A New Mechanism of Cosmological Bubble Nucleation aka How to Run Through Walls

Eugene A. Lim (Columbia) w/ R. Easther, J.T. Giblin, L. Hui arXiv:0907:3234
w/ J.T. Giblin, L. Hui, I-S. Yang arXiv:0910:xxxxx

HEP Seminar (Nov 20 2009)
Cornell University

Outline

- The physics of Quantum Bubble Nucleation
- $3+$ ID Numerical Simulation of Cosmological Bubble Collisions : Nucleation
- Analytic description of bubble wall transition in I+ID : Free Passage Approximation
- Open questions and summary

Quantum Nucleation of Bub

False metastable vacuum

Coleman-De Luccia Tunneling :

$$
\text { Rate } \frac{\Gamma}{V}=\text { constant } \times \exp \left(-S_{0}\right)
$$

Quantum Nucleation of Bubbles

True vacuum

Coleman-De Luccia Tunneling:

$$
\text { Rate } \frac{\Gamma}{V}=\text { constant } \times \exp \left(-S_{0}\right)
$$

Initial Bubble Size
Radius $\propto \frac{\text { wall tension }}{\text { vac. energy difference) }}$

Quantum Nucleation of Bubbles

True vacuum

Coleman-De Luccia Tunneling :

$$
\text { Rate } \frac{\Gamma}{V}=\text { constant } \times \exp \left(-S_{0}\right)
$$

Initial Bubble Size
Radius $\propto \frac{\text { wall tension }}{\text { vac. energy difference) }}$
Pressure difference accelerates the bubble wall velocity

Inside a bubble is an open universe (which may be inflating at first)

An Omniscien

use colors
dS sea - Green
notice the simplification of a single
point nucleation
Questions : (1) origins of potential?
(2) initial surface?
(3) where do we live?

Multiverse

Minkowski

 bubblesAdS bubbles

Inflating (dS) bubbles.
deSitter sea

AdS buppies

nce view of the Multiverse

Minkowski bubbles

Inflating (dS) bubbles.

deSitter sea
Perhaps string motivated?

use colors
dS sea - Green
notice the simplification of a single point nucleation
Questions : (1) origins of potential?
(2) initial surface?
(3) where do we live?

AdS pupples

nce view of the Multiverse

Minkowski bubbles

Inflating (dS) bubbles.

deSitter sea

Is there an initial surface?

use colors
dS sea - Green
notice the simplification of a single point nucleation
Questions : (1) origins of potential?
(2) initial surface?
(3) where do we live?

Ads puppres

nce view of the Multiverse

Minkowski bubbles

Inflating (dS) bubbles.

deSitter sea

Is there an initial surface?
Perhaps string motivated?

Bubbliology

Studying bubbles can teach us interesting things

- The distribution of bubbles scans the Landscape potential. Can we count them?
- What is the internal structure of these bubbles? What is a typical observer inside?
- More broadly : placeholders for nonperturbative objects (domain walls, solitons, Dbranes etc.)
- What happens when they collide?

Colliding Bubbles

time

Bubbles invariably collide : collision rate depends on nucleation rate
"What happens then?"
Sidney Coleman, PRD D5I, 2929 (1976)

Colliding Bubbles

time

N

They could merge smoothly, possibly forming a domain wall if $V_{\text {us }} \neq V_{\text {them }} \quad$ Chang, Kleban, Levi (2007)

Aguirre, Johnson, Tysanner (2007)

Colliding Bubbles

They could merge smoothly, possibly forming a domain wall if $V_{\text {us }} \neq V_{\text {them }} \quad$ Chang, Kleban, Levi (2007)

Aguirre, Johnson, Tysanner (2007)
Energy conservation : debris might spew out if collision is in-elastic.

Colliding Bubbles

They could form oscillating pockets of the false

Vacuum. Hawking, Moss, Stewart (1982)

who would have thought Hawking is also one of the earliest pioneer of numerical cosmology!

liding Bubbles

They could form oscillating pockets of the false

Vacuum. Hawking, Moss, Stewart (i982)

Lattice simulation c. 1982 : 1+1D, -50 lattice points IBM 370

Lattice simulation circa. 2009:
 Full $3+1$ D, $1024^{3}=1073,741,824$ lattice points

Slice of Field Values
Top down Energy density

Wall thickness Lorentz contract as it collects more energy

Lattice simulation circa. 2009:
 Full $3+1$ D, $1024^{3}=1073,741,824$ lattice points

Slice of Field Values
Top down Energy density

B

Wall thickness Lorentz contract as it collects more energy

Smashing Bubbles

- Colliding identical bubbles with 2 minima

Smashing Bubbles

- Colliding identical bubbles with 2 minima

Slice of Field Values
Top down Energy density

Classical Nucleation

- Colliding identical bubbles with 3 minima

Classical Nucleation

- Colliding identical bubbles with 3 minima Slice of Field Values

Top down Energy density

C

New relativistic walls coberently form!

High

Energetics?

Gradient Energy of walls \longrightarrow Field Kinetic Energy

Energetics?

Gradient Energy of walls \longrightarrow Field Kinetic Energy
Sufficient Gradient Energy will push the field over the 2nd barrier

B

C

Energetics?

Gradient Energy of walls \longrightarrow Field Kinetic Energy
Sufficient Gradient Energy will push the field over the 2nd barrier

C

Grad. Energy $\propto \gamma^{2}>\frac{\Delta V_{B C}}{\Delta V_{A B}} \times$ elastic coefficient
Lorentz Factor

No Transition Collision

Nucleate bubbles close together so Lorentz factor is small at collision
$\gamma^{2}<\frac{\Delta V_{B C}}{\Delta V_{A B}}$

No Transition Collision

Nucleate bubbles close together so Lorentz factor is small at collision

$$
\gamma^{2}<\frac{\Delta V_{B C}}{\Delta V_{A B}}
$$

> | Slice of Field Values | Top down Energy density |
| :--- | :--- |

Wall energy is released as debris into the merged bubble.

A plethora of Questions

- New coherent walls between new barriers!

Same Final Total Energy

A plethora of Questions

- New coherent walls between new barriers!

Same Final Total Energy

- How far can the field go in field space? Excursion Range/"Throw"

Large Collision Energy = Large Excursion ?

A plethora of Questions

- New coherent walls between new barriers!

Same Final Total Energy

- How far can the field go in field space? Excursion Range/"Throw"

Large Collision Energy = Large Excursion ?
NO!

A plethora of Questions

- Where would the field goMultifield model? "Kick"

A plethora of Questions

- Where would the field go Multifield model? "Kick"

- Can it go over multiple barriers? Split Condition.

Some simplifications

- Our problem

$$
\nabla^{2} \phi(x, t)=\frac{-d V}{d \phi}
$$

- Simplifications Flat Space and no Gravity

Some simplifications

- Our problem

$$
\nabla^{2} \phi(x, t)=\frac{-d V}{d \phi}
$$

- Simplifications

Flat Space and no Gravity
Degenerate Vacua : set up walls with initial velocities

Some simplifications

- Our problem

$$
\nabla^{2} \phi(x, t)=\frac{-d V}{d \phi}
$$

- Simplifications

Flat Space and no Gravity
Degenerate Vacua : set up walls with initial velocities
Reduction to I +ID solitons

$$
\frac{\partial^{2} \phi}{\partial t^{2}}-\frac{\partial^{2} \phi}{\partial x^{2}}-\frac{\partial^{2} \phi}{\partial y^{2}}-\frac{\partial^{2} \phi}{\partial z^{2}}=-\frac{d V}{d \phi}
$$

Some simplifications

- Our problem

$$
\nabla^{2} \phi(x, t)=\frac{-d V}{d \phi}
$$

- Simplifications

Flat Space and no Gravity
Degenerate Vacua : set up walls with initial velocities
Reduction to $\mathrm{I}+\mathrm{ID}$ solitons

$$
\frac{\partial^{2} \phi}{\partial t^{2}}-\frac{\partial^{2} \phi}{\partial x^{2}}-\frac{\partial^{2} \phi}{\partial y^{2}}-\frac{\partial^{2} \phi}{\partial z^{2}}=-\frac{d V}{d \phi}
$$

$\frac{\Delta l}{R} \ll 1 \quad \frac{\partial^{2} \phi}{\partial t^{2}}-\frac{\partial^{2} \phi}{\partial x^{2}}=-\frac{d V}{d \phi}$

I +ID Solitons

- Solitons : stable field configuration which "locally" minimizes the total energy

$$
\frac{\partial^{2} \phi}{\partial t^{2}}-\frac{\partial^{2} \phi}{\partial x^{2}}=-\frac{d V}{d \phi} \text { Invariant under Lorentz Trans. } \phi\left(\frac{ \pm(x-u t)}{\sqrt{1-u^{2}}}\right)
$$

$\mathrm{I}+\mathrm{ID}$ Solitons

- Solitons : stable field configuration which "locally" minimizes the total energy
$\frac{\partial^{2} \phi}{\partial t^{2}}-\frac{\partial^{2} \phi}{\partial x^{2}}=-\frac{d V}{d \phi}$ Invariant under Lorentz Trans. $\phi\left(\frac{ \pm(x-u t)}{\sqrt{1-u^{2}}}\right)$

Soliton
ϕ_{+}

$$
\zeta=x-u t
$$

Anti-Soliton

Bubble Wall collisions approximated by Soliton-(anti)soliton interactions

I +ID Solitons

- Solitons : stable field configuration which "locally" minimizes the total energy
$\frac{\partial^{2} \phi}{\partial t^{2}}-\frac{\partial^{2} \phi}{\partial x^{2}}=-\frac{d V}{d \phi}$ Invariant under Lorentz Trans. $\phi\left(\frac{ \pm(x-u t)}{\sqrt{1-u^{2}}}\right)$
ϕ^{4} Solitons
$V(\phi)=\left(\phi-\phi_{+}\right)^{2}\left(\phi+\phi_{-}\right)^{2}$

ϕ_{+}

$\mathrm{I}+\mathrm{ID}$ Solitons

- Solitons : stable field configuration which "locally" minimizes the total energy
$\frac{\partial^{2} \phi}{\partial t^{2}}-\frac{\partial^{2} \phi}{\partial x^{2}}=-\frac{d V}{d \phi}$ Invariant under Lorentz Trans. $\phi\left(\frac{ \pm(x-u t)}{\sqrt{1-u^{2}}}\right)$
ϕ^{4} Solitons
$V(\phi)=\left(\phi-\phi_{+}\right)^{2}\left(\phi+\phi_{-}\right)^{2}$

sine-Gordon Solitons

$$
V(\phi)=1-\cos (\phi)
$$

I+ID Solitons

- Rest Mass/Tension

$$
M_{1}=\int_{\phi_{B}}^{\phi_{A}} \sqrt{2 V(\phi)}
$$

- Exact Soliton Solutions
ϕ^{4} : only single soliton solution exist sine-Gordon : arbitrary N solitons/antisolitons solutions exist

Clues from sine-Gordon

- Exact anti-soliton interaction solution

$$
\phi(x, t)=4 \tan ^{-1}\left[\frac{\sinh (\gamma u t)}{u \cosh (\gamma x)}\right] \quad \begin{aligned}
& \text { Perring + Skyrme (1961) } \\
& \text { Numerical -- Malaysia!! }
\end{aligned}
$$

Clues from sine-Gordon

- Exact anti-soliton interaction solution

$$
\phi(x, t)=4 \tan ^{-1}\left[\frac{\sinh (\gamma u t)}{u \cosh (\gamma x)}\right] \quad \begin{gathered}
\text { Perring + Skyrme (1961) } \\
\text { Numerical -- Malaysia!! }
\end{gathered}
$$

Clues from sine-Gordon

- Exact anti-soliton interaction solution

$$
\phi(x, t)=4 \tan ^{-1}\left[\frac{\sinh (\gamma u t)}{u \cosh (\gamma x)}\right] \quad \begin{aligned}
& \text { Perring + Skyrme (196I) } \\
& \text { Numerical -- Malaysia!! }
\end{aligned}
$$

General Soliton Interaction

$$
\phi(x, t \rightarrow-\infty)=\phi_{0}\left(\frac{x-u t}{\sqrt{1-u^{2}}}\right)+\phi_{0}\left(\frac{-(x+u t)}{\sqrt{1-u^{2}}}\right)-\Delta \phi_{\text {throw }}
$$

Collision at $t=0$

This equation breaks down as they approach and interact via the potential

General Soliton Interaction

$$
\phi(x, t \rightarrow-\infty)=\phi_{0}\left(\frac{x-u t}{\sqrt{1-u^{2}}}\right)+\phi_{0}\left(\frac{-(x+u t)}{\sqrt{1-u^{2}}}\right)-\Delta \phi_{\text {throw }}
$$

Collision at $t=0$

\square
This equation breaks down as they approach and interact via the potential
Key observation : But it is approximately good even during interaction "Free Passage"

General Soliton Interaction:

Free Passage Approximation

$$
\frac{\partial^{2} \phi_{0}}{\partial t^{2}}-\frac{\partial^{2} \phi_{0}}{\partial x^{2}}=-\frac{d V}{d \phi}\left(\phi_{0}\right) \quad \text { solution : } \quad \phi_{0}\left(\frac{ \pm(x-u t)}{\sqrt{1-u^{2}}}\right)
$$

If velocity u is relativistic, $u \rightarrow 1$ hence $\frac{\partial^{2} \phi_{0}}{\partial t^{2}}-\frac{\partial^{2} \phi_{0}}{\partial x^{2}} \sim 0$ or Amplitude $\left(\frac{\partial^{2} \phi_{0}}{\partial x^{2}}\right) \gg$ Amplitude $\left(\frac{d V}{d \phi}\right)$

Solitons do not "feel" the potential initially during interaction!

General Soliton Interaction:

Free Passage Approximation

$$
\frac{\partial^{2} \phi_{0}}{\partial t^{2}}-\frac{\partial^{2} \phi_{0}}{\partial x^{2}}=-\frac{d V}{d \phi}\left(\phi_{0}\right) \quad \text { solution : } \quad \phi_{0}\left(\frac{ \pm(x-u t)}{\sqrt{1-u^{2}}}\right)
$$

If velocity u is relativistic, $u \rightarrow 1$ hence $\frac{\partial^{2} \phi_{0}}{\partial t^{2}}-\frac{\partial^{2} \phi_{0}}{\partial x^{2}} \sim 0$

$$
\begin{aligned}
& \text { or Amplitude }\left(\frac{\partial^{2} \phi_{0}}{\partial x^{2}}\right) \gg \text { Amplitude }\left(\frac{d V}{d \phi}\right) \\
& \phi\left(x, t \rightarrow t_{*}\right) \approx \phi_{0}\left(\frac{x-u t}{\sqrt{1-u^{2}}}\right)+\phi_{0}\left(\frac{-(x+u t)}{\sqrt{1-u^{2}}}\right)-\Delta \phi_{\text {throw }}
\end{aligned}
$$

Time when approximation

breaks down
$t_{*}>t$

General Soliton Interaction:

Free Passage Approximation

$$
\frac{\partial^{2} \phi_{0}}{\partial t^{2}}-\frac{\partial^{2} \phi_{0}}{\partial x^{2}}=-\frac{d V}{d \phi}\left(\phi_{0}\right) \quad \text { solution : } \quad \phi_{0}\left(\frac{ \pm(x-u t)}{\sqrt{1-u^{2}}}\right)
$$

If velocity u is relativistic, $u \rightarrow 1$ hence $\frac{\partial^{2} \phi_{0}}{\partial t^{2}}-\frac{\partial^{2} \phi_{0}}{\partial x^{2}} \sim 0$

$$
\begin{aligned}
& \text { or Amplitude }\left(\frac{\partial^{2} \phi_{0}}{\partial x^{2}}\right) \gg \text { Amplitude }\left(\frac{d V}{d \phi}\right) \\
& \phi\left(x, t \rightarrow t_{*}\right) \approx \phi_{0}\left(\frac{x-u t}{\sqrt{1-u^{2}}}\right)+\phi_{0}\left(\frac{-(x+u t)}{\sqrt{1-u^{2}}}\right)-\Delta \phi_{\text {throw }}
\end{aligned}
$$

Time when approximation

$t_{*}>t$

General Soliton Interaction:

Free Passage Approximation

$$
\frac{\partial^{2} \phi_{0}}{\partial t^{2}}-\frac{\partial^{2} \phi_{0}}{\partial x^{2}}=-\frac{d V}{d \phi}\left(\phi_{0}\right) \quad \text { solution : } \quad \phi_{0}\left(\frac{ \pm(x-u t)}{\sqrt{1-u^{2}}}\right)
$$

If velocity u is relativistic, $u \rightarrow 1$ hence $\frac{\partial^{2} \phi_{0}}{\partial t^{2}}-\frac{\partial^{2} \phi_{0}}{\partial x^{2}} \sim 0$

$$
\begin{aligned}
& \text { or Amplitude }\left(\frac{\partial^{2} \phi_{0}}{\partial x^{2}}\right) \gg \text { Amplitude }\left(\frac{d V}{d \phi}\right) \\
& \phi\left(x, t \rightarrow t_{*}\right) \approx \phi_{0}\left(\frac{x-u t}{\sqrt{1-u^{2}}}\right)+\phi_{0}\left(\frac{-(x+u t)}{\sqrt{1-u^{2}}}\right)-\Delta \phi_{\text {throw }}
\end{aligned}
$$

Time when approximation breaks down
$t_{*}>t$

General Soliton Interaction:

 Free Passage Approximation$$
\frac{\partial^{2} \phi_{0}}{\partial t^{2}}-\frac{\partial^{2} \phi_{0}}{\partial x^{2}}=-\frac{d V}{d \phi}\left(\phi_{0}\right) \quad \text { solution : } \quad \phi_{0}\left(\frac{ \pm(x-u t)}{\sqrt{1-u^{2}}}\right)
$$

Free Passage breaks down :
Amplitude $\left(\frac{\partial^{2} \phi_{0}}{\partial x^{2}}\right) \approx$ Amplitude $\left(\frac{d V}{d \phi}\right)$

$$
\begin{gathered}
\frac{1}{1-u^{2}} \frac{d V}{d \phi}\left(\phi_{0}\left(t_{*}\right)\right) \approx \frac{d V}{d \phi} \\
\left.\frac{u t}{u^{2}}\right)+\phi_{0}\left(\frac{-(x+u t)}{\sqrt{1-u^{2}}}\right)-\Delta \phi_{\text {throw }}
\end{gathered}
$$

$$
\phi\left(x, t \rightarrow t_{*}\right) \approx \phi_{0}\left(\frac{x-u t}{\sqrt{1-u^{2}}}\right)+\phi_{0}\left(\frac{-(x+u t)}{\sqrt{1-u^{2}}}\right)-\Delta \phi_{\text {throw }}
$$

Time when approximation

$$
t_{*}>t
$$

Free Passage in Action!

Red Line : Numerical Black Line : Free Passage

I +ID soliton-antisoliton Collision with transition

Free Passage in Action!

I +ID soliton-antisoliton Collision with no transition

Predictions of Free Passage

- Coherent walls generically form in high speed collisions

Predictions of Free Passage

- Coherent walls generically form in high speed collisions
- Maximal Excursion

$$
\frac{\partial^{2} \phi\left(t_{*}\right)}{\partial t^{2}}=+\frac{\partial^{2} \phi\left(t_{*}\right)}{\partial x^{2}}-\frac{d V}{d \phi}\left(\phi\left(t_{*}\right)\right)>0 \quad \frac{\partial^{2} \phi\left(t_{*}\right)}{\partial t^{2}}=+\frac{\partial^{2} \phi\left(t_{*}\right)}{\partial x^{2}}-\frac{d V}{d \phi}\left(\phi\left(t_{*}\right)\right)<0 \text { if } \gamma \gg 1
$$

No Transition Possible : regardless of collision velocity!

Transition Possible depending on collision velocity

Predictions of Free Passage

- Coherent walls generically form in high speed collisions
- Maximal Excursion

$$
\frac{\partial^{2} \phi\left(t_{*}\right)}{\partial t^{2}}=+\frac{\partial^{2} \phi\left(t_{*}\right)}{\partial x^{2}}-\frac{d V}{d \phi}\left(\phi\left(t_{*}\right)\right)>0 \quad \frac{\partial^{2} \phi\left(t_{*}\right)}{\partial t^{2}}=+\frac{\partial^{2} \phi\left(t_{*}\right)}{\partial x^{2}}-\frac{d V}{d \phi}\left(\phi\left(t_{*}\right)\right)<0 \text { if } \gamma \gg 1
$$

No Transition Possible : regardless of collision velocity!

Transition Possible depending on collision velocity

- "Kick" direction is the vector sum of field barrier differences.

Free Passage in Action \#2

$$
\gamma=3
$$

Free Passage in Action \#2

$$
\gamma=3
$$

Maximal Excursion regardless of velocity!

Free Passage in Action \#2

$$
\gamma=3
$$

Maximal Excursion regardless of velocity!

"This is amazing!" L. Hui
"This is crazy!" A. Nicolis
"I don't believe it!" T. Giblin
"****!" E. Lim

Kick Direction

Soliton-soliton collision in the Free Passage Approximation

Kick Direction

Soliton-soliton collision in the Free Passage Approximation

Generalization to
Multifield potentials
New way of scanning the potential!

Multi-barrier Transitions

Free Passage : $\Delta \phi_{\text {throw }}>$ both maxima

Multi-barrier Transitions

Free Passage : $\Delta \phi_{\text {throw }}>$ both maxima

Multi-barrier Transitions

Free Passage : $\Delta \phi_{\text {throw }}>$ both maxima

$$
M=\int_{\phi_{B}}^{\phi_{A}} \sqrt{2 V(\phi)}
$$

Kinetic Problem!

Multi-barrier transition

$$
\text { if } u_{2}>0
$$

Unknown:

Multi-barrier Transitions

```
(11) \(\hat{\boldsymbol{N}} \boldsymbol{\theta} \boldsymbol{\theta}\)
```


$\mathrm{I}+\mathrm{ID}$ soliton-antisoliton with multi-barrier transition

Multi-barrier Transitions

$\mathrm{I}+\mathrm{ID}$ soliton-antisoliton with multi-barrier transition

Multi-barrier Transitions

$$
\begin{gathered}
\gamma=1.25 \\
u_{2} \sim-0.65<0
\end{gathered}
$$

I+1D soliton-antisoliton with single barrier transition

Yet another crazy fact

$$
\gamma_{\text {double }} \geq \gamma_{\text {transition }}
$$

$$
m_{2} \bigcirc \stackrel{u_{2}}{\gtrless} M \xrightarrow{u_{t}} m_{I}
$$

Rest Frame of Resultant soliton
u_{I} can $\mathrm{be}>u$ so can carry more energy away

Improved Transition Velocity Estimate

"Old" condition Grad. Energy $\propto \gamma^{2}>\frac{\Delta V_{B C}}{\Delta V_{A B}} \times$ elastic coefficient - Using Free Passage :

$$
E_{i n}(t \rightarrow-\infty)=\frac{2}{\sqrt{1-u^{2}}} \int_{\phi_{2}}^{\phi_{1}} d \phi \sqrt{2 V(\phi)}
$$

Improved Transition Velocity Estimate

"Old" condition Grad. Energy $\propto \gamma^{2}>\frac{\Delta V_{B C}}{\Delta V_{A B}} \times$ elastic coefficient

- Using Free Passage :

$$
\begin{aligned}
& E_{\text {in }}(t \rightarrow-\infty)=\frac{2}{\sqrt{1-u^{2}}} \int_{\phi_{2}}^{\phi_{1}} d \phi \sqrt{2 V(\phi)} \\
& E_{\text {out }}\left(t \rightarrow t_{*}\right)=\frac{1+u^{2}}{\sqrt{1-u^{2}}} \int_{\phi_{2}+\epsilon}^{\phi_{1}} d \phi \sqrt{2 V(\phi)} \\
& \quad+\sqrt{1-u^{2}} \int_{\phi_{2}+\epsilon}^{\phi_{1}} d \phi V\left(\phi-\phi_{1}+\phi_{2}\right) \sqrt{\frac{2}{V(\phi)}}
\end{aligned}
$$

Transition when $E_{\text {in }} \geq E_{\text {out }}$

Improved Transition Velocity Estimate

- "Old" condition Grad. Energy $\propto \gamma^{2}>\frac{\Delta V_{B C}}{\Delta V_{A B}} \times$ elastic coefficient
- Using Free Passage :

$$
\begin{aligned}
& E_{\text {in }}(t \rightarrow-\infty)=\frac{2}{\sqrt{1-u^{2}}} \int_{\phi_{2}}^{\phi_{1}} d \phi \sqrt{2 V(\phi)} \\
& E_{\text {out }}\left(t \rightarrow t_{*}\right)=\frac{1+u^{2}}{\sqrt{1-u^{2}}} \int_{\phi_{2}+\epsilon}^{\phi_{1}} d \phi \sqrt{2 V(\phi)} \\
& \quad+\sqrt{1-u^{2}} \int_{\phi_{2}+\epsilon}^{\phi_{1}} d \phi V\left(\phi-\phi_{1}+\phi_{2}\right) \sqrt{\frac{2}{V(\phi)}}
\end{aligned}
$$

Transition when $E_{\text {in }} \geq E_{\text {out }}$
Plug in sine-Gordon $V(\phi)=1-\cos \phi \quad E_{\text {in }}=E_{\text {out }}$
Works very well numerically -- but we think we can do better.

Stuff in Progress

- What is the internal structure of the new bubbles? Can we live in one them?

Stuff in Progress

- What is the internal structure of the new bubbles? Can we live in one them?
- Do they behave like quantum ones? Quantum C

Stuff in Progress

- What is the internal structure of the new bubbles? Can we live in one them?
- Do they behave like quantum ones?

- Do we live in a Quantum or Classical (or a mix) of bubbles? Probability? Can we tell via observations?

Stuff in Progress

- What is the internal structure of the new bubbles? Can we live in one them?
- Do they behave like quantum ones?

- Do we live in a Quantum or Classical (or a mix) of bubbles? Probability? Can we tell via observations?
- Perturbations? ($3+\mathrm{ID}$ numerical simulations will be highly useful)

More stuff in Progress

- Coupled multifields : extra decay channels?

Easther, Greene, Johnson, Lim

- Decompactification via collisions?
- Applications to non-Cosmological bubbles? Brane-interactions? Condensed matter systems? etc.

Summary

- New classical mechanism of nucleating bubbles.
- Bubble wall collisions can scanthe landscape -perhaps to places hard to quantum tunnel to.
- Free Passage is key to understanding collision results : coherent walls, maximal excursion, multi-barrier transition, Kick direction

Take home message

Bubble collisions results depend on the global shape of the landscape potential.

A new way to probe the String theory landscape?

