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AdS/CFT correspondence: Maldacena conjecture `97 

Phenomenological works motivated by the duality: 

Randall-Sundrum models… 

AdS/QCD 

“bottom-up” AdS/CMT…  

N=4 conformal SYM  
gs=g2

YM 
Type IIB string theory on AdS5  × S5 

R4=4πgsN l4s 



  Rules of thumb for model-building   

Copied from Csaki, Hubisz and Meade 05’ 



But unlike the original N=4/Type IIB duality,  

the “phenomenological” duality  

  Finite N  

  Non-supersymmetric 



The “phenomenological” duality  

  Finite N  

  Non-supersymmetric 

Higher order corrections 

Instability (won’t consider further) 
e.g.: Horowitz-Orgera-Polchinski 
instablity `07; 



  Goal: assuming existence of an effective AdS field 
theory/CFT correspondence, understand how bulk 
interactions renormalize CFT 2-point correlator beyond 
the leading order in N. 

    More specifically, calculate anomalous dimensions of 
single- and double-trace operators arising from bulk 
interactions. E.g.: scalar single-trace operator:  

∆ =
d

2
+

√
d2

4
+ m2 + γ



  Aside: definition of single- and double-trace operators 

   Given a matrix-valued field Φ(N × N hermitian matrix),  

   Single-trace operators: 

   Double-trace operators:  

  Example: 

    Single-trace operators: 

    Double-trace operators:  

TrΦn

(TrΦn)2

     Scalar operators                            

TrF 2 ψψ̄

(TrF 2)2 (ψψ̄)2



More on the effective AdS/CFT correspondence 

Conjecture: (Heemskerk, Penedones, Polchinski and Sully 
`09; Fitzpatrick, Katz, Poland, Simmons-Duffin `10) 

Sufficient conditions for CFT to have a local bulk dual 

  a mass gap: all single-trace operators of spin greater 
than 2 have parametrically large dimension.  

More specifically, mKK ~ 1/R; R: AdS radius 

String states ms ~ 1/ls ~ λ1/4/R; 

  a small parameter such as 1/N 

M5 ~ N2/3/R 



0 

1/R 

5D AdS EFT 

ms 

mplanck 



  Setup 

AdSd+1: metric 

scalar field theory with contact interactions 

CFT: at the bottom of the spectrum, only one single-trace 
scalar operator  

Double-trace operator from OPE O×O  

ds2 =
z2
0 +

∑d
i=1 dx2

i

z2
0

order in 1/N , the primary operators appearing in the O × O operator product expansion
(OPE) are the “double-trace operators”

On,l(x) ≡ O(
↔
∂ µ

↔
∂µ)n(

↔
∂ ν1

↔
∂ ν2 · · ·

↔
∂ νl)O(x), (2.7)

where parameters n and l denote the twist and the spin of the operator. At the zeroth order
in 1/N , the double-trace operator dimension is ∆n,l = 2∆ + 2n + l.

Once the bulk interactions are turned on, the CFT two-point function would be renor-
malized. For the sinlge-trace operator, the leading order correction to the bare two-point
correlator can be obtained from the non-zero leading order expansion of the boundary 1-PI
action

ε2(d−∆)〈φ0(x)φ0(0)eSbulk(φ)〉1PI
non−local, (2.8)

where integration over the AdS space is involved. As we will see from examples, generally
this integration is divergent and a cutoff in the radial direction as z0 = ε is necessary for
regulating the integration.

On the CFT side, we introduce the wavefunction renormalization factor Z which relates
renormalized operator OR to the bare one O:

OR(x) = ZO(x). (2.9)

The renormalized correlation function

〈OR(x)OR(0)〉 = Z2〈O(x)O(0)〉 (2.10)

is required to be finite after taking away the cutoff, e.g, ε → 0. Thus the dependences of the
cutoff has to be absorbed in the renormalization factor. The anomolous dimension is then
defined as

γ ≡ −ε
∂ log Z

∂ε
. (2.11)

It is easy to understand this definition. The sliding brane location z = ε could be identified
with the running energy scale in the dual field theory. More specifically at an interacting fixed
point, assuming small anomolous dimension, one could Taylor-expand the two-point function
as

〈O(x)O(0)〉 =
1

|x|2(∆+γ)
=

1
|x|2 (1− 2γ log(|x|Λ)), (2.12)

where Λ is the cutoff of the CFT. The log Λ part is to be absorbed into the wavefunction
renormalization factor and thus γ = ∂ log Z/∂ log Λ. For renormalization of the CFT from
an interaction in AdS, the field theory energy scale Λ has to be replaced by 1/ε and then we
arrive at Eq. 2.11.

For double-trace operator, To write
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O(x)

     n: twist           l: spin 



Boundary action 

Sε = Slocal
ε + Snon−local

ε

S = Sε +
∫

ddx

∫

z0>ε
dz0Lbulk

To make precise sense of the AdS/CFT, needs to 
introduce a radial regulator ε:  z0  ≥ ε > 0  



  Consist of all (high-dimensional) local counter-terms to 
restore conformal invariance. 

  Requiring the total action S is independent of ε, holographic  

    RGE of the boundary local operators at classical level: 

Lewandowski, May and Sundrum `02…; 

Heemskerk and Polchinski `10;  

Faulkner, Liu and Rangamani `10. 

Slocal
ε

∂εS
local
ε = −

∫

z=ε
ddx(Π∂zφ−

√
−gL) = −

∫
ddxH



  Encodes the correlators of the dual field theory. 

  The ansatz:   

Snon−local
ε

Generating function of CFT Boundary partition function  

Boundary value of bulk field 

〈exp

∫

ε
φ0O〉CFT = Zε(φ0)

〈O(x)O(0)〉 = ε2(d−∆)〈φ0(x)φ0(0)〉1PI
nonlocal

Normalization 



 Example: free AdS scalar theory with Dirichlet b.c: 
(mixed momentum-position rep.) 

Snon−local
ε

Sε =
1
2

∫
ddkddk′δ("k + "k′)ε−d+1φ0(ε,"k)∂z0φ(z0, "k′)|z0=ε

=
1
2

∫
ddkddk′δ("k + "k′)ε−d+1φ0("k)(∂z0K(z0, "k′)|z0=εφ0("k′))

Continued 

〈O(!k)O(!k′)〉

φ(z0,"k) = K(z0,"k)φ0("k)

K(z0,"k) =
(z0

ε

)d/2 Kν(kz0)
Kν(kε) Bulk to boundary propagator 



Prescription 
  After turning on bulk interactions, CFT gets renormalized 

  Calculate correction to the two-point 

   from AdS : correction to the 1PI boundary action 

OR(x) = ZO(x)

ε2(d−∆)〈φ0(x)φ0(0) · · · 〉1PI
non−local

Insertions of bulk interaction 

〈O(x)O(0)〉(1)



γ ≡ −ε
∂ log Z

∂ε

〈OR(x)OR(0)〉 = Z2〈O(x)O(0)〉

The renormalized two-point functions are Finite after taking the regulator away 

Z factor absorbs the ε dependence, more specifically, log ε dependence 

ε→ 0



A toy example: mass perturbation 
δm2φ2

Exact solution:   

∆exact =
d

2
+

√(
d

2

)2

+ m2 + δm2

= ∆0 +
δm2

2ν
+O((δm2)2)

ν =

√
d2

4
+ m2



δm2φ2 δm2 A bit of information beforehand: 
Main ingredient for calculating  
anomolous dimensions 
from contact interactions 

In this representation, Eq. 3.2 turns into

〈φ0(x)φ0(0)
∫

dz0ddz

zd+1
0

1
2
δm2φ(z0, z)2〉1PI

nonlocal

= δm2
∫

ε

dz0

z0

1
εd

∫
ddk

(2π)d

(
Kν(kz0)
Kν(kε)

)2

e−ik·x (3.4)

= · · ·− 2δm2
∫

ε

dz0

z0

∫
ddk

(2π)d
ε2ν−d

(
k

2

)2ν Γ(1− ν)
Γ(1 + ν)

e−ik·x + · · · (3.5)

= · · · + ε2ν−d log ε
2δm2

πd/2

Γ(∆)
Γ(∆− d/2)

|x|−2∆ + · · · , (3.6)

where in the third line we expand the Bessel functions for small arguments kz, kε $ 1 and
keep only the leading logarithmic divergent term in the last two lines.

Notice that with the bulk-boundary correlator we chose, the two point function at the
classical level is normalized as [16]

〈O(x)O(0)〉(0) =
2ν

πd/2

Γ(∆)
Γ(∆− d/2)

|x|−2∆. (3.7)

To keep two-point correlator finite at order δm2, we have

Z2 − 1 = −δm2

ν
log ε + finite terms. (3.8)

By using Eq. 2.11, we got

γ = −ε
∂ log Z

∂ε
=

δm2

2ν
, (3.9)

which agrees with the leading order correction from expansion of the exact result.

3.1.2 Example 1.2

For the second example, we consider a slightly more complicated mass perturbation in a scalar
theory with two scalars φ, χ with the bulk potential

V = −1
2
m2

1φ
2 − 1

2
m2

2χ
2 − δm2φχ, δm2 $ m2

1 $ m2
2 , (3.10)

One could diagonalize the mass matrice and expand the exact solution to obtain

γ1 =
(δm2)2

m2
1 −m2

2

1
ν1

(3.11)

Again one could also calculate the anomolous dimension of φ with two mass insertions in the
bulk propagator (see Fig. ??)

〈φ0(x)φ0(0)〉(1) =
∫

dz0

zd+1
0

dw0

wd+1
0

∫
ddk

(2π)d
e−ik·xK(z0,k)G(z0, w0;k)K(w0,k) (3.12)
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δm2φ2 δm2

Compared to the exact solution:  
∆exact =

d

2
+

√(
d

2

)2

+ m2 + δm2

= ∆0 +
δm2

2ν
+O((δm2)2)

Z2 − 1 = −δm2

ν
log ε + finite terms

γ = −ε
∂ log Z

∂ε
=

δm2

2ν

A bit of information beforehand: 
Main ingredient for calculating  
anomalous dimensions 
from contact interactions 

〈φ0(x)φ0(0)
∫

dz0ddz

zd+1
0

1
2
δm2φ(z0, z)2〉1PI

nonlocal

= · · · + ε2ν−d log ε
2δm2

πd/2

Γ(∆)
Γ(∆ − d/2)

|x|−2∆ + · · ·



  On the CFT side, 

〈O(x)O(0)〉 =
1

|x|2(∆+γ)
=

1
|x|2 (1 − 2γ log(|x|Λ))

γ =
∂ log Z

∂ log Λ

Λ ↔ 1
ε

UV/IR duality  

γ ≡ −ε
∂ log Z

∂ε

Z2 − 1 = 2γ log Λ



Example 2: mass perturbation again  
-- toy model of integrating out heavy states 

Again one could obtain the exact solution: 

Diagonalize mass matrix  

(
m2

1 δm2

δm2 m2
2

)

∆ =
d

2
+

√
d2

4
+ m2

γ1 =
(δm2)2

m2
1 −m2

2

1
2ν1

V = −1
2
m2

1φ
2 − 1

2
m2

2χ
2 − δm2φχ, δm2 " m2

1 #= m2
2



Example 2: continued 

φχ
δm2 δm2

φ

〈φ0(x)φ0(0)〉(1) =
∫

dz0

zd+1
0

dw0

wd+1
0

∫
ddk

(2π)d
e−ik·xK(z0, k)G(z0, w0; k)K(w0, k)

= 2(δm2)2
∫

ε

dz0

z0

1
εd

Kν1(kz0)
Kν1(kε)

Kν2(kz0)
∫ z0

ε

dw0

w0
Iν2(kw0)

Kν1(kw0)
Kν1(kε)

γ1 =
(δm2)2

m2
1 −m2

2

1
2ν1



Example 2:Continue 

φ χ
δm2 δm2

φ

V = −1
2
m2

1φ
2 − 1

2
m2

2χ
2 − δm2φχ, δm2 " m2

1 " m2
2

φ

δm′2

γ1 =
(δm2)2

m2
1 −m2

2

1
2ν1

δm′2 = − (δm2)2

m2
2

γ1 =
δm′2

2ν1



Contact interaction 

  Single-trace operator 

φ4

φ4

∫ α/z0

0

ddp

(2π)d
G(z0, z0; p)Momentum loop integration is divergent 

Position-dependent cutoff 

ε−d

∫

ε

dz0

z0

∫
ddk

(2π)d

(
Kν(kz0)
Kν(kε)

)2

e−ik·x µ

2

∫
ddp

(2π)d
G(z0, z0; p)

δm2

γ =
δm2

2ν

δm2 =
∫ α/z0

0

ddp

(2π)d
G(z0, z0; p)



  Power countings of the divergences: 

  Could also regulate the momentum loop with Pauli-Villas 

   Final answer is scheme-dependent 

∫
(dd+1p)

1
p2

∼ Λd−1

∫
(ddp)G(z0, z0; p) ∼

∫
(ddp)Kν(pz0)Iν(pz0) ∼

∫
(ddp)

1
p
∼ Λd−1

Flat space: 

Warped: 



Double-trace operators 

Why should we care about these composite CFT operators? 

   They encode information about scattering in AdS 

   Anomalous dimension of double-trace operators and OPE 
coefficients, the two sets of data, contain all the dynamical 
information of CFT at 

order in 1/N , the primary operators appearing in the O × O operator product expansion
(OPE) are the “double-trace operators”

On,l(x) ≡ O(
↔
∂ µ

↔
∂µ)n(

↔
∂ ν1

↔
∂ ν2 · · ·

↔
∂ νl)O(x), (2.7)

where parameters n and l denote the twist and the spin of the operator. At the zeroth order
in 1/N , the double-trace operator dimension is ∆n,l = 2∆ + 2n + l.

Once the bulk interactions are turned on, the CFT two-point function would be renor-
malized. For the sinlge-trace operator, the leading order correction to the bare two-point
correlator can be obtained from the non-zero leading order expansion of the boundary 1-PI
action

ε2(d−∆)〈φ0(x)φ0(0)eSbulk(φ)〉1PI
non−local, (2.8)

where integration over the AdS space is involved. As we will see from examples, generally
this integration is divergent and a cutoff in the radial direction as z0 = ε is necessary for
regulating the integration.

On the CFT side, we introduce the wavefunction renormalization factor Z which relates
renormalized operator OR to the bare one O:

OR(x) = ZO(x). (2.9)

The renormalized correlation function

〈OR(x)OR(0)〉 = Z2〈O(x)O(0)〉 (2.10)

is required to be finite after taking away the cutoff, e.g, ε → 0. Thus the dependences of the
cutoff has to be absorbed in the renormalization factor. The anomolous dimension is then
defined as

γ ≡ −ε
∂ log Z

∂ε
. (2.11)

It is easy to understand this definition. The sliding brane location z = ε could be identified
with the running energy scale in the dual field theory. More specifically at an interacting fixed
point, assuming small anomolous dimension, one could Taylor-expand the two-point function
as

〈O(x)O(0)〉 =
1

|x|2(∆+γ)
=

1
|x|2 (1− 2γ log(|x|Λ)), (2.12)

where Λ is the cutoff of the CFT. The log Λ part is to be absorbed into the wavefunction
renormalization factor and thus γ = ∂ log Z/∂ log Λ. For renormalization of the CFT from
an interaction in AdS, the field theory energy scale Λ has to be replaced by 1/ε and then we
arrive at Eq. 2.11.

For double-trace operator, To write

– 4 –

Double-trace 

O(1/N2)

O(x)O(0) =
∑

c On,l



More recently, 

   Anomolous dimension of double-trace gives important 
information about bulk locality 

   RGE of boundary local operators      multitrace-trace 
flow (classical level) 

   Heemskerk and Polchinski `10; Faulkner, Liu and Rangamani `10 

   Possible phenomelogical applications of double-trace 
deformation 

Heemskerk, Penedones, Polchinski and Sully `09; 
Fitzpatrick, Katz, Poland, Simmons-Duffin `10 



  Turning on  φ4

On(x) ≡ O(
↔
∂ µ

↔
∂

µ

)nO(x)

Would be renormalized 

∆n = 2∆ + 2n + γ(n)
Single-trace operator dim. 



Assume ϕ0
2 sources the double-trace, calculate  

〈φ2
0(x)φ2

0(0)
∫

dz0ddz

zd+1
0

µ

4!
φ(z0, z)4〉1PI

non−local

Trick: Instead of using the single-particle propagator, use 
the two-particle propagator 

φ2(0)φ2(x)

Single-particle propagator:  G∆(x, 0)
Two-particles’ propagator:  G∆n(x, 0)

Analog of partial-wave decomposition 

=
∑

n

1
N2

n



µφ4
µ=

∑

n

d = 2 γ(n) =
µ

8π

1
2∆ + 2n− 1

,

d = 4 γ(n) =
µ

16π2

(n + 1)(∆ + n− 1)(2∆ + n− 3)
(2∆ + 2n− 1)(2∆ + 2n− 3)

µ

Agrees with  Heemskerk, Penedones, Polchinski and Sully `09; 
Fitzpatrick, Katz, Poland, Simmons-Duffin `10 

Santa Barbara group: calculate 4-point function and project onto each 
individual two-particle partial wave; 
Boston group: in global AdS, calculate perturbations of the dilatation 
operator using the old-fashioned perturbation theory. 



  Physical interpretation 

d = 2 γ(n) =
µ

8π

1
2∆ + 2n− 1

,

d = 4 γ(n) =
µ

16π2

(n + 1)(∆ + n− 1)(2∆ + n− 3)
(2∆ + 2n− 1)(2∆ + 2n− 3)

φ4

Λd−3
γ(n) ∼ nd−3

n! 1



  Physical interpretation 

γ(n) ↔ A
n ↔ E

O
Λp

A ∼ Ep

F 4 A ∼ E4

Eg: Euler-Heisenberg 
Lagrangain 

φ4

Λd−3
γ(n) ∼ nd−3



Three cases 

AdS UV b.c IR b.c CFT 

Dirichlet b.c Regular at z0  ∞  Standard quantization 

Mixed Neuman/
Dirichlet b.c 

Regular at z0  ∞  CFT w/ a double-trace 
deformation: 
CFTUV  CFTIR 

Dirichlet b.c z0 = zIR Spontaneous breaking 
of CFT 

∆ >
d

2



CFT with double-trace deformation 
  CFT:  

  Dual to mixed boundary condition: Witten 01’; 

LCFT + f̃O2

UV : f = 0 ∆− = d/2− ν ∆[O2] < d relevant perturbation
IR : f →∞ ∆+ = d/2 + ν

CFTUV 

CFTIR 

Some possible pheno applications: 
(unsuccessful) attempt to explain QCD 
confinement  
D.B. Kaplan, Lee, Son, Stephanov 09; 
Non-susy theory w/ natural light scalar: 
Strassler 03; 
Split SUSY: Sundrum 09; 

fφ(k) + ε∂z0φ(k)|z0=ε = 0



  Repeat calculation with the new boundary conditions 
and corresponding propagators 

    For instance, for the toy example of mass perturbation, 

UV f → 0 γ = −δm2

2ν
,

IR f →∞ γ =
δm2

2ν
,

∆− =
d

2
−

√(
d

2

)2

+ m2 + δm2

= ∆0 −
δm2

2ν
+O((δm2)2)



Spontaneously broken CFT 

  Supposing the existence of a Wilsonian scheme, the 
renormalization of CFT should not be sensitive to the 
interior boundary condition. 

  Impose an IR cutoff surface with Dirichlet b.c., for mass 
perturbations, the answers do not change! 



Spontaneously broken CFT (continued) 

  Impose an IR cutoff surface with Dirichlet b.c., for mass 
perturbations, the answers do not change! 

where we kept the leading terms in the expansion of Bessel functions. Following the same
procedure in Sec. 3, at the two ends of the RG flow, we got

UV f → 0 γ = −δm2

2ν
,

IR f →∞ γ =
δm2

2ν
,

where the minus sign of the anomolous dimension in the UV is expected from expansion of
the exact result.

For the other interactions, the calculations are the same. More.

5. Spontaneous broken CFT

When the AdS space is chopped at finite radius z = zIR, it is dual to sponteneous broken
CFT, of which the two-point function doesn’t need to follow the simple power scaling behavior
in the IR. More specifically, at small momentum or large separation x, there could be poles
appearing in the two point functions corresponding to discrete tower of KK modes. In general,
one would expect Eq. 2.12 to be modified and correspondingly our prescription to be modified
in order to subtract CFT anomolous dimensions that are independent of the IR condition.
We would not proceed along this line here but just comment on that for mass perturbations
in the bulk, the anomalous dimensions of operators are indeed insensitive to the IR physics
following our prescription.

Specifically, we impose an Dirichlet boundary condition at z = zIR. Then one could
parametrize the boundary-bulk propagator as

K(z0,$k) =
(z0

ε

)d/2 Kν(kz0) + aIν(kz0)
Kν(kε) + aIν(kε)

, (5.1)

where we still demand limz0→εK(z0,$k) = 1. Parameter a is fixed by the IR boundary condi-
tions whose specific value is irrelevant here. For example 1.1, with this modified propagator,
Eq. 3.6 becomes

〈φ0(x)φ0(0)
∫

dz0ddz

zd+1
0

1
2
δm2φ(z0, z)2〉1PI

nonlocal

= · · · + ε2ν−d log ε
2δm2

πd/2

(
Γ(∆)

Γ(∆− d/2)
+ 2a

Γ(∆)
Γ(∆− d/2 + 1)Γ(ν)Γ(−ν)

)
|$x|−2∆ + · · · ,

(5.2)

which now contains an IR dependent factor. But the normalization of the two point function
also changes

〈O(x)O(0)〉(0) =
2ν

πd/2

(
Γ(∆)

Γ(∆− d/2)
+ 2a

Γ(∆)
Γ(∆− d/2 + 1)Γ(ν)Γ(−ν)

)
|$x|−2∆, (5.3)
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where we kept the leading terms in the expansion of Bessel functions. Following the same
procedure in Sec. 3, at the two ends of the RG flow, we got

UV f → 0 γ = −δm2

2ν
,

IR f →∞ γ =
δm2

2ν
,

where the minus sign of the anomolous dimension in the UV is expected from expansion of
the exact result.

For the other interactions, the calculations are the same. More.

5. Spontaneous broken CFT

When the AdS space is chopped at finite radius z = zIR, it is dual to sponteneous broken
CFT, of which the two-point function doesn’t need to follow the simple power scaling behavior
in the IR. More specifically, at small momentum or large separation x, there could be poles
appearing in the two point functions corresponding to discrete tower of KK modes. In general,
one would expect Eq. 2.12 to be modified and correspondingly our prescription to be modified
in order to subtract CFT anomolous dimensions that are independent of the IR condition.
We would not proceed along this line here but just comment on that for mass perturbations
in the bulk, the anomalous dimensions of operators are indeed insensitive to the IR physics
following our prescription.

Specifically, we impose an Dirichlet boundary condition at z = zIR. Then one could
parametrize the boundary-bulk propagator as

K(z0,$k) =
(z0

ε

)d/2 Kν(kz0) + aIν(kz0)
Kν(kε) + aIν(kε)

, (5.1)

where we still demand limz0→εK(z0,$k) = 1. Parameter a is fixed by the IR boundary condi-
tions whose specific value is irrelevant here. For example 1.1, with this modified propagator,
Eq. 3.6 becomes

〈φ0(x)φ0(0)
∫

dz0ddz

zd+1
0

1
2
δm2φ(z0, z)2〉1PI

nonlocal

= · · · + ε2ν−d log ε
2δm2

πd/2

(
Γ(∆)

Γ(∆− d/2)
+ 2a

Γ(∆)
Γ(∆− d/2 + 1)Γ(ν)Γ(−ν)

)
|$x|−2∆ + · · · ,

(5.2)

which now contains an IR dependent factor. But the normalization of the two point function
also changes

〈O(x)O(0)〉(0) =
2ν

πd/2

(
Γ(∆)

Γ(∆− d/2)
+ 2a

Γ(∆)
Γ(∆− d/2 + 1)Γ(ν)Γ(−ν)

)
|$x|−2∆, (5.3)
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where we kept the leading terms in the expansion of Bessel functions. Following the same
procedure in Sec. 3, at the two ends of the RG flow, we got

UV f → 0 γ = −δm2

2ν
,

IR f →∞ γ =
δm2

2ν
,

where the minus sign of the anomolous dimension in the UV is expected from expansion of
the exact result.

For the other interactions, the calculations are the same. More.

5. Spontaneous broken CFT

When the AdS space is chopped at finite radius z = zIR, it is dual to sponteneous broken
CFT, of which the two-point function doesn’t need to follow the simple power scaling behavior
in the IR. More specifically, at small momentum or large separation x, there could be poles
appearing in the two point functions corresponding to discrete tower of KK modes. In general,
one would expect Eq. 2.12 to be modified and correspondingly our prescription to be modified
in order to subtract CFT anomolous dimensions that are independent of the IR condition.
We would not proceed along this line here but just comment on that for mass perturbations
in the bulk, the anomalous dimensions of operators are indeed insensitive to the IR physics
following our prescription.

Specifically, we impose an Dirichlet boundary condition at z = zIR. Then one could
parametrize the boundary-bulk propagator as

K(z0,$k) =
(z0

ε

)d/2 Kν(kz0) + aIν(kz0)
Kν(kε) + aIν(kε)

, (5.1)

where we still demand limz0→εK(z0,$k) = 1. Parameter a is fixed by the IR boundary condi-
tions whose specific value is irrelevant here. For example 1.1, with this modified propagator,
Eq. 3.6 becomes

〈φ0(x)φ0(0)
∫

dz0ddz

zd+1
0

1
2
δm2φ(z0, z)2〉1PI

nonlocal

= · · · + ε2ν−d log ε
2δm2

πd/2

(
Γ(∆)

Γ(∆− d/2)
+ 2a

Γ(∆)
Γ(∆− d/2 + 1)Γ(ν)Γ(−ν)

)
|$x|−2∆ + · · · ,

(5.2)

which now contains an IR dependent factor. But the normalization of the two point function
also changes
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2ν

πd/2

(
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+ 2a
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)
|$x|−2∆, (5.3)
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In this representation, Eq. 3.2 turns into

〈φ0(x)φ0(0)
∫

dz0ddz

zd+1
0

1
2
δm2φ(z0, z)2〉1PI

nonlocal

= δm2
∫

ε

dz0

z0

1
εd

∫
ddk

(2π)d

(
Kν(kz0)
Kν(kε)

)2

e−ik·x (3.4)

= · · ·− 2δm2
∫

ε

dz0

z0

∫
ddk

(2π)d
ε2ν−d

(
k

2

)2ν Γ(1− ν)
Γ(1 + ν)

e−ik·x + · · · (3.5)

= · · · + ε2ν−d log ε
2δm2

πd/2

Γ(∆)
Γ(∆− d/2)

|x|−2∆ + · · · , (3.6)

where in the third line we expand the Bessel functions for small arguments kz, kε $ 1 and
keep only the leading logarithmic divergent term in the last two lines.

Notice that with the bulk-boundary correlator we chose, the two point function at the
classical level is normalized as [16]

〈O(x)O(0)〉(0) =
2ν

πd/2

Γ(∆)
Γ(∆− d/2)

|x|−2∆. (3.7)

To keep two-point correlator finite at order δm2, we have

Z2 − 1 = −δm2

ν
log ε + finite terms. (3.8)

By using Eq. 2.11, we got

γ = −ε
∂ log Z

∂ε
=

δm2

2ν
, (3.9)

which agrees with the leading order correction from expansion of the exact result.

3.1.2 Example 1.2

For the second example, we consider a slightly more complicated mass perturbation in a scalar
theory with two scalars φ, χ with the bulk potential

V = −1
2
m2

1φ
2 − 1

2
m2

2χ
2 − δm2φχ, δm2 $ m2

1 $ m2
2 , (3.10)

One could diagonalize the mass matrice and expand the exact solution to obtain

γ1 =
(δm2)2

m2
1 −m2

2

1
ν1

(3.11)

Again one could also calculate the anomolous dimension of φ with two mass insertions in the
bulk propagator (see Fig. ??)

〈φ0(x)φ0(0)〉(1) =
∫

dz0

zd+1
0

dw0

wd+1
0

∫
ddk

(2π)d
e−ik·xK(z0,k)G(z0, w0;k)K(w0,k) (3.12)

– 6 –



  For contact interactions, however, 

  Single-trace:  

    the loop momentum integration is dependent of the particular choice of 
the bulk propagator; 

   UV divergences: determined by  

   short-distance physics; unaffected by the  

   IR boundary; 

   Finite correction: sensitive to the interior b.c.. 

  Double-trace: similar to mass perturbation,  

independent of IR condition 



Conclusion 
  I present a simple prescription to calculate the 

anomalous dimensions of CFT operators from bulk 
interactions.  

  The key ingredient is to use the radial position as the 
regulator. 



Open questions 
  RGE of local boundary operators beyond leading order in 

N: 

   Lewandowski `04; However, part of his answer does not 
look Wilsonian-like as it depends on the IR b.c.’s; 

  Understand correction to non-RG quantity, e.g., OPE 
coefficients 

  Theory with gauge interactions and fermions. 



                Thank you! 



Boundary action 

ε0 ε 
z0 

Cutoff surface     Sliding brane 

Sε = Slocal
ε + Snon−local

ε

S = Sε +
∫

ddx

∫

z0>ε
dz0Lbulk



4. CFT with double-trace deformation

As we mentioned briefly in Sec 2, for a tachyon field in the bulk with mass in the range
−d2/4 ≤ m2 < −d2/4 + 1, one could impose a general boundary condition corresponding to
the presence of a double-trace deformation of the boundary CFT. Such an operator can lead
to an RG flow between two different CFT’s related to each other by a Legendre transformation
in the large N limit. In this section we will demonstrate how our prescription for calculating
the anomolous dimension works in this case. Particularly, we will construct an interpolating
function which produces the right operator scaling dimensions in the two limits corresponding
to the fixed points at the two ends of the RG flow.

As pointed out first in [25], the double-trace deformation corresponds to a mixed Neu-
mann / Dirichlet boundary condition at the boundary z = ε

f̃φ(k) + ∂φ(k) · $n|z0=ε = 0, (4.1)

where $n = εẑ is the unit vector specifying the normal to the boundary. The parameter f̃ is
related to the double-trace perturbation f

2O
2 as [26]

f̃ = −∆− − fε2ν

(
2πd/2 Γ(1− ν)

Γ(∆−)

)
. (4.2)

The bulk-to-boundary propagator in this case turns out to be

ψ(kz0) ≡ zd/2
0 Kν(kz0),

K(k, z0) =
ψ(kz0)

f̃ψ(kε) + ∂ψ(kε) · $n
. (4.3)

For a free theory, the two point correlator parametrized by f , in the momentum space is

〈O(k)O(k′)〉(0)f = −ε−dδd(k + k′)
ψ(kε)

f̃ψ(kε) + ∂ψ(kε) · $n

= −ε−dδd(k + k′)
1

−fε2ν
(
2πd/2 Γ(1−ν)

Γ(∆−)

)
+ ε2ν(k

2 )2ν Γ(−ν)
Γ(ν) (2ν)

, (4.4)

where explicit ε dependences are kept. Starting at the UV with f = 0, the CFTUV is in the
alternative quantization as one can see from Eq. 4.4. Flowing down to the IR, f grows as
double-trace perturbation is relevant. As f → ∞ in the deep IR, we recover the Dirichlet
boundary condition and the two-point correlator in the standard quantization up to some
overall constant normalizations.

Now we add a mass perturbation δm2φ2 in the bulk. The correction to the correlator is

〈O(k)O(k′)〉(1)f = −ε−dδd(k + k′)δm2
∫

ε

dz0

z0

(
ψ(kz0)

f̃ψ(kz0) + ∂ψ(kz0) · $n

)2

= −ε−dδd(k + k′)δm2
∫

ε

dz0

z0



 2ν−1Γ(ν)(kz0)−ν + 2−ν−1Γ(−ν)(kz0)ν

−fενπd/22ν Γ(1−ν)Γ(ν)
Γ(∆−) k−ν − 2−νΓ(1− ν)(kε)ν




2

, (4.5)
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