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• 3+1D Numerical Simulation of Cosmological 
Bubble Collisions : Nucleation

• Analytic description of bubble wall transition in 
1+1D : Free Passage Approximation

• Open questions and summary

• The physics of Quantum Bubble Nucleation



Quantum Nucleation of  Bubbles
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Figure 4: A nearly symmetric potential with eternal inflation happening at the local max at φ = 0.
The inflaton may roll into and thermalize in either of the two vacua.

Now, consider the slightly more complicated model where the inflaton can roll into either

of two possible vacua3, A or B, as in Figure 4. Such an asymmetric potential would be

realized with odd powers of φ. At the top of the hill, eternal inflation occurs. At each time

step the inflaton can thermalize to the left, thermalize to the right, or stay at the top and

keep inflating. The probabilities for each outcome are pA, pB and q such that 1 = q+pA+pB.

This model of eternal inflation generates type A and type B pocket universes. Their ratio

will be a function of the shape of the potential which is encoded in the probabilities.

This toy model of eternal inflation effectively assumes an explicit spatial foliation so that

gauge problems are not transparent. However, we emphasize that our world line method is

independent of the method for generating the multiverse. We need only be given the space-

time which results from eternal inflation, and then our method will calculate the probability

distribution of the pockets, P (A|V (ψj)).

4.3 Counting the Pockets

We start with a collection of N points distributed randomly over the initial inflating region.

We draw the location of the points from a flat probability distribution; as we will show

later, our conclusions are not sensitive to the initial distribution of points or velocities. The

probability to find one or more points still in any inflating region after nt time steps is

1 − (1 − qnt)N , (4.1)

which, for large times, approaches zero as Nqnt . For any given set of N points we run our

“pocket universe generation” mechanism of the previous subsection long enough so that all

of the points end up in thermal regions [30].

Our goal is to obtain the sample distribution of the pocket universes, not of the world

lines. Therefore if two or more world lines end up in the same pocket, we must throw out all
3We assume that the tunneling time scale between the two vacua is sufficiently long.
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An Omniscience view of the Multiverse i+
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! But we still see regions 
where the field is in the 
highest energy metastable 
local minima

Low High
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Bubbliology

• What is the internal structure of these 
bubbles? What is a typical observer inside?

Studying bubbles can teach us interesting things 

• The distribution of bubbles scans the Landscape 
potential. Can we count them?

• More broadly : placeholders for non-
perturbative objects (domain walls, solitons, D-
branes etc.)

• What happens when they co"ide?



Colliding Bubbles

space
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Bubbles invariably collide : collision rate 
depends on nucleation rate

I didn’t tell you that bubbles can 
collide

“What happens then?”
Sidney Coleman, PRD D51, 2929 (1976)

Vus Vthem

False Vacuum Sea

?
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time
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They could merge smoothly, possibly forming a 
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Aguirre, Johnson, Tysanner (2007)

False Vacuum Sea



Colliding Bubbles
time

Our bubble Colliding
bubble

They could merge smoothly, possibly forming a 
domain wall if 

Vus Vthem

Vus != Vthem

Domain wall

Energy conservation : debris might spew out if 
collision is in-elastic.

Chang, Kleban, Levi (2007)
Aguirre, Johnson, Tysanner (2007)

Radiation debris, 
or something else?

False Vacuum Sea



Colliding Bubbles
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Our bubble Colliding
bubble

They could form oscillating pockets of the false 
vacuum.

Vus Vthem

Hawking, Moss, Stewart (1982)

Radiation debris, 
or something else?

False Vacuum Sea



Colliding Bubbles
time

Our bubble Colliding
bubble

They could form oscillating pockets of the false 
vacuum.

Vus Vthem

Hawking, Moss, Stewart (1982)

Radiation debris, 
or something else?

Lattice simulation c. 1982 :
 1+1D, ~50 lattice points 
IBM 370

False Vacuum Sea

who would have thought Hawking is also one of 
the earliest pioneer of numerical cosmology!



Numerical Bubbles
Lattice simulation circa. 2009 : 
Full 3+1D, 10243 = 1073,741,824 lattice points

Biggest issue : numerical noise from 
high resolution
Sampling 1 per 8
explain the diagram (axis, energy 
density, slice)

Wall thickness Lorentz contract as it collects more energy
! We also see some (although very little) energy being “radiated” 

toward the center of each bubble.

Interaction Plane

Conformal Diagram: Energy Density

Low High
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Smashing Bubbles
• Colliding identical bubbles with 2 minima

! We also see some (although very little) energy being “radiated” 
toward the center of each bubble.
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Conformal Diagram: Energy Density
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Classical Nucleation
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Classical Nucleation
• Colliding identical bubbles with 3 minima
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New relativistic walls coherently form! 
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Two Bubbles
Low High

Field Profile (y-z plane)             Energy Density

A
B

C

Gradient Energy of walls Field Kinetic Energy

Sufficient Gradient Energy will push 
the field over the 2nd barrier

Grad. Energy ∝ γ2 >
∆VBC

∆VAB
× elastic coefficient

Lorentz Factor

A

B
A

B

B

B

C

Energetics?



No Transition Collision
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No Transition Collision

Two Bubbles
Low High

Field Profile (y-z plane)             Energy Density

AB
C

γ2 <
∆VBC

∆VAB

Nucleate bubbles close together so 
Lorentz factor is small at collision

time

space

A

BB
B

Wall energy is released as debris 
into the merged bubble.

Slice of Field Values Top down Energy density



A plethora of Questions
• New coherent walls between new barriers!

Same Final Total EnergyX
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A plethora of Questions
• New coherent walls between new barriers!

Same Final Total EnergyX
• How far can the field go in field space? 

Excursion Range/“Throw”

Large Collision Energy = Large Excursion ?

NO!



A plethora of Questions
• Where would the field go - 

Multifield model? “Kick”
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A plethora of Questions
• Where would the field go - 

Multifield model? “Kick”
?

• Can it go over multiple 
barriers? Split Condition. =?

φAφB
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• Our problem ∇2φ(x, t) =
−dV

dφ

• Simplifications Flat Space and no Gravity
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1+1D Solitons
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1+1D Solitons

∂2φ

∂t2
− ∂2φ

∂x2
= −dV

dφ
Invariant under Lorentz Trans.

=
φ

(
x− ut√
1− u2

) φ+

φ−

φ

(
±(x− ut)√

1− u2

)

\

φ+

φ−

ζ = x− utζ = 0

Soliton Anti-Soliton

Bubble Wall collisions approximated by
 Soliton-(anti)soliton interactions

• Solitons : stable field configuration which 
“locally” minimizes the total energy

φ

(
−(x− ut)√

1− u2

)
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=

1+1D Solitons

∂2φ

∂t2
− ∂2φ

∂x2
= −dV

dφ

φ4 Solitons

=V (φ) = (φ− φ+)2(φ + φ−)2

φ+

φ+

φ−
φ−

= =

sine-Gordon Solitons
V (φ) = 1− cos(φ)

Invariant under Lorentz Trans.

velocity u

φ

(
±(x− ut)√

1− u2

)

• Solitons : stable field configuration which 
“locally” minimizes the total energy



• Rest Mass/Tension

=

φAφC φB

M1
M2

M1 =
∫ φA

φB

√
2V (φ)

• Exact Soliton Solutions

1+1D Solitons

  : only single soliton solution exist
sine-Gordon : arbitrary N solitons/antisolitons solutions 
exist

φ4



Clues from sine-Gordon
• Exact anti-soliton interaction solution

φ(x, t) = 4 tan−1

[
sinh(γut)
u cosh(γx)

]
Perring + Skyrme (1961)
Numerical -- Malaysia!!

=

φ2 φ3φ1
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Clues from sine-Gordon
• Exact anti-soliton interaction solution

φ(x, t) = 4 tan−1

[
sinh(γut)
u cosh(γx)

]
Perring + Skyrme (1961)
Numerical -- Malaysia!!

Completely Elastic -- no radiation losses

=

φ1

φ2 φ3

φ2

φ3

Only single barrier transition regardless 
of collision velocity 

Transition regardless of velocity

φ1



General Soliton Interaction

= =

φ1φ2φ3

φ1

φ2

φ3

∆φthrow

= \

φ(x, t→ −∞) = φ0

(
x− ut√
1− u2

)
+ φ0

(
−(x + ut)√

1− u2

)
−∆φthrow

This equation breaks down as they approach 
and interact via the potential

t = 0Collision at 



General Soliton Interaction
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φ1

φ2

φ3

∆φthrow

= \

φ(x, t→ −∞) = φ0

(
x− ut√
1− u2

)
+ φ0

(
−(x + ut)√

1− u2

)
−∆φthrow

This equation breaks down as they approach 
and interact via the potential

Key observation : But it is approximately good even during 
interaction “Free Passage”

t = 0Collision at 



General Soliton Interaction:
Free Passage Approximation

If velocity u is relativistic,  u→ 1

φ0

(
±(x− ut)√

1− u2

)
solution :∂2φ0

∂t2
− ∂2φ0

∂x2
= −dV

dφ
(φ0)

∂2φ0

∂t2
− ∂2φ0

∂x2
∼ 0hence  

or Amplitude
(

∂2φ0

∂x2

)
! Amplitude

(
dV

dφ

)

Solitons do not “feel” the potential initially during interaction!
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General Soliton Interaction:
Free Passage Approximation
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Free Passage breaks down : 

ε

1
1− u2

dV

dφ
(φ0(t∗)) ≈

dV

dφ
(2φ0(t∗)−∆φthrow)



Free Passage in Action!

=

φ1φ2φ3

∆φthrow

γ =
1√

1− u2
= 3

Red Line : Numerical
Black Line : Free Passage

1+1D soliton-antisoliton Collision with transition



Free Passage in Action!

=

φ1φ2φ3

∆φthrow

γ =
1√

1− u2
= 1.67

1+1D soliton-antisoliton Collision with no transition



Predictions of Free Passage
• Coherent walls generically form in high speed collisions



Predictions of Free Passage

• Maximal Excursion 
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∂t2

= +
∂2φ(t∗)
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− dV

dφ
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No Transition Possible : regardless of 
collision velocity!
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Transition Possible depending on 
collision velocity

• Coherent walls generically form in high speed collisions
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• Maximal Excursion 

=

∆φthrow∆φthrow

∂2φ(t∗)
∂t2

= +
∂2φ(t∗)

∂x2
− dV

dφ
(φ(t∗)) > 0

No Transition Possible : regardless of 
collision velocity!

=

∆φthrow∆φthrow

∂2φ(t∗)
∂t2

= +
∂2φ(t∗)

∂x2
− dV

dφ
(φ(t∗)) < 0 if γ " 1

Transition Possible depending on 
collision velocity

• “Kick” direction is the vector sum of field barrier 
differences.

• Coherent walls generically form in high speed collisions
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Maximal Excursion regardless 

of velocity!
“This is amazing!” L. Hui
“This is crazy!” A. Nicolis

“I don’t believe it!”  T. Giblin
“****!” E. Lim



Kick Direction
Soliton-soliton collision in the Free Passage Approximation
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Kick Direction
Soliton-soliton collision in the Free Passage Approximation

δφ = φB − φB′

δ"φ = "φB + "φB′
− 2"φA

Generalization to 
Multifield potentials
New way of scanning 

the potential!



Multi-barrier Transitions
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Multi-barrier Transitions

=?

φAφB

Free Passage : ∆φthrow > both maxima
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Multi-barrier transition
if u2 > 0

Kinetic Problem!

Unknown :
 more than 2 barriers



Multi-barrier Transitions
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Multi-barrier Transitions

=

φAφB

Mm1 m2

u2 ∼ −0.65 < 0
γ = 1.25

1+1D soliton-antisoliton with single barrier transition



Yet another crazy fact

=

φAφB

Mm1 m2

=

φ1φ2

Mm1 + m2

γdouble ≥ γtransition

Rest Frame of Resultant soliton

M m1m2
u1u2

u1 can be > u so can carry more energy away



Improved Transition Velocity Estimate

• “Old” condition Grad. Energy ∝ γ2 >
∆VBC

∆VAB
× elastic coefficient

• Using Free Passage :
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Improved Transition Velocity Estimate

• “Old” condition Grad. Energy ∝ γ2 >
∆VBC

∆VAB
× elastic coefficient

• Using Free Passage :

=
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√
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dφ V (φ− φ1 + φ2)

√
2

V (φ)

Works very well numerically -- but we think we can do better.

Ein ≥ EoutTransition whenε

Plug in sine-Gordon Ein = EoutV (φ) = 1− cos φ

∆φthrow
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• What is the internal structure of the new 
bubbles? Can we live in one them?

• Do they behave like quantum ones?
Classical CQuantum C ?

B B 

• Do we live in a Quantum or Classical (or a mix) 
of bubbles? Probability? Can we tell via 
observations?

• Perturbations? (3+1D numerical simulations will 
be highly useful)

Stuff in Progress



More stuff in Progress
• Coupled multifields : extra decay channels? 

Easther, Greene, Johnson, Lim

• Decompactification via collisions?

• Applications to non-Cosmological bubbles? 
Brane-interactions? Condensed matter systems? 
etc.



Summary

• Bubble wall collisions can scanthe landscape -- 
perhaps to places hard to quantum tunnel to.

• Free Passage is key to understanding collision 
results : coherent walls, maximal excursion, 
multi-barrier transition, Kick direction

• New classical mechanism of nucleating bubbles.



Take home message

Bubble collisions results depend on the 
global shape of the landscape potential.

A new way to probe the String theory landscape?


