Renormalized CFT/ Effective AdS

JiJi Fan Princeton University Work in progress

Outline

- Motivation and goal
- Prescription
- Examples
- Conclusion and open questions

AdS/CFT correspondence: Maldacena conjecture `97

Phenomenological works motivated by the duality:

Randall-Sundrum models...

AdS/QCD

"bottom-up" AdS/CMT...

• Rules of thumb for model-building

Bulk of AdS	\leftrightarrow	CFT
Coordinate (z) along AdS	\leftrightarrow	Energy scale in CFT
Appearance of UV brane	↔	CFT has a cutoff
Appearance of IR brane	\leftrightarrow	conformal symmetry broken spontaneously by CFT
KK modes localized on IR brane	\leftrightarrow	composites of CFT
Modes on the UV brane	\leftrightarrow	Elementary fields coupled to CFT
Gauge fields in bulk	↔	CFT has a global symmetry
Bulk gauge symmetry broken on UV brane	↔	Global symmetry not gauged
Bulk gauge symmetry unbroken on UV brane	↔	Global symmetry weakly gauged
Higgs on IR brane	\leftrightarrow	CFT becoming strong produces composite Higgs
Bulk gauge symmetry broken on IR brane by BC's	\leftrightarrow	Strong dynamics that breaks CFT also breaks gauge symmetry

Copied from Csaki, Hubisz and Meade 05'

But unlike the original N=4/Type IIB duality,

the "phenomenological" duality

- Finite N
- Non-supersymmetric

The "phenomenological" duality

- Finite N
- Non-supersymmetric

Higher order corrections

Instability (won't consider further) e.g.: Horowitz-Orgera-Polchinski instablity `07; Goal: assuming existence of an effective AdS field theory/CFT correspondence, understand how bulk interactions renormalize CFT 2-point correlator beyond the leading order in N.

More specifically, calculate anomalous dimensions of single- and double-trace operators arising from bulk interactions. E.g.: scalar single-trace operator:

$$\Delta = \frac{d}{2} + \sqrt{\frac{d^2}{4} + m^2} + \gamma$$

- Aside: definition of single- and double-trace operators
 Given a matrix-valued field Φ(N × N hermitian matrix),
 Single-trace operators: TrΦⁿ
 Double-trace operators: (TrΦⁿ)²
 Example: Scalar operators
- Single-trace operators: ${
 m Tr}F^2$ $\psi\bar{\psi}$ Double-trace operators: $({
 m Tr}F^2)^2$ $(\psi\bar{\psi})$

More on the effective AdS/CFT correspondence

Conjecture: (Heemskerk, Penedones, Polchinski and Sully `09; Fitzpatrick, Katz, Poland, Simmons-Duffin `10)

Sufficient conditions for CFT to have a local bulk dual

 a mass gap: all single-trace operators of spin greater than 2 have parametrically large dimension.

More specifically, m_{KK} ~ 1/R; R: AdS radius

String states $m_s \sim 1/l_s \sim \lambda^{1/4}/R$;

a small parameter such as 1/N

 $M_5 \sim N^{2/3}/R$

• Setup

AdS_{d+1}: metric
$$ds^2 = \frac{z_0^2 + \sum_{i=1}^d dx_i^2}{z_0^2}$$

scalar field theory with contact interactions

CFT: at the bottom of the spectrum, only one single-trace scalar operator $\mathcal{O}(\boldsymbol{x})$

Double-trace operator from OPE O×O

$$\mathcal{O}_{n,l}(\mathbf{x}) \equiv \mathcal{O}(\overleftrightarrow{\partial}_{\mu} \overleftrightarrow{\partial}^{\mu})^n (\overleftrightarrow{\partial}_{\nu_1} \overleftrightarrow{\partial}_{\nu_2} \cdots \overleftrightarrow{\partial}_{\nu_l}) \mathcal{O}(\mathbf{x})$$

n: twist l: spin

Boundary action

To make precise sense of the AdS/CFT, needs to introduce a radial regulator ε : $z_0 \ge \varepsilon > 0$

$$S_{\epsilon} = S_{\epsilon}^{local} + S_{\epsilon}^{non-local}$$
$$S = S_{\epsilon} + \int d^{d}x \int_{z_{0} > \epsilon} dz_{0} \mathcal{L}_{bulk}$$

$$S_{\epsilon}^{local}$$

- Consist of all (high-dimensional) local counter-terms to restore conformal invariance.
- Requiring the total action S is independent of ε , holographic

RGE of the boundary local operators at classical level:

$$\partial_{\epsilon} S^{local}_{\epsilon} = -\int_{z=\epsilon} d^d x (\Pi \partial_z \phi - \sqrt{-g} \mathcal{L}) = -\int d^d x \mathcal{H}$$

Lewandowski, May and Sundrum `02...;

Heemskerk and Polchinski `10;

Faulkner, Liu and Rangamani `10.

$$S_{\epsilon}^{non-local}$$

- Encodes the correlators of the dual field theory.
- The ansatz: $\langle exp \int_{\epsilon} \phi_0 \mathcal{O} \rangle_{CFT} = Z_{\epsilon}(\phi_0)$ Generating function of CPT $\langle \mathcal{O}(x)\mathcal{O}(0) \rangle = \epsilon^{2(d-\Delta)} \langle \phi_0(x)\phi_0(0) \rangle_{nonlocal}^{1PI}$ Normalization

$$S_{\epsilon}^{non-local}$$

Continued

Example: free AdS scalar theory with Dirichlet b.c: (mixed momentum-position rep.)

$$S_{\epsilon} = \frac{1}{2} \int d^{d}k d^{d}k' \delta(\vec{k} + \vec{k'}) \epsilon^{-d+1} \phi_{0}(\epsilon, \vec{k}) \partial_{z_{0}} \phi(z_{0}, \vec{k'})|_{z_{0}=\epsilon}$$
$$= \frac{1}{2} \int d^{d}k d^{d}k' \delta(\vec{k} + \vec{k'}) \epsilon^{-d+1} \phi_{0}(\vec{k}) (\frac{\partial_{z_{0}} K(z_{0}, \vec{k'})|_{z_{0}=\epsilon}}{\langle \mathcal{O}(\vec{k}) \mathcal{O}(\vec{k'}) \rangle}$$

$$\phi(z_0, \vec{k}) = K(z_0, \vec{k})\phi_0(\vec{k})$$

$$K(z_0, \vec{k}) = \left(\frac{z_0}{\epsilon}\right)^{d/2} \frac{K_{\nu}(kz_0)}{K_{\nu}(k\epsilon)}$$
Bulk to boundary propagator

Prescription

• After turning on bulk interactions, CFT gets renormalized

 $\mathcal{O}_R(x) = Z\mathcal{O}(x)$

• Calculate correction to the two-point $\langle \mathcal{O}(x)\mathcal{O}(0)\rangle^{(1)}$

from AdS : correction to the 1PI boundary action

$$\epsilon^{2(d-\Delta)} \langle \phi_0(x)\phi_0(0) \cdot \cdot \rangle_{non-local}^{1PI}$$

Insertions of bulk interaction

The renormalized two-point functions are **Finite** after taking the regulator away $\epsilon \to 0$ $\langle \mathcal{O}_R(x) \mathcal{O}_R(0) \rangle = Z^2 \langle \mathcal{O}(x) \mathcal{O}(0) \rangle$

Z factor absorbs the ϵ dependence, more specifically, log ϵ dependence

$$\gamma \equiv -\epsilon \frac{\partial \log Z}{\partial \epsilon}$$

A toy example: mass perturbation $\delta m^2 \phi^2$

Exact solution:

$$\Delta_{\text{exact}} = \frac{d}{2} + \sqrt{\left(\frac{d}{2}\right)^2 + m^2 + \delta m^2}$$
$$= \Delta_0 + \frac{\delta m^2}{2\nu} + \mathcal{O}((\delta m^2)^2)$$
$$\nu = \sqrt{\frac{d^2}{4} + m^2}$$

 $\delta m^2 \phi^2$

A bit of information beforehand: Main ingredient for calculating anomolous dimensions from contact interactions

$$\begin{split} &\langle \phi_0(\mathbf{x})\phi_0(\mathbf{0}) \int \frac{dz_0 d^d z}{z_0^{d+1}} \frac{1}{2} \delta m^2 \phi(z_0, \mathbf{z})^2 \rangle_{nonlocal}^{1PI} \\ &= \delta m^2 \int_{\epsilon} \frac{dz_0}{z_0} \frac{1}{\epsilon^d} \int \frac{d^d k}{(2\pi)^d} \left(\frac{K_{\nu}(kz_0)}{K_{\nu}(k\epsilon)} \right)^2 e^{-i\mathbf{k}\cdot\mathbf{x}} \\ &= \dots - 2\delta m^2 \int_{\epsilon} \frac{dz_0}{z_0} \int \frac{d^d k}{(2\pi)^d} \epsilon^{2\nu-d} \left(\frac{k}{2} \right)^{2\nu} \frac{\Gamma(1-\nu)}{\Gamma(1+\nu)} e^{-i\mathbf{k}\cdot\mathbf{x}} + \dots \\ &= \dots + \epsilon^{2\nu-d} \log \epsilon \frac{2\delta m^2}{\pi^{d/2}} \frac{\Gamma(\Delta)}{\Gamma(\Delta-d/2)} |\mathbf{x}|^{-2\Delta} + \dots , \end{split}$$

$$\begin{split} \delta m^2 \phi^2 & \delta m^2 \\ & & \text{A bit of information beforehand:} \\ & \text{Main ingredient for calculating} \\ & \text{anomalous dimensions} \\ & \text{from contact interactions} \\ & & \langle \phi_0(x)\phi_0(0)\int \frac{dz_0d^dz}{z_0^{d+1}}\frac{1}{2}\delta m^2\phi(z_0,z)^2\rangle_{nonlocal}^{1PI} \\ & = \cdots + \epsilon^{2\nu-d}\log\epsilon\frac{2\delta m^2}{\pi^{d/2}}\frac{\Gamma(\Delta)}{\Gamma(\Delta-d/2)}|x|^{-2\Delta} + \cdots \\ & & Z^2 - 1 = -\frac{\delta m^2}{\nu}\log\epsilon + \text{finite terms} \\ & \gamma = -\epsilon\frac{\partial \log Z}{\partial\epsilon} \quad \underbrace{\delta m^2}_{2\nu} \\ & \gamma = -\epsilon\frac{\partial \log Z}{\partial\epsilon} \quad \underbrace{\delta m^2}_{2\nu} \\ & \text{Compared to the exact solution:} \\ & = \Delta_0 \left(+\frac{\delta m^2}{2\nu}\right) + \mathcal{O}((\delta m^2)^2) \end{split}$$

• On the CFT side,

$$\begin{split} \langle \mathcal{O}(x)\mathcal{O}(0)\rangle &= \frac{1}{|x|^{2(\Delta+\gamma)}} = \frac{1}{|x|^2} (1 - 2\gamma \log(|x|\Lambda)) \\ Z^2 - 1 &= 2\gamma \log \Lambda \qquad \gamma \quad = \quad \frac{\partial \log Z}{\partial \log \Lambda} \\ \\ \text{UV/IR duality} \qquad \Lambda \quad \leftrightarrow \quad \frac{1}{\epsilon} \end{split}$$

$$\gamma \equiv -\epsilon \frac{\partial \log Z}{\partial \epsilon}$$

Example 2: mass perturbation again -- toy model of integrating out heavy states

$$\mathcal{V} = -\frac{1}{2}m_1^2\phi^2 - \frac{1}{2}m_2^2\chi^2 - \delta m^2\phi\chi, \quad \delta m^2 \ll m_1^2 \neq m_2^2$$

Again one could obtain the exact solution:

Diagonalize mass matrix

$$\left(\begin{array}{cc} m_1^2 & \delta m^2 \\ \delta m^2 & m_2^2 \end{array}\right)$$

$$\Delta = \frac{d}{2} + \sqrt{\frac{d^2}{4} + m^2}$$

$$\gamma_1 = \frac{(\delta m^2)^2}{m_1^2 - m_2^2} \frac{1}{2\nu_1}$$

Example 2: continued

$$\begin{aligned} \langle \phi_0(x)\phi_0(0)\rangle^{(1)} &= \int \frac{dz_0}{z_0^{d+1}} \frac{dw_0}{w_0^{d+1}} \int \frac{d^d k}{(2\pi)^d} e^{-ik \cdot x} K(z_0,k) G(z_0,w_0;k) K(w_0,k) \\ &= 2(\delta m^2)^2 \int_{\epsilon} \frac{dz_0}{z_0} \frac{1}{\epsilon^d} \frac{K_{\nu_1}(kz_0)}{K_{\nu_1}(k\epsilon)} K_{\nu_2}(kz_0) \int_{\epsilon}^{z_0} \frac{dw_0}{w_0} I_{\nu_2}(kw_0) \frac{K_{\nu_1}(kw_0)}{K_{\nu_1}(k\epsilon)} \\ \gamma_1 &= \frac{(\delta m^2)^2}{m_1^2 - m_2^2} \frac{1}{2\nu_1} \end{aligned}$$

Example 2:Continue

$$\mathcal{V} = -\frac{1}{2}m_1^2\phi^2 - \frac{1}{2}m_2^2\chi^2 - \delta m^2\phi\chi, \quad \delta m^2 \ll m_1^2 \ll m_2^2$$

$$\gamma_1 = \frac{(\delta m^2)^2}{m_1^2 - m_2^2} \frac{1}{2\nu_1}$$

$$\delta m'^2 = -\frac{(\delta m^2)^2}{m_2^2}$$

$$\gamma_1 = \frac{\delta m'^2}{2\nu_1}$$

$$\delta m'^2 = -\frac{(\delta m^2)^2}{m_2^2}$$

ϕ^4 **Contact interaction** • Single-trace operator ϕ^4 $\epsilon^{-d} \int_{\epsilon} \frac{dz_0}{z_0} \int \frac{d^d k}{(2\pi)^d} \left(\frac{K_{\nu}(kz_0)}{K_{\nu}(k\epsilon)} \right)^2 e^{-ik \cdot x} \frac{\mu}{2} \int \frac{d^d p}{(2\pi)^d} G(z_0, z_0; p)$ $\int_0^{\alpha/z_0} \frac{d^d p}{(2\pi)^d} G(z_0, z_0; p)$ Momentum loop integration is divergent Position-dependent cutoff

• Power countings of the divergences:

Flat space:
$$\int (d^{d+1}p)\frac{1}{p^2} \sim \Lambda^{d-1}$$

Warped:
$$\int (d^dp)G(z_0, z_0; p) \sim \int (d^dp)K_{\nu}(pz_0)I_{\nu}(pz_0) \sim \int (d^dp)\frac{1}{p} \sim \Lambda^{d-1}$$

Could also regulate the momentum loop with Pauli-Villas
 Final answer is scheme-dependent

Double-trace operators

 $\mathcal{O}_{n,l}(\mathbf{x}) \equiv \mathcal{O}(\overset{\leftrightarrow}{\partial}_{\mu}\overset{\leftrightarrow}{\partial}^{\mu})^n (\overset{\leftrightarrow}{\partial}_{\nu_1}\overset{\leftrightarrow}{\partial}_{\nu_2}\cdots \overset{\leftrightarrow}{\partial}_{\nu_l}) \mathcal{O}(\mathbf{x})$

$$\mathcal{O}(x)\mathcal{O}(0) = \sum c \ \mathcal{O}_{n,k}$$

Why should we care about these composite CFT operators?

They encode information about scattering in AdS

Anomalous dimension of double-trace operators and OPE coefficients, the two sets of data, contain all the dynamical information of CFT at $O(1/N^2)$

More recently,

Anomolous dimension of double-trace gives important information about bulk locality

Heemskerk, Penedones, Polchinski and Sully `09; Fitzpatrick, Katz, Poland, Simmons-Duffin `10

RGE of boundary local operators flow (classical level)

Heemskerk and Polchinski `10; Faulkner, Liu and Rangamani `10

Possible phenomelogical applications of double-trace deformation

• Turning on
$$\phi^4$$

$$\mathcal{O}_n(x) \equiv \mathcal{O}(\overset{\leftrightarrow}{\partial}_{\mu} \overset{\leftrightarrow}{\partial}^{\mu})^n \mathcal{O}(x)$$

Would be renormalized

$$\Delta_n = 2\Delta + 2n + \gamma(n)$$

$$\uparrow$$
Single-trace operator dim.

Assume φ_0^2 sources the double-trace, calculate

$$\langle \phi_0^2(x)\phi_0^2(0) \int \frac{dz_0 d^d z}{z_0^{d+1}} \frac{\mu}{4!} \phi(z_0, z)^4 \rangle_{non-local}^{1PI}$$

Trick: Instead of using the single-particle propagator, use the two-particle propagator

$$\phi^{2}(x) = \sum_{n} \frac{1}{N_{n}^{2}}$$
Single-particle propagator: $G_{\Delta}(x, 0)$
Two-particles' propagator: $G_{\Delta_{n}}(x, 0)$
Analog of partial-wave decomposition

Agrees with Heemskerk, Penedones, Polchinski and Sully `09; Fitzpatrick, Katz, Poland, Simmons-Duffin `10

Santa Barbara group: calculate 4-point function and project onto each individual two-particle partial wave; Boston group: in global AdS, calculate perturbations of the dilatation operator using the old-fashioned perturbation theory. • Physical interpretation

$$d = 2 \quad \gamma(n) = \frac{\mu}{8\pi} \frac{1}{2\Delta + 2n - 1},$$

$$d = 4 \quad \gamma(n) = \frac{\mu}{16\pi^2} \frac{(n+1)(\Delta + n - 1)(2\Delta + n - 3)}{(2\Delta + 2n - 1)(2\Delta + 2n - 3)}$$

$$n \gg 1 \quad \frac{\varphi}{\Lambda^{d-3}} \quad \gamma(n) \sim n^{d-3}$$

• Physical interpretation

$$\frac{\phi^4}{\Lambda^{d-3}} \quad \gamma(n) \sim n^{d-3}$$
$$\frac{\mathcal{O}}{\Lambda^p} \quad \mathcal{A} \sim E^p$$

Eg: Euler-Heisenberg Lagrangain $F^4 \quad \mathcal{A} \sim E^4$

$$\begin{array}{rccc} \gamma(n) & \leftrightarrow & \mathcal{A} \\ n & \leftrightarrow & E \end{array}$$

Three cases

AdS UV b.c	IR b.c	CFT
Dirichlet b.c	Regular at $z_0 \rightarrow \infty$	$\begin{array}{l} {\rm Standard}{\rm quantization}\\ \Delta > \frac{d}{2} \end{array}$
Mixed Neuman/ Dirichlet b.c	Regular at z₀ → ∞	CFT w/ a double-trace deformation: CFT ^{UV} \rightarrow CFT ^{IR}
Dirichlet b.c	$z_0 = z_{IR}$	Spontaneous breaking of CFT

CFT with double-trace deformation

• CFT:
$$\mathcal{L}_{CFT} + ilde{f}\mathcal{O}^2$$

CFT^{UV}

CFT^{IR}

• Dual to mixed boundary condition: Witten 01'; $f\phi(k) + \epsilon \partial_{z_0} \phi(k)|_{z_0=\epsilon} = 0$

 $UV: f = 0 \quad \Delta_{-} = d/2 - \nu \quad \Delta[\mathcal{O}^{2}] < d \quad \text{relevant perturbation}$ $IR: f \to \infty \quad \Delta_{+} = d/2 + \nu$

Some possible pheno applications: (unsuccessful) attempt to explain QCD confinement D.B. Kaplan, Lee, Son, Stephanov 09:

D.B. Kaplan, Lee, Son, Stephanov 09; Non-susy theory w/ natural light scalar: Strassler 03;

Split SUSY: Sundrum 09;

 Repeat calculation with the new boundary conditions and corresponding propagators

For instance, for the toy example of mass perturbation, $UV \quad f \to 0 \quad \gamma = \Box \frac{\delta m^2}{2\nu}, \qquad \Delta_- = \frac{d}{2} - \sqrt{\left(\frac{d}{2}\right)^2 + m^2 + \delta m^2}$ $IR \quad f \to \infty \quad \gamma = \frac{\delta m^2}{2\nu}, \qquad = \Delta_0 - \frac{\delta m^2}{2\nu} + \mathcal{O}((\delta m^2)^2)$

Spontaneously broken CFT

- Supposing the existence of a Wilsonian scheme, the renormalization of CFT should not be sensitive to the interior boundary condition.
- Impose an IR cutoff surface with Dirichlet b.c., for mass perturbations, the answers do not change!

Spontaneously broken CFT (continued)

• Impose an IR cutoff surface with Dirichlet b.c., for mass perturbations, the answers do not change!

$$K(z_0, \vec{k}) = \left(\frac{z_0}{\epsilon}\right)^{d/2} \frac{K_{\nu}(kz_0) + aI_{\nu}(kz_0)}{K_{\nu}(k\epsilon) + aI_{\nu}(k\epsilon)}$$

$$\langle \phi_0(x)\phi_0(0) \int \frac{dz_0 d^d z}{z_0^{d+1}} \frac{1}{2} \delta m^2 \phi(z_0, z)^2 \rangle_{nonlocal}^{1PI}$$

= $\dots + \epsilon^{2\nu-d} \log \epsilon \frac{2\delta m^2}{\pi^{d/2}} \left(\frac{\Gamma(\Delta)}{\Gamma(\Delta - d/2)} + 2a \frac{\Gamma(\Delta)}{\Gamma(\Delta - d/2 + 1)\Gamma(\nu)\Gamma(-\nu)} \right) |\vec{x}|^{-2\Delta}$

$$\langle \mathcal{O}(x)\mathcal{O}(0)\rangle^{(0)} = \frac{2\nu}{\pi^{d/2}} \left(\frac{\Gamma(\Delta)}{\Gamma(\Delta - d/2)} + 2a\frac{\Gamma(\Delta)}{\Gamma(\Delta - d/2 + 1)\Gamma(\nu)\Gamma(-\nu)}\right) |\vec{x}|^{-2\Delta}$$

$$\gamma = -\epsilon \frac{\partial \log Z}{\partial \epsilon} = \frac{\delta m^2}{2\nu}$$

- For contact interactions, however,
- Single-trace:

the loop momentum integration is dependent of the particular choice of the bulk propagator;

UV divergences: determined by

short-distance physics; unaffected by the

IR boundary;

Finite correction: sensitive to the interior b.c..

• Double-trace: similar to mass perturbation,

independent of IR condition

Conclusion

- I present a simple prescription to calculate the anomalous dimensions of CFT operators from bulk interactions.
- The key ingredient is to use the radial position as the regulator.

Open questions

 RGE of local boundary operators beyond leading order in N:

Lewandowski `04; However, part of his answer does not look Wilsonian-like as it depends on the IR b.c.'s;

- Understand correction to non-RG quantity, e.g., OPE coefficients
- Theory with gauge interactions and fermions.

Thank you!

Boundary action

$$\psi(kz_0) \equiv z_0^{d/2} K_{\nu}(kz_0),$$
$$K(\mathbf{k}, z_0) = \frac{\psi(kz_0)}{\tilde{f}\psi(k\epsilon) + \partial\psi(k\epsilon) \cdot \vec{n}}.$$

$$\begin{split} \langle \mathcal{O}(k)\mathcal{O}(k')\rangle_{f}^{(0)} &= -\epsilon^{-d}\delta^{d}(k+k')\frac{\psi(k\epsilon)}{\tilde{f}\psi(k\epsilon)+\partial\psi(k\epsilon)\cdot\vec{n}} \\ &= -\epsilon^{-d}\delta^{d}(k+k')\frac{1}{-f\epsilon^{2\nu}\left(2\pi^{d/2}\frac{\Gamma(1-\nu)}{\Gamma(\Delta_{-})}\right)+\epsilon^{2\nu}(\frac{k}{2})^{2\nu}\frac{\Gamma(-\nu)}{\Gamma(\nu)}(2\nu)}, \end{split}$$

$$\langle \mathcal{O}(k)\mathcal{O}(k')\rangle_{f}^{(1)} = -\epsilon^{-d}\delta^{d}(k+k')\delta m^{2} \int_{\epsilon} \frac{dz_{0}}{z_{0}} \left(\frac{\psi(kz_{0})}{\tilde{f}\psi(kz_{0})+\partial\psi(kz_{0})\cdot\vec{n}}\right)^{2}$$

$$= -\epsilon^{-d}\delta^{d}(k+k')\delta m^{2} \int_{\epsilon} \frac{dz_{0}}{z_{0}} \left(\frac{2^{\nu-1}\Gamma(\nu)(kz_{0})^{-\nu}+2^{-\nu-1}\Gamma(-\nu)(kz_{0})^{\nu}}{-f\epsilon^{\nu}\pi^{d/2}2^{\nu}\frac{\Gamma(1-\nu)\Gamma(\nu)}{\Gamma(\Delta-)}k^{-\nu}-2^{-\nu}\Gamma(1-\nu)(k\epsilon)^{\nu}}\right)^{2}$$