Resonant Tunneling in Quantum Field Theory

Dan Wohns

Cornell University work in progress with S.-H. Henry Tye

September 18, 2009

イロト イポト イヨト イヨト

Motivation

Motivation

- Relevant to study of potentials with many minima
- Generic existence of resonance effects

< 🗇 >

< 注→ < 注→

Results

Results

- Show existence of resonant tunneling in QFT
- New effect "catalytic tunneling" can enhance single-barrier tunneling

・ロン ・回と ・ヨン・

General Argument

- Tunneling rate for single-barrier tunneling is $\Gamma_{A \to B} = Ae^{-S}$
- Tunneling probability for single-barrier tunneling is $T_{A \to B} = K e^{-S}$

General Argument

- Naive WKB analysis $T_{A \rightarrow C} \approx T_{A \rightarrow B} T_{B \rightarrow C}$ is incorrect
- Instead $t_{A \to C} = t_{A \to B} + t_{B \to C}$ or equivalently $T_{A \to C} = \frac{T_{A \to B}T_{B \to C}}{T_{B \to C} + T_{B \to C}}$.
- Enhancement due to resonant tunneling effect.

Outline

1 Resonant Tunneling in Quantum Mechanics

2 Euclidean Instanton Method

3 Functional Schrödinger Method

イロト イポト イヨト イヨト

Resonant Tunneling in Quantum Mechanics

Euclidean Instanton Method Functional Schrödinger Method Resonant Tunneling in QFT

Potential

Resonant Tunneling in Quantum Mechanics

Euclidean Instanton Method Functional Schrödinger Method Resonant Tunneling in QFT

WKB Approximation

Expand a general wavefunction Ψ(x) = e^{if(x)/ħ} in powers of ħ
ψ_{L,R}(x) ≈ 1/√(k(x)) exp (±i∫dxk(x)) in classically allowed region, where k(x) = √(2m/ħ²(E - V(x)))
ψ_±(x) ≈ 1/√(x(x)) exp (±∫dxκ(x)) in the classically forbidden region, where κ(x) = √(2m/ħ²(V(x) - E))

Matching Conditions

- Complete solution $\psi(x) = \alpha_L \psi_L(x) + \alpha_R \psi_R(x)$ in vacuum A
- $\psi(x) = \alpha_+ \psi_+(x) + \alpha_- \psi_-(x)$ in the classically forbidden region
- $\psi(x) = \beta_L \psi_L(x) + \beta_R \psi_R(x)$ in vacuum B • $\begin{pmatrix} \alpha_R \\ \alpha_L \end{pmatrix} = \frac{1}{2} \begin{pmatrix} \Theta + \Theta^{-1} & i(\Theta - \Theta^{-1}) \\ -i(\Theta - \Theta^{-1}) & \Theta + \Theta^{-1} \end{pmatrix} \begin{pmatrix} \beta_R \\ \beta_L \end{pmatrix}$ • $\Theta \simeq 2 \exp\left(\frac{1}{\hbar} \int_{x_1}^{x_2} dx \sqrt{2m(V(x) - E)}\right)$ • Tunneling probability $T_{A \to B} = |\frac{\beta_R}{\alpha_2}|^2 = 4 \left(\Theta + \frac{1}{\Theta}\right)^{-2} \simeq \frac{4}{\Theta^2}$

・ロト ・回ト ・ヨト ・ヨト

2

Double-Barrier Tunneling

• Same method of analysis

•
$$T_{A\to C} = 4 \left(\left(\Theta \Phi + \frac{1}{\Theta \Phi} \right)^2 \cos^2 W + \left(\frac{\Theta}{\Phi} + \frac{\Phi}{\Theta} \right)^2 \sin^2 W \right)^{-1}$$

• $\Phi \simeq 2 \exp \left(\frac{1}{\hbar} \int_{x_3}^{x_4} dx \sqrt{2m(V(x) - E)} \right)$
• $W = \frac{1}{\hbar} \int_{x_2}^{x_3} dx \sqrt{2m(E - V(x))}$
• If B has zero width $T_{A\to C} \simeq 4\Theta^{-2} \Phi^{-2} = T_{A\to B} T_{B\to C}/4$
• If $W = (n_B + 1/2)\pi$ then $T_{A\to C} = \frac{4}{(\Theta/\Phi + \Phi/\Theta)^2}$

イロト イヨト イヨト イヨト

Resonant Tunneling in Quantum Mechanics

Euclidean Instanton Method Functional Schrödinger Method Resonant Tunneling in QFT

Tunneling Probability versus Energy

¹Copeland, Padilla, Saffin

イロト イヨト イヨト イヨト

Potential

•
$$V(\phi) = \frac{1}{4}g(\phi^2 - c^2)^2 - B(\phi + c)$$

・ロン ・雪と ・目と ・目と

Ξ.

Thin-Wall Approximation

- Tunneling rate per unit volume ² is $\Gamma/V = A \exp(-S_E/\hbar)$
- Euclidean EOM is $\left(\frac{\partial^2}{\partial \tau^2} + \nabla^2\right) \phi = V'(\phi)$
- Assume O(4) symmetry
- Solution to Euclidean EOM is $\phi_{DW}(\tau, x, R) = -c \tanh\left(\frac{\mu}{2}(r - R)\right)$
- Inverse thickness of domain wall $\mu = \sqrt{2gc^2}$

・ロン ・回 と ・ ヨ と ・ ヨ と

Euclidean Action

•
$$S_E = \int d\tau d^3x \left[\frac{1}{2} \left(\frac{\partial \phi}{\partial \tau} \right)^2 + \frac{1}{2} (\nabla \phi)^2 + V(\phi) \right]$$

•
$$S_E = -\frac{1}{2}\pi^2 R^4 \epsilon + 2\pi^2 R^3 S_1$$

• Domain-wall tension is $S_1 = \int_{-c}^{c} d\phi \sqrt{2V(\phi)} = \frac{2}{3}\mu c$

•
$$\frac{dS_E}{dR} = 0$$
 implies $\mathcal{E} = -\frac{4}{3}\pi R^3 \epsilon + 4\pi R^2 S_1 = 0$

•
$$R = \lambda_c \equiv 3S_1/\epsilon$$

- Euclidean action is $S_E = rac{\pi^2}{2} S_1 \lambda_c^3 = rac{27\pi^2}{2} rac{S_1^4}{\epsilon^3}$
- Bubble grows if $d{\cal E}/dR < 0$ or $R > 2\lambda_c/3$

イロン イヨン イヨン イヨン

Functional Schrödinger Method

Basic Idea

Infinite-dimensional QFT \rightarrow one-dimensional QM problem

- $\bullet\,$ In semiclassical limit, the vacuum tunneling rate is dominated by a discrete set of classical paths 3 4 5
- Equivalent to Euclidean instanton method for single-barrier tunneling
- Easily generalizes to multiple-barrier tunneling

・ロン ・回と ・ヨン・

³Bender, Banks, Wu ⁴Gervais, Sakita ⁵Bitar, Chang

Functional Schrödinger Equation

•
$$H = \int d^3x \left(\frac{\dot{\phi}^2}{2} + \frac{1}{2} (\nabla \phi)^2 + V(\phi) \right)$$

• Quantize using $[\dot{\phi}(x),\phi(x')]=i\hbar\delta^3(x-x')$

•
$$H = \int d^3x \left(-\frac{\hbar^2}{2} \left(\frac{\delta}{\delta \phi(x)} \right)^2 + \frac{1}{2} (\nabla \phi)^2 + V(\phi) \right)$$

- Make ansatz $\Psi(\phi) = A \exp(-rac{i}{\hbar}S(\phi))$
- $H\Psi(\phi(x)) = E\Psi(\phi(x))$

<ロ> (日) (日) (日) (日) (日)

Semiclassical Expansion

•
$$S(\phi) = S_{(0)}(\phi) + \hbar S_{(1)}(\phi) + ...$$

• $\int d^3 x \left[\frac{1}{2} \left(\frac{\delta S_{(0)}(\phi)}{\delta \phi} \right)^2 + \frac{1}{2} (\nabla \phi)^2 + V(\phi) \right] = E$
• $\int d^3 x \left[-i \frac{\delta^2 S_{(0)}(\phi)}{\delta \phi^2} + 2 \frac{\delta S_{(0)}(\phi)}{\delta \phi} \frac{\delta S_{(1)}(\phi)}{\delta \phi} \right] = 0$

Ignore higher-order terms

Goal

Determine value of $S_{\left(0\right)}$ that gives dominant contribution to the tunneling probability

・ロン ・回 とくほど ・ ほとう

Most Probable Escape Paths

- $\phi_0(x,\lambda)$
- Trajectory in the configuration space of $\phi(\mathbf{x})$ parameterized by λ
- Give dominant contribution to tunneling probability
- Variation of $S_{(0)}$ vanishes perpendicular to the MPEP
- Variation of $S_{(0)}$ is nonvanishing along the MPEP

イロト イポト イヨト イヨト

Most Probable Escape Paths

Determining $S_{(0)}$

• Effective tunneling potential

$$U(\lambda) = U(\phi(x,\lambda)) = \int d^3x \left(\frac{1}{2}(\nabla\phi(x,\lambda))^2 + V(\phi(x,\lambda))\right)$$
• Path length $(ds)^2 = \int d^3x (d\phi(x))^2 = (d\lambda)^2 \int d^3x \left(\frac{\partial\phi(x,\lambda)}{\partial\lambda}\right)^2 = (d\lambda)^2 m(\phi(x,\lambda))$

Zeroth-Order Solution (Classically Forbidden Region)

$$S_{(0)} = i \int_0^s ds' \sqrt{2[U(\phi(x,s')) - E]} = i \int_{\lambda_1}^{\lambda_2} d\lambda \left(\frac{ds}{d\lambda}\right) \sqrt{2[U(\phi(x,\lambda)) - E]}$$

イロン イヨン イヨン イヨン

Determing the MPEP

Euler-Lagrange Equation

$$rac{\partial^2 \phi(x, au)}{\partial au^2} +
abla^2 \phi(x, au) - rac{\partial V(\phi(x, au))}{\partial \phi} = 0$$

•
$$\frac{ds}{d\tau} = \sqrt{2[U(\phi(x,\tau)) - E]}$$

- au plays role of Euclidean time
- In thin-wall approximation solution is

$$\phi_0(x,\tau) = -c \tanh\left(\frac{\mu}{2}(r-\lambda_c)\right)$$

• Euler-Lagrange equation same as Euclidean instanton method

イロン イヨン イヨン イヨン

Parameterization of MPEP

• Reparameterize solution in terms of $\lambda = \sqrt{\lambda_c^2 - \tau^2}$

• MPEP is
$$\phi_0(x,\lambda) \approx -c \tanh\left(\frac{\mu}{2}(|x|-\lambda)\frac{\lambda}{\lambda_c}\right)$$

・ロン ・回 と ・ ヨン ・ ヨン

Parameterization of MPEP

WKB Wavefunction

WKB Wavefunction

$$\Psi(\phi(x,\lambda)) = Ae^{iS_0/\hbar} = A\exp\left(-\frac{1}{\hbar}\left[\int_0^{\lambda_c} d\lambda \sqrt{2m(\lambda)[U(\lambda) - E]}\right]\right)$$

• Position-dependent mass
$$m(\lambda) \equiv \int d^3x \left(\frac{\partial \phi_0(x,\lambda)}{\partial \lambda}\right)^2$$

- Effective tunneling potential $U(\phi(x,\lambda)) = \int d^3x \left(\frac{1}{2}(\nabla\phi(x,\lambda))^2 + V(\phi(x,\lambda))\right)$
- Now have one-dimensional QM problem

イロト イヨト イヨト イヨト

Equivalence of FSM with EIM

• Amplitude is $\exp\left(\frac{27\pi^2}{4}\frac{S_1^4}{\epsilon^3}\right) = \exp\left(S_E/2\right)$

イロト イヨト イヨト イヨト

Advantages of FSM

• Same arguments lead to $S_{(0)}(\phi(x,\lambda)) = \int d\lambda \sqrt{2m((\phi(x,\lambda))[E - U((\phi(x,\lambda))]} \text{ and } Lorentzian EOM in classically allowed regions}$

• If we choose
$$\lambda = \sqrt{\lambda_c^2 + t^2}$$
 as parameter, MPEP takes form
 $\phi_0(x, \lambda) = -c \tanh\left(\frac{\mu}{2}(|x| - \lambda)\frac{\lambda}{\lambda_c}\right) = -c \tanh\left(\frac{\mu}{2}\frac{(|x| - \lambda)}{\sqrt{1 - \lambda^2}}\right)$

Single real parameter describes entire system

イロン イヨン イヨン イヨン

Potential

•
$$V(\phi) = \begin{cases} \frac{1}{4}g_1((\phi + c_1)^2 - c_1^2)^2 - B_1\phi - 2B_1c_1 & \phi < 0\\ \frac{1}{4}g_2((\phi - c_2)^2 - c_2^2)^2 - B_2\phi - 2B_1c_1 & \phi > 0 \end{cases}$$

< □ > < □ > < □ > < □ > < □ > .

Ξ.

MPEP

Effective Tunneling Potential

Position-Dependent Mass

Consistency Conditions

- We require zero total energy at nucleation
- $\mathcal{E}_{(2)} = 4\pi (S_1^{(1)} \frac{1}{3}r_1\epsilon_1)r_1^2 + 4\pi (S_1^{(2)} \frac{1}{3}r_2\epsilon_2)r_2^2 = 0$
- We do not demand that the energy of each bubble vanishes individually
- Equivalent to condition that action is stationary
- Must also ensure existence of a classically allowed region $U(\lambda) < 0$ for $\Lambda > \lambda > \lambda_B$
- Also require the existence of a second classically forbidden region

・ロン ・回と ・ヨン ・ヨン

Resonant Tunneling or Catalytic Tunneling

Resonant Tunneling

If the inside bubble is large enough $\lambda_{2c} > r_2 > 2\lambda_{2c}/3$ tunneling from A to C will complete.

Catalytic Tunneling

- If the inside bubble is too small $0 < r_2 < 2\lambda_{2c}/3$, inside bubble will collapse
- Effect will be tunneling from A to B
- Tunneling rate is exponentially enhanced by presence of C

イロン イヨン イヨン イヨン

Consistency Conditions

Resonant Tunneling in QFT

•
$$T_{A\to C} = 4 \left(\left(\Theta \Phi + \frac{1}{\Theta \Phi} \right)^2 \cos^2 W + \left(\frac{\Theta}{\Phi} + \frac{\Phi}{\Theta} \right)^2 \sin^2 W \right)^{-1}$$

• $W = \int_{\lambda_2}^{\lambda_3} d\lambda \sqrt{2m(\lambda)(-U(\lambda))}$
• $W = \frac{S_1^{(1)}\lambda_h}{\lambda_B} \sqrt{\lambda_h^2 - \lambda_B^2} - S_1^{(1)}\lambda_B \log \left[\frac{\lambda_h + \sqrt{\lambda_h^2 - \lambda_B^2}}{\lambda_B} \right]$
• Resonance condition is $W = (n + \frac{1}{2})\pi$

イロン 不同と 不同と 不同と

2

Probability of Hitting Resonance

- Treat tunneling probability as function of λ_{Λ}
- Expand around resonance at $\lambda_{\Lambda} = \lambda_R$ of width $\Gamma_{\lambda_{\Lambda}}$

•
$$\Gamma_{\lambda_{\Lambda}} = \frac{2}{\Theta \Phi(\frac{\partial W}{\partial \lambda_{\Lambda}})} \left(\frac{\Theta}{\Phi} + \frac{\Phi}{\Theta} \right)$$

• Separation between resonances $\Delta \lambda \simeq \frac{\pi}{(rac{\partial W}{\partial \lambda_{\Lambda}})}$

- Probability of hitting resonance $P(A \to C) = \frac{\Gamma_A}{\Delta \Lambda} \simeq \frac{2}{\pi \Theta \Phi} = \frac{1}{2\pi} (T_{A \to B} + T_{B \to C})$ is the larger of two decay probabilities
- Average tunneling probability $< T_{A \to C} >= P(A \to C)T_{A \to C} \sim \frac{T_{A \to B}T_{B \to C}}{T_{A \to B} + T_{B \to C}}$ given by smaller of two tunneling probabilities

・ロン ・回と ・ヨン・

Conclusions and Future Directions

- Used functional Schrödinger method to show how resonant tunneling takes place in QFT with a single scalar
- Showed existence of catalytic tunneling
- Expect resonance tunneling phenomena to persist outside of thin-wall approximation
- Interesting to study the more general case, especially including gravity

イロト イポト イヨト イヨト