m_t + \delta m_{QCD} + \delta m_{EW}$

+ detector smearing.

$$J^t(m_J, m_t, R, p_T) \sim \int dm_{QCD} dm_{EW} dm_0 \delta(m_0 - m_t) \delta(m_J - m_{QCD} - m_{EW}) \times J^t_{QCD}(m_{QCD}, R, p_T) \times J^t_{EW}(m_{EW}, m_t/(p_T R)).$$
Cone top-jet mass distribution

Naively the signal is $J \propto \delta(m_J - m_t)$

In practice: $m_J^t \sim m_t + \delta m_{QCD} + \delta m_{EW} + \text{detector smearing.}$

Can understood perturbatively fast & small~10GeV
Naively the signal is $J \propto \delta(m_J - m_t)$

In practice: $m_J^t \sim m_t + \delta m_{QCD} + \delta m_{EW} + \text{detector smearing.}$

Can understood perturbatively fast & small $\sim 10 \text{GeV}$

Pure kinematical $bW(qq)$ dist’ in/out cone much longer
Cone top-jet mass distribution

Preliminary (Transfer function “Full Simulation”)

Jet Mass Distribution (C4 \(P_T^{MIN} > 1000 \text{ GeV} \))

Sherpa => Full Simulation (CKKW)
QCD cone jet mass distribution

We are interested in the following processes:

\[H_a(p_a) + H_b(p_b) \rightarrow J_1(m^2_{J_1}, p_{1,T}, R) + X \]

\[H_a(p_a) + H_b(p_b) \rightarrow J_1(m^2_{J_1}, p_{1,T}, R) + J_2(m^2_{J_2}, p_{2,T}, R) + X \]
QCD cone jet mass distribution

We are interested in the following processes:

\[H_a(p_a) + H_b(p_b) \rightarrow J_1(m_{J_1}^2, p_{1T}, R) + X \]

\[H_a(p_a) + H_b(p_b) \rightarrow J_1(m_{J_1}^2, p_{1T}, R) + J_2(m_{J_2}^2, p_{2T}, R) + X \]

Factorized hadronic cross section:

\[
\frac{d\sigma_{H_a H_b \rightarrow J_1 X(R)}}{d^2p_T dm_J d\eta} = \sum_{abc} \int dx_a \, dx_b \, \phi_a(x_a) \phi_b(x_b) \frac{d\hat{\sigma}_{ab \rightarrow c X}}{d^2p_T dm_J d\eta}(x_a, x_b, p_T, \eta, m_J, R)
\]

PDF
QCD cone jet mass distribution

We are interested in the following processes:

\[H_a(p_a) + H_b(p_b) \rightarrow J_1(m_{J_1}^2, p_{1,T}, R) + X \]

\[H_a(p_a) + H_b(p_b) \rightarrow J_1(m_{J_1}^2, p_{1,T}, R) + J_2(m_{J_2}^2, p_{2,T}, R) + X \]

Factorized hadronic cross section:

\[
\frac{d\sigma_{H_a H_b \rightarrow J_1 X}(R)}{dp_T dm_J d\eta} = \sum_{abc} \int dx_a \, dx_b \, \phi_a(x_a) \, \phi_b(x_b) \, \frac{d\hat{\sigma}_{ab \rightarrow cX}}{dp_T dm_J d\eta}(x_a, x_b, p_T, \eta, m_J, R)
\]

PDF

\[
\frac{d\sigma_{H_a H_b \rightarrow J_1 X}(R)}{dp_T dm_J d\eta} = \sum_{abc} \int dx_a \, dx_b \, \phi_a(x_a) \, \phi_b(x_b) H_{ab \rightarrow cX}(x_a, x_b, p_T, \eta, R) \times J_1^c(m_J, p_T, R).
\]

Hard cross-section

Jet function

At the leading order
QCD cone jet mass distribution

Boosted QCD Jet via factorization:

\[
\int dm_J J_c = 1 \quad \Rightarrow \quad \frac{d\sigma(R)}{dp_T dm_J} = \sum_c J_c(m_J, p_T, R) \frac{d\hat{\sigma}_c(R)}{dp_T},
\]

where \(c \) represents the flavour of the jet, and where

\[
\frac{d\hat{\sigma}_c(R)}{dp_T} = \sum_{ab} \int dx_a dx_b \phi_a \phi_b \int d\eta \int dm_J \frac{d\hat{\sigma}_{ab\rightarrow cX}(R)}{dp_T dm_J d\eta}.
\]
QCD cone jet mass distribution

Boosted QCD Jet via factorization:

\[\int d\phi J^c = 1 \]

\[\frac{d\sigma(R)}{dp_T dm_J} = \sum_c J^c(m_J, p_T, R) \frac{d\hat{\sigma}^c(R)}{dp_T} , \]

where \(c \) represents the flavour of the jet, and where

\[\frac{d\hat{\sigma}^c(R)}{dp_T} = \sum_{ab} \int dx_a dx_b \phi_a \phi_b \int d\eta \int dm_J \frac{d\hat{\sigma}_{ab \rightarrow cX}(R)}{dp_T dm_J d\eta} . \]

Contact with Data (MC):

\[\frac{d\sigma_{\text{pred}}(R)}{dp_T dm_J} = \sum_c J^c(m_J, p_T, R) \left(\frac{d\sigma^c(R)}{dp_T} \right)_{MC} \]
QCD cone jet mass distribution

Boosted QCD Jet via factorization:

\[\int dm_J J^c = 1 \]

\[\frac{d\sigma(R)}{dp_T dm_J} = \sum J^c(m_J, p_T, R) \frac{d\hat{\sigma}^c(R)}{dp_T}, \]

where, and where

\[\phi_a \phi_b \int d\eta \int dm_J \frac{d\hat{\sigma}_{ab\to cX}(R)}{dp_T dm_J d\eta}. \]

For large jet mass & small R, no large logs => \(J^i \) can be calculated via perturbative QCD!
Main idea: calculating mass due to two-body QCD bremsstrahlung:

\[
J^{(eik),c}(m_J, p_T, R) = \alpha_s(p_T) \frac{4 C_c}{\pi m_J} \log \left(\frac{1}{z} \tan \left(\frac{R}{2} \right) \sqrt{4 - z^2} \right)
\]

\[
\approx \alpha_s(p_T) \frac{4 C_c}{\pi m_J} \log \left(\frac{R p_T}{m_J} \right),
\]

\[z = \frac{m_J}{p_T}.\]
Main idea: calculating mass due to two-body QCD bremsstrahlung:

\[J^{(eik),c}(m_J, p_T, R) = \alpha_s(p_T) \frac{4 C_c}{\pi m_J} \log \left(\frac{1}{z} \tan \left(\frac{R}{2} \right) \sqrt{4 - z^2} \right) \]

\[\approx \alpha_s(p_T) \frac{4 C_c}{\pi m_J} \log \left(\frac{R p_T}{m_J} \right), \]

\[z = \frac{m_J}{p_T}, \]

\[C \begin{cases}
\text{quark jets:} & C_{(q)} = C_F = \frac{4}{3} \\
\text{gluon jets:} & C_{(g)} = C_A = 3
\end{cases} \]
Main idea: calculating mass due to two-body QCD bremsstrahlung:

QCD Jet mass distribution, Q+G

\[C(q) = \frac{4}{3} \]

\[C(g) = C_A = 3 \]

Q_1, G_2, P_1, P_2

QCD Jet mass distribution, Q+G

(a)

(b)

(c)

(d)

(e)

(f)
Main idea: calculating mass due to two-body QCD bremsstrahlung:

\[
J_{i}^{(1)}(m_{J}, p_{0}, J_{i}, R) = \frac{C_{F} \beta_{i}}{4m_{J_{i}}^{2}} \int_{\cos(R)}^{eta_{i}} \frac{d \cos \theta_{S}}{\pi} \frac{\alpha_{S}(k_{0}) z^{4}}{(2(1 - \beta_{i} \cos \theta_{S}) - z^{2})(1 - \beta_{i} \cos \theta_{S})} \left\{ \begin{array}{l}
\frac{z^{2} (1 + \cos \theta_{S})^{2}}{(1 - \beta_{i} \cos \theta_{S}) (2(1 + \beta_{i})(1 - \beta_{i} \cos \theta_{S}) - z^{2}(1 + \cos \theta_{S})) + \\
\frac{3(1 + \beta_{i})}{z^{2}} + \frac{1}{z^{4}} \frac{(2(1 + \beta_{i})(1 - \beta_{i} \cos \theta_{S}) - z^{2}(1 + \cos \theta_{S}))^{2}}{(1 + \cos \theta_{S})(1 - \beta_{i} \cos \theta_{S})} \end{array} \right\},
\]

\[
\beta_{i} = \sqrt{1 - m_{J_{i}}^{2}/p_{0,J_{i}}^{2}} \quad z = \frac{m_{J}}{p_{0,J_{i}}}, \quad p_{0,J_{i}} = \sqrt{m_{J_{i}}^{2} + p_{T}^{2}}, \text{ and } k_{0} = \frac{p_{0,J_{i}}}{2} \frac{z^{2}}{1 - \beta_{i} \cos \theta_{S}}.
\]

\[
J_{i}^{(1)}(m_{J}, p_{0}, J_{i}, R) = \frac{C_{A} \beta_{i}}{16m_{J_{i}}^{2}} \int_{\cos(R)}^{eta_{i}} \frac{d \cos \theta_{S}}{\pi} \frac{\alpha_{S}(k_{0})}{(1 - \beta \cos \theta_{S})^{2}(1 - \cos^{2} \theta_{S})^{2}(2(1 + \beta_{i}) - z^{2})} \times \left(z^{4}(1 + \cos \theta_{S})^{2} + z^{2}(1 - \cos^{2} \theta_{S})(2(1 + \beta_{i}) - z^{2}) + (1 - \cos \theta_{S})^{2}(2(1 + \beta_{i}) - z^{2})^{2} \right)^{2}
\]
QCD Jet mass distribution, Q+G

$$J^g = \frac{1}{\sigma} \frac{d\sigma}{dM_J}$$ (Gluon Jet Functions, \(P_T = 1\) TeV, \(R=0.4\))

- Running coupling
- Fixed coupling
- Eikonal (no-recoil, fixed coupling)
- \(1/M_J\)
Jet mass distribution theory vs. MC

Revisiting our prediction:

$$\frac{d\sigma_{\text{pred}}(R)}{dp_T dm_J} = \sum_c J^c (m_J, p_T, R) \left(\frac{d\sigma^c (R)}{dp_T} \right)_{\text{MC}}$$
Jet mass distribution theory vs. MC

Revisiting our prediction:

\[
\frac{d\sigma_{\text{pred}}(R)}{dp_T dm_J} = \sum_c J^c (m_J, p_T, R) \left(\frac{d\sigma^c(R)}{dp_T} \right)_{MC}
\]

But, in practice, cannot distinguish partonic origin of a jet: can only give bounds:

\[
J^g > J^q
\]
Jet mass distribution theory vs. MC

\[\frac{\Delta \sigma}{\Delta P_T} \] (QCD R=0.4 Jets)

- Sherpa
- MadGraph
- Pythia
Jet mass distribution theory vs. MC

Sherpa, jet function convolved
Jet mass distribution theory vs. MC

C7 Jet Mass ($P_T = 1000$ GeV)

- Sherpa
- Pythia
- MadGraph
- Gluon Hypothesis
- Quark Hypothesis

Top Mass Window
QCD jet mass dist’ under control!

Sherpa (CKKW)
With Full Detector Simulation

\[\frac{d\sigma}{dM_J}(P_T > 1000 \text{ GeV}) \]

Can Calculate Rejection Rate (for jet mass)
QCD jet mass dist’ under control!

Rejection Ratio: $(\#\text{ of events for } m_t-\Delta < m_J < m_t+\Delta) / (\text{total # of events})$

- Can use our jet function to calculate it:

\[
\sigma(R)_{\text{upper bound}} = \int_{p_T^{\text{min}}}^{\infty} dp_T \sum_c \left(\frac{d\sigma^c(R)}{dp_T} \right)_{MC} \int_{140\,GeV}^{210\,GeV} J^g(m_J, p_T, R) dm_J
\]

\[
\sigma(R)_{\text{lower bound}} = \int_{p_T^{\text{min}}}^{\infty} dp_T \sum_c \left(\frac{d\sigma^c(R)}{dp_T} \right)_{MC} \int_{140\,GeV}^{210\,GeV} J^g(m_J, p_T, R) dm_J
\]

- Matches well with MC simulation (within 10%)

- For QCD dijet background, double mass tagging will reduce the background (typically, $\epsilon_r \sim 15\%$)
QCD jet mass dist’ under control!

\[R = 0.4 \text{ Fractional Fake Rate vs } P_{T}^{\text{LEAD}} \]
Cross Section Uncertainty

<table>
<thead>
<tr>
<th>Process</th>
<th>Generator</th>
<th>PDF</th>
<th>Matching</th>
<th>Cross Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>$pp \rightarrow tt(j)$</td>
<td>SHERPA 1.0.9</td>
<td>CTEQ6M</td>
<td>CKKW</td>
<td>141 fb</td>
</tr>
<tr>
<td>$pp \rightarrow t\bar{t}(j)$</td>
<td>SHERPA 1.1.2</td>
<td>CTEQ6M</td>
<td>CKKW</td>
<td>149 fb</td>
</tr>
<tr>
<td>$pp \rightarrow t\bar{t}(j)$</td>
<td>SHERPA 1.1.2</td>
<td>CTEQ6L</td>
<td>CKKW</td>
<td>281 fb</td>
</tr>
<tr>
<td>$pp \rightarrow t\bar{t}(j)$</td>
<td>MG/ME 4</td>
<td>CTEQ6M</td>
<td>MLM</td>
<td>68 fb</td>
</tr>
<tr>
<td>$pp \rightarrow tt$</td>
<td>Pythia 6</td>
<td>CTEQ6L</td>
<td>-</td>
<td>157 fb</td>
</tr>
<tr>
<td>$pp \rightarrow t\bar{t}$</td>
<td>Pythia 8</td>
<td>CTEQ6M</td>
<td>-</td>
<td>174 fb</td>
</tr>
<tr>
<td>$pp \rightarrow jj(j)$</td>
<td>SHERPA 1.1.0</td>
<td>CTEQ6M</td>
<td>CKKW</td>
<td>10.2 pb</td>
</tr>
<tr>
<td>$pp \rightarrow jj(j)$</td>
<td>SHERPA 1.1.2</td>
<td>CTEQ6M</td>
<td>CKKW</td>
<td>21.3 pb</td>
</tr>
<tr>
<td>$pp \rightarrow jj(j)$</td>
<td>SHERPA 1.1.2</td>
<td>CTEQ6M</td>
<td>CKKW</td>
<td>15.8 pb</td>
</tr>
<tr>
<td>$pp \rightarrow jj(j)$</td>
<td>MG/ME 4</td>
<td>CTEQ6L</td>
<td>MLM</td>
<td>8.54 pb</td>
</tr>
<tr>
<td>$pp \rightarrow jj(j)$</td>
<td>MG/ME 4</td>
<td>CTEQ6M</td>
<td>MLM</td>
<td>9.93 pb</td>
</tr>
<tr>
<td>$pp \rightarrow jj$</td>
<td>Pythia 6</td>
<td>CTEQ6L</td>
<td>-</td>
<td>13.7 pb</td>
</tr>
<tr>
<td>$pp \rightarrow jj$</td>
<td>Pythia 8</td>
<td>CTEQ6M</td>
<td>-</td>
<td>13.3 pb</td>
</tr>
</tbody>
</table>

Table 1: Cross sections for producing final state $R = 0.4$ leading cone jets with $p_T \geq 1$ TeV and $|\eta| \leq 2$. Generation level cuts were imposed as follows. Final state partons from the hard scatter were required to have $p_T \geq 20$ GeV. For MG/ME, final state partons have $|\eta| \leq 4.5$. Processes with a trailing (j) suffix indicate that $2 \rightarrow 2$ and $2 \rightarrow 3$ processes are represented.
Ex. SM ttbar vs. di-jet background!

With transfer-functions ("full simulation")
Ex. SM $ttbar$ vs. di-jet background!

<table>
<thead>
<tr>
<th>p_T^{lead} cut</th>
<th>Cone</th>
<th>S (0% JES)</th>
<th>Δ_0</th>
<th>+5% JES</th>
<th>Δ_5</th>
<th>-5% JES</th>
<th>Δ_{-5}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000 GeV</td>
<td>C4</td>
<td>293</td>
<td>-31.5%</td>
<td>358</td>
<td>-16.4%</td>
<td>230</td>
<td>-46.3%</td>
</tr>
<tr>
<td>1000 GeV</td>
<td>C7</td>
<td>478</td>
<td>-33.1%</td>
<td>616</td>
<td>-13.7%</td>
<td>358</td>
<td>-49.9%</td>
</tr>
<tr>
<td>1500 GeV</td>
<td>C4</td>
<td>32</td>
<td>-30.4%</td>
<td>44</td>
<td>-4.3%</td>
<td>21</td>
<td>-54.3%</td>
</tr>
<tr>
<td>1500 GeV</td>
<td>C7</td>
<td>35</td>
<td>-34.0%</td>
<td>52</td>
<td>-1.9%</td>
<td>24</td>
<td>-54.7%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>p_T^{lead} cut</th>
<th>Cone</th>
<th>B (0% JES)</th>
<th>Δ_0</th>
<th>+5% JES</th>
<th>Δ_5</th>
<th>-5% JES</th>
<th>Δ_{-5}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000 GeV</td>
<td>C4</td>
<td>2475</td>
<td>5.8%</td>
<td>2914</td>
<td>24.5%</td>
<td>1919</td>
<td>-18.0%</td>
</tr>
<tr>
<td>1000 GeV</td>
<td>C7</td>
<td>6272</td>
<td>7.2%</td>
<td>8190</td>
<td>40.0%</td>
<td>4894</td>
<td>-16.3%</td>
</tr>
<tr>
<td>1500 GeV</td>
<td>C4</td>
<td>294</td>
<td>16.7%</td>
<td>380</td>
<td>50.8%</td>
<td>196</td>
<td>-22.2%</td>
</tr>
<tr>
<td>1500 GeV</td>
<td>C7</td>
<td>496</td>
<td>23.4%</td>
<td>732</td>
<td>82.1%</td>
<td>330</td>
<td>-17.9%</td>
</tr>
</tbody>
</table>

Double mass tagging at 25 fb$^{-1}$ with detector resolution and Jet Energy Scale (JES) look hopeless without high b-tagging efficiency!

$$\Delta_{JES} = \frac{N_{JES} - N_{TRUTH}}{N_{TRUTH}}$$

$S/B \sim 0.11$
Ex. SM ttbar vs. di-jet background!

<table>
<thead>
<tr>
<th>p_T^{lead} cut</th>
<th>Cone</th>
<th>S (0% JES)</th>
<th>Δ_0</th>
<th>+5% JES</th>
<th>Δ_5</th>
<th>-5% JES</th>
<th>Δ_-5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000 GeV</td>
<td>C4</td>
<td>293</td>
<td>-31.5%</td>
<td>358</td>
<td>-16.4%</td>
<td>230</td>
<td>-46.3%</td>
</tr>
<tr>
<td>1000 GeV</td>
<td>C7</td>
<td>478</td>
<td>-33.1%</td>
<td>616</td>
<td>-13.7%</td>
<td>358</td>
<td>-49.9%</td>
</tr>
<tr>
<td>1500 GeV</td>
<td>C4</td>
<td>32</td>
<td>-30.4%</td>
<td>44</td>
<td>-4.3%</td>
<td>21</td>
<td>-54.3%</td>
</tr>
<tr>
<td>1500 GeV</td>
<td>C7</td>
<td>35</td>
<td>-34.0%</td>
<td>52</td>
<td>-1.9%</td>
<td>24</td>
<td>-54.7%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>p_T^{lead} cut</th>
<th>Cone</th>
<th>B (0% JES)</th>
<th>Δ_0</th>
<th>+5% JES</th>
<th>Δ_5</th>
<th>-5% JES</th>
<th>Δ_-5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000 GeV</td>
<td>C4</td>
<td>2475</td>
<td>5.8%</td>
<td>2914</td>
<td>24.5%</td>
<td>1919</td>
<td>-18.0%</td>
</tr>
<tr>
<td>1000 GeV</td>
<td>C7</td>
<td>6272</td>
<td>7.2%</td>
<td>8190</td>
<td>40.0%</td>
<td>4894</td>
<td>-16.3%</td>
</tr>
<tr>
<td>1500 GeV</td>
<td>C4</td>
<td>294</td>
<td>16.7%</td>
<td>380</td>
<td>50.8%</td>
<td>196</td>
<td>-22.2%</td>
</tr>
<tr>
<td>1500 GeV</td>
<td>C7</td>
<td>496</td>
<td>23.4%</td>
<td>732</td>
<td>82.1%</td>
<td>330</td>
<td>-17.9%</td>
</tr>
</tbody>
</table>

Double mass tagging at 25 fb$^{-1}$ with detector resolution and Jet Energy Scale (JES) look hopeless without high b-tagging efficiency!

$$\Delta_{JES} = \frac{N_{JES} - N_{TRUTH}}{N_{TRUTH}}$$

S/B ~ 0.11
Ex. SM ttbar vs. di-jet background!

Jet Mass

<table>
<thead>
<tr>
<th>jet_mass</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entries</td>
</tr>
<tr>
<td>Mean x</td>
</tr>
<tr>
<td>Mean y</td>
</tr>
<tr>
<td>RMS x</td>
</tr>
<tr>
<td>RMS y</td>
</tr>
</tbody>
</table>
Ex. SM ttbar vs. di-jet background!

Need Extra Handles to distinguish Signal from Background!
Pseudo-rapidity independence

QCD Jet Mass ($P_T > 1$ TeV)

Arbitrary Units vs. M_J (GeV)

- C7 Lead Jet ($|\eta| < 1$)
- C7 Lead Jet ($1.0 < |\eta| < 2.5$)
Average Jet Mass (IR Mass cut needed)

\[\langle M_J \rangle \propto P_T, R \]
Jet sub-structure
Why jets? What else?

- QCD amplitudes have soft-collinear singularity
- Observable: IR safe, smooth function of E flow

 Sterman & Weinberg, PRL (77)

- Jet is a very inclusive object, defined via direction + p_T (+ mass)

- Even $R=0.4$ contains $O(100)$ had-cells => huge amount of info’ is lost
Jet-shapes

✦ “Jet-shapes” = inclusive observables dependent on energy flow within individual jets
✦ Once jet mass is fixed at a high scale
 ➡ Large class of jet-shapes become perturbatively calculable
 ➡ IR safe jet-shapes combined with IR safe jet algorithm provide a bridge between

Direct theory prediction ↔ Data/MC output
Jet-shapes

“Inclusive observables depend on energy flow within individual jets.”

Once jet mass is fixed at a high scale, a large class of jet-shapes become perturbatively calculable. IR safe jet-shapes combined with an IR safe jet algorithm provide a bridge between Direct theory prediction and Data/MC output.

Can analyze a single event by a variety of jet shapes => the resolution associated with each one need not be dramatic!
IR-safe jet-shapes which know top from QCD jets?

- Successes in high jet mass \Rightarrow jet function is well described by single gluon radiation

- QCD, top: linear, planar E-deposition in the cone

 Almeida, SJL, Perez, Sterman, Sung, & Virzi, arXiv:0807.0234

 c.f. Wang, Thale: similar event shape, "sphericity tensor"
 arXiv:0806.0023

- IR-safe E-flow tensor:

$$I_{w}^{kl} = \frac{1}{m_J} \sum_{i} w_i \frac{p_{i,k}}{w_i} \frac{p_{i,l}}{w_i}$$

- Planar flow:

$$P_f = \frac{4 \det(I_w)}{\text{tr}(I_w)^2} = \frac{4\lambda_1 \lambda_2}{(\lambda_1 + \lambda_2)^2}$$
Planar flow (Pf), QCD vs top jets

♦ LO: Pf ~ 0 for QCD (2-body decay)

\[\frac{1}{J} \left(\frac{dJ}{dPf} \right)_{2\text{body}} = \delta(Pf) \]

O(1) for top: smooth
(for isotropic ≥ 3-body decay, Pf~1)

♦ NLO (due to large m): O(\(\alpha_s\)) for QCD
nominal for top
Planar flow (Pf), QCD vs top jets

LO: Pf ~ 0 for QCD (2-body decay) O(1) for top: smooth
(for isotropic ≥ 3-body decay, Pf~1)

NLO (due to large m): O(αs) for QCD nominal for top
Planar flow (Pf), QCD vs top jets

LO: Pf ~ 0 for QCD (2-body decay) O(1) for top jets: smooth (for 3-body decay, Pf~1)

NLO (due to large m): O(αs) for QCD nominal for top jets

Planar flow, Pf (P = 1 TeV, R = 0.4, "no mass cuts")

Graph showing the comparison between QCD jets and Top jets for planar flow (Pf) with the following settings: P = 1 TeV, R = 0.4, and "no mass cuts".

The graph displays the distribution of planar flow with markers for QCD jets and Top jets.
What about 2 body jet, $Z/W/h$

Berger, K´ucs and Sterman (03): introduced for e^+e^- annihilation

Angularities on a cone: Almeida, SJL, Perez, Sterman, Sung, & Virzi, arXiv:0807.0234

\[
\tilde{\tau}_a(R, p_T) = \frac{1}{m_J} \sum_{i \in \text{jet}} \omega_i \sin^a \left(\frac{\pi \theta_i}{2R} \right) \left[1 - \cos \left(\frac{\pi \theta_i}{2R} \right) \right]^{1-a}
\]

\[
P^x(\theta_s) = \frac{dJ^x}{d\theta_s} / J^x \Rightarrow P^x(\tilde{\tau}_a)
\]

\[
R(\tilde{\tau}_a) = \frac{P_{\text{sig}}(\tilde{\tau}_a)}{P_{\text{QCD}}(\tilde{\tau}_a)}
\]
Theory: angularity, QCD vs Z

$R^{\tau^{-2}}$ vs. τ_{-2} for $z=0.05$

- Long.
- $h=\pm 1$
Madgraph: angularity, QCD vs Z

Angularity, τ_a (a = -2, z = 0.05, R = 0.4)

- Z_{Long.} jets
- QCD jets
Daughter particles remember top polarization

For Urel’ top: **helicity = chirality**

Can do polarization analysis like it was done for the tau

Want to use P_T to probe top polarization: P_T is a directly measured quantity (c.f. For polarization method, need to use derived quantities with biases, like center of mass boost etc.)

- Different from spin-spin correlation where you expand in s wave (for non-relativistic top)
Figure 1: Sketches of angular momentum conservation in $\not{t} \rightarrow t^+b$ decay in the top rest frame. Simple (open) arrows denote particle direction of motion ($spin$). As a massless b-quark must be left-handed, the rightmost plot is forbidden in the SM at tree level. Resulting angular lepton distributions are therefore very distinct for each W helicity state.

As it is necessary to know the weak isospin of the W spin analyzer, the charged lepton is the best choice since u-like jets cannot be distinguished experimentally from d-like jets. Consequently, the W polarization is better measured in dileptonic and semileptonic $t\bar{t}$ channels through the distribution of the \not{t} angle between the charged lepton direction in the W rest frame and the W direction in the top quark rest frame. The \not{t} angular distribution is given by the following expression [6]:

$$
\frac{dN}{d\cos \theta} = \frac{3}{2} \sum_{i=L,R} F_i (\sin \theta \sqrt{2})^2 + (1 - \cos \theta)^2 + (1 + \cos \theta)^2
$$

(2)

Its SM expectation is shown in Figure 3. It reflects the superposition of the three terms of Equation (2), corresponding to the longitudinal ($\sin \theta$), left-handed ($1 - \cos \theta$) and right-handed ($1 + \cos \theta$) W helicity states. Each term is weighted by the fraction F_0, F_L or F_R given in Equation (1).
Top Polarization

Figure 1: Sketches of angular momentum conservation in $\text{W} \rightarrow b$ decay in the top rest frame.

Simple (open) arrows denote particle direction of motion (spin). As a massless b-quark must be left-handed, the rightmost plot is forbidden in the SM at tree level. Resulting angular lepton distributions are therefore very distinct for each W helicity state.

As it is necessary to know the weak isospin of the W spin analyzer, the charged lepton is the best choice since u-like jets cannot be distinguished experimentally from d-like jets. Consequently, the W polarization is better measured in dileptonic and semileptonic $\bar{t}t$ channels through the distribution of the θ angle between the charged lepton direction in the W rest frame and the W direction in the top quark rest frame. The θ angular distribution is given by the following expression [6]:

$$
\frac{dN}{d\cos \theta} = \frac{3}{2} \left[F_0 \left(\sin \theta \sqrt{2} \right)^2 + F_L \left(1 - \cos \theta \right)^2 + F_R \left(1 + \cos \theta \right)^2 \right].
$$

Its SM expectation is shown in Figure 3. It reflects the superposition of the three terms of Equation (2), corresponding to the longitudinal $(\sin \theta)^2$, the left-handed $(1 - \cos \theta)^2$ and the right-handed $(1 + \cos \theta)^2$ W helicity states. Each term is weighted by the fraction F_0, F_L or F_R given in Equation (1).

Top Polarization

$\sim 70\%$

$\sim 30\%$

Left-Handed W

Longitudinal W
Top Polarization

✧ b quark:
 - back-warded (soft P_T) for t_R
 - forwarded (hard P_T) for t_L

✧ For SM, parity even (P_T distribution will be flat) → look for new Physics where parity is violated

Figure 1: Sketches of angular momentum conservation in $t \rightarrow W^+b$ decay in the top rest frame. Simple (open) arrows denote particle direction of motion (spin). As a massless b-quark must be left-handed, the rightmost plot is forbidden in the SM at tree level. Resulting angular lepton distributions are therefore very distinct for each W helicity state.

As it is necessary to know the weak isospin of the W spin analyzer, the charged lepton is the best choice since u-like jets can not be distinguished experimentally from d-like jets. Consequently, the W polarization is better measured in dileptonic and semileptonic $t\bar{t}$ channels through the distribution of the θ angle between the charged lepton direction in the W rest frame and the W direction in the top quark rest frame. The θ angular distribution is given by the following expression [6]:

$$ \frac{dN}{d \cos \theta} = \frac{3}{2} \left[F_0 \left(\sin \sqrt{2} \right)^2 + F_L \left(1 - \cos \theta \right)^2 + F_R \left(1 + \cos \theta \right)^2 \right]. $$

Its SM expectation is shown in Figure 3. It reflects the superposition of the three terms of Equation (2), corresponding to the longitudinal ($\sin \theta$), the left-handed ($1 - \cos \theta$) and the right-handed ($1 + \cos \theta$) W helicity states. Each term is weighted by the fraction F_0, F_L or F_R given in Equation (1).
Top Polarization

- lepton: \textit{forwarded} for t_R
- \textit{back-warded} for t_L

\begin{align*}
\text{~30\%} & \quad \text{~70\%} \\
\end{align*}

\begin{figure}
\centering
\includegraphics[width=\textwidth]{top_polarization_diagram}
\caption{Sketches of the different polarization modes in $W \rightarrow t \nu$ decay and resulting lepton directions. Simple (open) arrows denote particle direction of motion (spin). For W^-, left- and right-handed components are inverted.}
\end{figure}

\begin{figure}
\centering
\includegraphics[width=\textwidth]{angular_distribution}
\caption{Angular distribution of Equation (2) in the SM. The predicted contributions from longitudinal (0) and left-handed (L) helicity states are shown separately with dashed lines. The right-handed contribution is null in the SM. The sum ($0+L+R$) is depicted with a full line.}
\end{figure}
Top Polarization

- **lepton:** *forwarded for* t_R
 - *back-warded for* t_L

For Boosted Longitudinal W: lepton is *forwarded*
$p_T^{\text{top}} > 1\text{TeV}$

$P_T(b)$ distribution

$P_T(b)$ is limited by W boson mass

Hadronic Top

b quark as a spin analyzer
For example with the KK gluon, you'll see suddenly only leptons/bs that follows the RH curves.

Leptonic Top

charged lepton as a spin analyzer
Example: KK gluon

Lepton PT is harder near the KK gluon plateau.
Example: KK gluon

lepton PT is harder near the KK gluon plateau

Also relevant for SUSY: heavy stop decaying into top and wino, etc...
Example: KK gluon

b-quark PT is harder near the KK gluon bump.
M_{tt} vs. $<p_T(b)>$ for $M_{KKG}=3$TeV

Also relevant for SUSY: heavy stop decaying into top and wino, etc...

Example: KK gluon

b-quark PT is harder near the KK gluon bump
Summary

- LHC => new era, precision top physics
- Theory+technique to tag t/W/Z/h jets
- Understand jet mass, but it’s not enough
- Introduce Jet-shapes: very useful, but more to do (exp’+analyses+theory)
Backup: Top Polarization

- Polarization: daughter particles of top still remembers the information

- b is forwarding for t_L

- lepton is back-warded for t_L

- lepton is in general better spin analyzer compared to b-quark, but b can be used for the hadronic top
Backup: 30% B-tagging efficiency & 1% light jet