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The Outline Is Trivial...
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The Begining of The Story...

Y∆B =
nB − nB̄

s
|0 = (8.66± 0.35)× 10−11

Because of the initial condition?
For every 108 antiquarks, there should be 108 + 1 quarks.
Inflation diluted all the primordial baryon asymmetry.

Can SM gives us a large enough asymmetry?
No! The CPV is too small, and it is difficult to be out of
equilibrium.
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The Begining of The Story...

Y∆B =
nB − nB̄

s
|0 = (8.66± 0.35)× 10−11

Need new physics to generate baryon asymmetry
dynamically.

e.g. GUT baryongenesis, EW baryogenesis, The Affleck-Dine
mechanism, ..., Leptogenesis
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Sakharov’s Conditions

Three ingredients are necessary to
dynamically generate a baryon
asymmetry:

Baryon number violation
C & CP violation
Out of equilibrium dynamics
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Leptogenesis

Idea
Generate Y∆B by leptonic decays.

Advantage
Solve Y∆B & mνL problems simultaneously.

Leptonic decay 
      that gives
Lepton numer 
    asymmetry 

Sphaleron Effect
Lepton Number
          +
Baryon Number
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Receipe of The Day!

Thermal LG, An easily making Baryon soup!

M. Fukugita and T. Yanagida, Phys. Lett. B 174, 45 (1986).

L

L L
q

q

q
q

Seesaw Mechanism

MNN + Yij L̄i H∗Nj

Cook Time
10−26 sec-10−10 sec, about 10−10 sec, (after inflation)

Oven Temperature
1010 Gev-102 Gev

Ingredients

Maj-neutrinos, N, used for seesaw, mN ∼ 1010 GeV.

SM fields, γ, L±, H , q, q̄, ...

Sphaleron Effect, from electroweak theory.
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Preparation

L
q

q

q
q

L

L

N

NL-

-

+

+

-

εL ≡
Γ(N → LH∗)− Γ(N → L̄H)

Γ(N → LH∗) + Γ(N → L̄H)

ΓN ∼ |Y |2mN < H |T =mN ∼ 10−15 m2
N

TeV

mν =
|Y |2v 2

mN

Mix all the ingredients, including the sphaleron effect.
After doing the inflation, cool down to 1010 GeV. At this
time, B = 0, L = 0.
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N decay generates L-asymmetry

N H*

-

N H

+

εL ≡
Γ(N → LH∗)− Γ(N → L̄H)

Γ(N → LH∗) + Γ(N → L̄H)

ΓN ∼ |Y |2mN < H |T =mN ∼ 10−15 m2
N

TeV

mν =
|Y |2v 2

mN

When T ∼ mN , N begins to decay.
The CP phase in the Yukawa gives L-number access.
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A little more about N decay...

N1

L

H

N1

L

H

N2

H

L
N1

H

L

N2

H

L

ML = Mt It + Ml Il
M∗L = M∗t I∗t + M∗l I∗l

ML̄ = Mt I∗t + Ml I∗l
M∗L̄ = M∗t It + M∗l Il

εL =
|ML|2 − |ML̄|2

|ML|2 + |ML̄|2
∼

Im(Mt M∗l )Im(It I∗l )

|Mt It |2
∼ |Y |2
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N decay generates L-asymmetry

-

+

-
-

-

εL ∼ |Y |2

ΓN ∼ |Y |2mN < H |T =mN ∼ 10−15 m2
N

TeV

mν =
|Y |2v 2

mN

When T ∼ mN , N begins to decay.
The CP phase in the Yukawa gives L-number access.
Now L < 0
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Washout effect!

-

+

-
--

N
+

εL ∼ |Y |2

ΓN ∼ |Y |2mN < H |T =mN ∼ 10−15 m2
N

TeV

mν =
|Y |2v 2

mN

The inverse decay, 2× 2 scattering diminish the existing
L-access.
Need to make sure the RH neutrino is decoupled from the
thermal bath. ΓN < H |T =mN

Yuhsin Tsai, Cornell University/CIHEP Leptogenesis with Composite Neutrinos 13 / 42



Ready for Baryongenesis!

L
L

L
L

-
-

-
-

εL ∼ |Y |2

ΓN ∼ |Y |2mN < H |T =mN ∼ 10−15 m2
N

TeV

mν =
|Y |2v 2

mN

Now we have L < 0, B = 0
Sphaleron becomes useful!
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Sphaleron effect

L
L

-
-
q

q

εL ∼ |Y |2

ΓN ∼ |Y |2mN < H |T =mN ∼ 10−15 m2
N

TeV

mν =
|Y |2v 2

mN

The sphaleron effect only act on LH fields, conserves B − L
and damps B + L. This means Bf − Lf = −Li , Bf + Lf = 0.
In our soup, we can change L & B from (Li = −4,Bi = 0)
to (Lf = −2,Bf = 2)
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After EWSB Ready to serve!!

-
-

- -q

-
q

q
q

q
εL ∼ |Y |2

ΓN ∼ |Y |2mN < H |T =mN ∼ 10−15 m2
N

TeV

mν =
|Y |2v 2

mN

We have both baryon & lepton access in the universe.
With the mixing between heavy RH N , the LH neutrino has
mass mν < 0.1eV .
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A short conclusion for the standard LG
The baryon asymmetry can be parametrized as

Y∆B ∼
1
g∗
× εL × η × C ∼ 10−10

g∗: relativistic degrees of freedom O(102) in SM

εL: L-asymmetry, O(10−7) when η ∼ O(1)

η: washout effect, O(1) for out-of-equilibrium

C : sphaleron effect, SM: C = 12/37, MSSM: C = 10/31

Need to satisfy the constraints: two coefficients (mN , |Y |), three constraints!

εL ∼ |Y |2

ΓN ∼ |Y |2mN < H |T =mN ∼ 10−15 m2
N

TeV

mν =
|Y |2v 2

mN
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Dirac Leptogenesis

Can get LG even if U(1)L is conserved!

K. Dick, M. Lindner, M. Ratz and D. Wright, Phys. Rev. Lett. 84, 4039 (2000).

Idea
leptonic decay + L conservation + L separation

Advantage
large Y∆B , small mνL , no need of Majorana neutrinos

Leptonic Decay
that

conserves L-number

+LL

-LR

annihilation

-

+

that

Leptonic decay 
      that gives
Lepton numer 
    asymmetry 

Sphaleron Effect
Lepton Number
          +
Baryon Number
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A short conclusion for Dirac LG

Most of the constraints are the same:

Y∆B ∼
1
g∗
× εL × η × C ∼ 10−10

εL ∼ |Y |2

ΓN ∼ |Y |2mN < H |T =mN ∼ 10−15 m2
N

TeV
Besides,

New constraint for mν .

Equilibrating rate Req < H(T ) until EWSB.

Yuhsin Tsai, Cornell University/CIHEP Leptogenesis with Composite Neutrinos 21 / 42



Composite Neutrinos
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Composite Neutrinos

Neutrinos are light because they are fat!

N. Arkani-Hamed and Y. Grossman,Phys. Lett. B 459, 179 (1999).

Idea
NR are light composite fermions from a strong dynamics.

Advantage
The ΛQCD of the strong dynamics suppress mνL naturally.

NR

SM
Messenger

M

Preons
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Massless baryons?

G. ’t Hooft’s Cargese summer lectures (1979)

Usually,
The baryons in SM have mbaryon ∼ ΛQCD after confinement.
The GSB’s coming from the breaking of the global
symmetry can remain massless, but this is not for fermions!

However,
If the strong dynamics is chiral, and we have enough chiral
symmetry left after SSB, the massless baryon can exit.

How to find the massless baryons in the confinement scale?
Gauge symmetry + anomaly matching.
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Anomaly Matching

Anomaly will never die!

G. ’t Hooft’s Cargese summer lectures (1979)

Idea
In strongly coupled theory with composite degrees of freedom,
the anomalies of the constituents and the composites must
match.

+ +
Anomaly of the Preons

= + +
Anomaly of the 
massless baryons

...

asymptotically free confinement
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Massless baryons?

Usually,
The baryons in SM have mbaryon ∼ ΛQCD after confinement.
The GSB’s coming from the breaking of the global
symmetry can remain massless, but this is not for fermions!

However,
If the strong dynamics is chiral, and we have enough chiral
symmetry left after SSB, the massless baryon can exit.

How to identify the massless baryons in the confinement scale?
(theory)

By checking the anomaly & gauge symmetry, we can
identify the correct massless baryons. i.e. massless
composite fermions.
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The Composite Neutrinos!

S. Dimopoulos, S. Raby and L. Susskind, Nucl. Phys. B 173, 208 (1980).

An SU(n + 4) gauge theory with

1 antisymmetric tensor A.

n antifundamentals ψi , i = 1...n.

can produce
n(n + 1)

2
massless composite "baryons" Bij = ψi Aψj = Bji .

Can we use these massless baryons as the RH
(or sterile) neutrinos?
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The Composite Neutrinos!

Yes, we can!

For the simplest case with n = 2, we have:

2(2 + 1)

2
= 3× RH neutrinos. Nij = ψi Aψj

the effective Yukawa coupling suppressed by the messenger
mass M

λij ,α (ψi Aψj )LαH ∗

M3 = λij ,α(
Λ

M
)3N̂ij LαH ∗

NR

SM
Messenger

M

Preons
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Two ways of getting mν

Dirac neutrino mass:

(
Λ

M
)3N̂LH∗

mν = (
Λ

M
)3v For v = 102GeV,

Λ

M
= 10−4.

Majorana neutrino mass:

(
Λ

M
)3N̂LH∗ + M(

Λ

M
)6N̂N̂

mν =
v 2

M
, mN = (

Λ

M
)6M
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UV complete the theory

Y. Grossman and Y. Tsai, JHEP 0812, 016 (2008)

What are the fields give
(ψAψ)LH∗

M3 ?

A

ψ

ψ

L

H

?

A

ψ

ψ

L

H

Ω

Φ
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The particle spectrum

SU(6)C SU(2)L U(1)Y Q spin L Qps SU(2)ψ

i LαL 1 2 − 1
2 0, −1 1

2 1 0 1
i ER 1 1 −1 −1 1

2 −1 0 1
Hα 1 2 1

2 1, 0 0 0 0 1
g Ωαab 15 2 − 1

2 0, −1 0 0 2 1
fψa 6̄ 1 0 0 1

2 0 1 2
Aab 15 1 0 0 1

2 −1 2 1
Φab 15 1 0 0 0 0 2 1
k N 189 ; 1 1 0 0 1

2 break 0 1
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What’s next?

Now we have the UV completion of the theory, want to do LG
with it...

Can the decay of the new fields do the job?
Do we have CP phase in the theory?
Does the theory satisfy the experimental bound?

Yuhsin Tsai, Cornell University/CIHEP Leptogenesis with Composite Neutrinos 32 / 42



Couplings

A

L

Ω

Y L
gi AΩ†gLi + h.c .

Ω

H

Φ

M̃gH̃ †Φ†Ωg + h.c .
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CP phases

We have CP phases in the theory:

Symbol Number of Number of
parameters (R+I) Physical parameters (R+I)

M2
Ω 3+1 2+0

M2
Φ 1+0 1+0

M̃ 2+2 2+0
Y e 9+9 3+0
Y L 6+6 6+3
Y A 1+1 1+0
MN 3+3 2+0
Y N 2+2 2+1
y N 6+6 6+6
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Experimental bound

µ→ eγ

µ eA

Ω

µ eA

Ω

µ eA

Ω

Comparing to the experimental bound, MΩ|Y L| > 10TeV .
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Experimental bound

Big-Bang Nucleosynthesis (BBN)

The composite NR give 3 more massless degrees of freedom.

BBN and CMB data: Nν ≤ 3.3 at 95% CL from E-density bound.

To satisfy the E-density bound, need TCNR ≤ 0.5TSM

The early decoupling of CNR from thermal bath gives TCNR ≤ 0.47TSM

Safe!
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A short conclusion for Composite Neutrinos

The idea of CNR gives small Dirac mνL naturally.

We can also have Majorana mass term in the theory.

The UV completion of the theory gives us the particle
spectrum that:

gives CP phases & new decay channels that is necessary
for LG.
satisfies the experimental bound.
has the preons ψ, A, φ & the messenger Ω that couples to
the SM sector.
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Leptogenesis
with

Composite Neutrinos
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LG with Composite Neutrinos

Y. Grossman and Y. Tsai, JHEP 0812, 016 (2008)

Now we have enough tools to begin the work!

The idea of the standard LG (with Majo-neutrinos) & the
Dirac LG (L-number conservation)
The idea of the CNR .
The UV completion of the CNR .

Two LG possibilities!
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LG with CNR - The Standard LG
When the temperature T that LG begins to happen satisfies

T � Λ

Cannot see preons, there is only NR .
Gives the standard LG from NR → H∗L decay.
Have mN ∼ 107TeV, Λ ∼ 1012TeV, M ∼ 1014TeV.
Still a high energy scale LG scenario.

Leptonic decay 
that gives

Lepton numer 
asymmetry 

Sphaleron Effect
Lepton Number

+
Baryon Number

NR
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LG with CNR - The Dirac LG
When the temperature T that LG begins to happen satisfies

T � Λ

No NR , there are only preons.
Gives the Dirac LG from the messenger decay Ω→ AL.
The annihilation between A & L is suppressed by (T /M)6 and� H .
Can have mΩ as low as 10TeV.
Can be a good candidate for low energy LG.

Leptonic Decay
that

conserves L-number

+LL

-LR

annihilat ion

Sphaleron
Effect

Lepton Number
+

Baryon Number

Omega
decay that

A

-

+

Yuhsin Tsai, Cornell University/CIHEP Leptogenesis with Composite Neutrinos 41 / 42



Conclusion

Wake up!

Leptogenesis is a plausible baryogenesis scenario which
solves the Y∆B & small mν problems simultaneously.

The Composite RH neutrinos gives small Dirac type mν

suppressed by (Λ/M)3

The UV completion of the Composite Neutrino theory gives
us interesting LG possibilities.
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