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Evidence and Hints
for Dark Matter



Gravitational Evidence for Dark Matter
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e Shape depends on the total matter and baryon densities:

Quatterh® = 0.134 £ 0.006,  Qpgryonsh® = 0.0227 + 0.0006.

e [ he difference is the dark matter density:

Qpah? = 0.111 + 0.006.



e Dark matter is required to explain galaxy formation.
e Gravitational lensing probes suggest DM.

e Galactic rotation curves:

observed

expected
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- _ luminous disk
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[Corbelli et al.]



Dark Matter and New Physics
e No Standard Model particle can be the DM.

e A new heavy stable particle can generate the DM.

— falls out of thermal equilibrium and remains as a relic

— ‘thermal freeze-out”

e [ hermal relic DM density:

cherth ~ Tg 1
HEMS3, (o v)
4

2
~ o.1< DM ) for (ov) ~—2—.
1000 GeV m2

DM from new physics stabilizing the ElectroWeak scale?

DM production at the LHC?



Non-Gravitional Dark Matter Signals

e Dark matter in our galaxy can annihilate
producing cosmic rays, photons, and neutrinos.
“Indirect Detection”
PAMELA, ATIC, INTEGRAL, WMAP see excess fluxes.

e Dark matter around us can be detected directly
by its scattering off nuclei.
“Direct Detection”

DAMA observes unexplained nuclear recoils.

e If these signals are from DM, the new particle

must have some surprising properties.



PAMELA - Cosmic Ray Positrons

e PAMELA sees an an excess of e over packground.
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e NO excess flux of anti-protons is observed.



ATIC and PPB-BETS - Cosmic Ray Electrons

e These experiments see excess (e + e~) fluxes.
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[Hamaguchi, Shirai, Yanagida '08]

e Spectral shape - the signal falls off for £ = 700 GeV.



Dark Matter Implications

e Dark Matter annihilation can account for these signals.
e Implications:

1. PAMELA+ATICH+PPB-BETS Spectrum:
— MDM z 700 GeV (MDM z 100 GeV for PAMELA)

2. PAMELA does not see excess anti-protons:

= DM annihilates mostly into leptons.

3. PAMELA+ATICH+PPB-BETS event rate:
= (o v)WY > 2 (g y)Tee2e—0U for thermal freeze-out.

(x 2 10 for PAMELA, x 2 100 for ATIC)



DAMA and Inelastic Dark Matter



Dark Matter Direct Detection

e \We encounter a DM “wind” from our galactic motion.

DM Halo

Galactic Disc

20 kpc



e [ his DM flux can scatter off nuclei.

— ook for nuclear recoils ~ 100 keV

DM DM

- =

T

q q
e Net scattering rate is proportional to the flux.

e Coherent Spin-Independent scattering:

51 ol(A=2)fn+ Zfp)?
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Experimental Limits (Low Background)
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Annual Modulation at DAMA

e DM flux varies annually due to the motion of the Earth.
= annual modulation of the DM scattering rate

[Drukier,Freese,Spergel '86]

e DAMA /Nal and DAMA /LIBRA searched for this

variation in nuclear recoils using Nal-based detectors.
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Dark Matter Explanations for DAMA

o If the DAMA signal is DM what does it tell us?

e Heavy DM scattering off Iodine is ruled out.
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e Light DM? Electron scattering DM7? Inelastic DM?




Light Dark Matter and DAMA

e CDMS (Ge) is insensitive to lighter (m < 10 GeV) DM:

— recoil energy of the Ge (A=72) nucleus is too small.

e DAMA contains Na (A=23) — larger recoil from light DM.

e Light DM gives a poor fit to the DAMA energy spectra.
[Chang,Pierce,Weiner '08; Fairbairn,Zupan '08]
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DM Scattering off Electrons

e DM scattering off detector electrons? [ Bernabei et al. '07]
This would generate a signal at DAMA.

Other DM detectors filter out electromagnetic events.
e ['pn ~ eV for Halo DM scattering off an electron at rest.

e ['p ~ keV possible if the electron is boosted: pe ~ MeV.

At large pe, P(pe) o pe—8 in atoms.

e Scattering signal falls off quickly with Ep, like light DM.
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e For fermion DM with (V + A) couplings to quarks:

e Using 12 lowest (2-12 keVee) modulated bins,
6 lowest (0.875-2.125 keVee) unmodulated bins,

the fit is very poor. (> 99% exclusion using x2)

e Similar conclusion for other Dirac structures, scalar DM.



Inelastic Dark Matter (IDM)

e Assumption: DM scatters coherently off nuclei preferentially

iINnto a slightly heavier state. [Tucker-Smith+Weiner '01]

DM1 DM?2

- =

q q
Mppy2 —Mppyp =0 >0

e Modified scattering kinematics enhances the modulated

signhal at DAMA and fixes the spectrum.



e TO produce a nuclear recoil with energy Ep,
the minimum DM velocity is

e 1 (mN ER | 5)
- | ,
T V2myER \ pn

e Signal Rate:

dR d
—— X d3v (T, Te) v .
dER Umin dER

e DM velocities are ~ Maxwellian with a cutoff vese,

with a net boost from the motion of the Earth:

f(U,U.) =0  unless T+ Ue| < vese-

e IDM: v,,,;, is less for I (A ~ 127) than for Ge (A ~ 72).
= enhancement at DAMA relative to CDMS.



e IDM kinematics enhances the annual modulation.

e [ he signal is cut off at low Ep.
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e \Which IDM parameters fit the data?

e \Where could IDM come from? LHC implications?



IDM vs. Data



IDM Fits to Data

e DAMA (1)
— |lowest twelve 2-8 keV bins only
— 2 goodness of fit estimator

e CDMS II (Ge)
— combine 3 runs
— treat events (2) in 10-100 keV as signal

e CRESST-II (W)
— use latest commisioning run only
— treat events (7) in 12-100 keV as signal

e ZEPLIN-III (Xe)
— treat events (7) in 2-16 keVee as signal

e XENON, KIMS, etc. are less constraining.



e Mpy = 100 GeV, 1000 GeV, 99 % c.l. exclusion curves.
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e Heavier IDM might work but is more constrained.
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® vesc = 500 km/s, 600 km/s, 99 % c.l. exclusion curves.
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e Strong dependence on the DM velocity distribution.

[March-Russell,McCabe,McCullough '08]



General IDM Properties



General IDM Properties

e Inelastic nuclear recoils can arise naturally if:
— nuclear scattering is mediated by a massive gauge boson
— DM is a nearly Dirac fermion or complex scalar

— a small mass splits the two components of the DM

e.g.

1 |
_Lma,ss — M?vbw —I— Em wcw, with M >m
1 _ 1 _
= §(M —m)WWp + §(M + m)WoWw,
—Lint = —gZ,, 0" =ig Z), Vot

e [ he complex scalar story is similar.



Nucleon Scattering from Gauge Bosons

e Elastic DM scattering mediated by the SM ZO© is ruled out.

— effective nucleon cross-sections ag,p are too big:

G2
o =L 2~ 744 x 1073 ecm? (vector doublet)

e IDM can only scatter in a limited region of phase space.

— need a large nucleon cross-section ag,p.

e T hree "Abelian’ possibilities:
1. SM ZO
2. Heavy visible U(1)y
3. Light hidden U(1),



1. IDM Scattering through the SM ZO©
e Dirac Doublet: Mpy; ~ 1080 GeV = Qpsh2 ~0.1.

e Scalar Doublet: Mpys ~ 525 GeV = Qpas h2 ~ 0.1.
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e DAMA-allowed region is close to ¢Q for a doublet.



2. IDM Scattering through a Visible U(1),

e Visible Z’s constrained by Tevatron, Precision Electroweak.

— heavier My is preferred
4
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3. IDM Scattering through a Light Hidden U(1)4

e Can arise if SM couplings come only from Kinetic mixing,
1 1%
LD ——eBuwXH.
2
from integrating out heavy states. [Holdom '86]

o U(1), effectively mixes with U(1)en, for My < M o.

SM states acquire Z’ couplings of —ecyy Qe.

2 (Gev\? 2
O'g — (gx 513DM> ( ‘ > (2.1 x 1073%em?)
0.5 MZ’ 10_3

e A multi-GeV mass Z’ is allowed for [Pospelov '08]



Some IDM Models



Candidates for IDM

e Need a large “Dirac’” mass M ~ 100 GeV,

and a small “Majorana” mass m ~ 100 keV.

e Technically Natural: m breaks a global U(1)pps symmetry.

e Can arise from sneutrinos with small L violation.

[Tucker-Smith4+Weiner '01]

e Some Other Candidates:
1. Warped fermion seesaw IDM
2. Warped scalar IDM
3. Supersymmetric Doublet IDM

4. Hidden Sector U(l)x IDM [Arkani-Hamed+Weiner '08, Yavin et al. '09]



1. Warped Fermion Seesaw

& D
—2klyl

uvil ¢ IR

e Dirac Doublet D = (D, Dp) on the IR brane.
Dirac Singlet S = (S, Sp) in the bulk.

Both are odd under a Zo.

e Couplings:

Bulk: ckSS
IR Brane: AN(DpS;h+ h.c)+ MDD
d _
UV Brane: %(S,%SL + h.c.)

e U(1)pys is broken only on the UV brane.



e Choose B.C.s such that S; has a zero mode for di, = O.

e Zero mode gets mass from the UV brane mass.
KK modes get mass primarily from the Dirac bulk mass.

= integrate out Sg to get the inelastic splitting:
22

e~ (=12 pp DS D p + h.c.
2dyy

_LD_

e With natural values A2 = 1/Mp;, ¢ = 0.13, dyy = 2,
we find 6 ~ 100 keV, mostly doublet DM.

e [ his model is similar to warped neutrino mass models.

[Huber+Shafi '03, Perez+Randall '08]



2. Warped Scalar IDM

e Scalar Doublet D = (Dp +iD;)/+/2 on the IR brane.
Scalar Singlet S = (Sp +iS7)/+/2 in the bulk.

Both are odd under a Z» discrete symmetry.

e Couplings:

Bulk: ak|S|?
IR Brane: (A e>™BDS*h + h.c.) + M?|D|?
UV Brane: mUV(SQ—I—hc)

e U(1)pys is broken only on the UV brane.



e NO scalar zero mode in general.

e UV brane mass modifies the B.C.s:

8y5§g$mUVS? = O|y=0

= splits the masses and profiles of Sp, ST.

e Integrating out S KK modes yields a mass splitting for D.
From the n-th KK mode:

2
v 1 _ A
Amp ~ (k > e~ 2ThR(2+v4+a) fr,%(wR).

e Inelastic splitting requires kR ~ 2.

= Little RS [Davoudiasl,Perez,Soni '08; McDonald '08]



3. Supersymmetric Fermion Doublet IDM
e Idea: gauge U(1)pp — U(1),.

e Chiral Doublets D, D¢
Chiral SM Singlets S, N

§

W D ANHu-Hd—I—A’SHd-D—I—ENSQ—I—CNDDC.

Only these couplings are allowed by U(1), charges.

e N — (N)~ TeV induced by SUSY breaking.
Integrate out S: 5
Werr D — D-H,)?
eff 2 <N>< d)

e Fermion splitting for M ~ 0.1, tan 3 ~ 30, £ (N) ~ TeV.

e Scalar mass splitting is a bit too big.



4. Hidden U(1); SUSY IDM
e Models #1.—3. carry over to heavy visible U(1), models.

e SUSY is a natural setting for a light hidden U(1);.
Gauge mediation in the visible sector breaks SUSY

in the hidden sector through kinetic mixing, [zurek '08]

mhid ~ €T Ec,

2
My < € Mj.

Y

e U(1l), breaking can be induced by soft masses,

D-terms (~ y/ewv) naturally on the order of a GeV.

e D-terms can also contribute to hidden SUSY breaking.

[Baumgart et al. '09, talks by L.-T. Wang, 1. Yavin]



e Minimal hidden U(1), IDM Model:
1
WD,u’HHC—I—MaaaC—I—EMSSQ—I—AlSaCH—I—AQSaHC,

e IDM from a, af if My ~ M, ~ TeV, <H(C>> ~ 1l ~ GeV.

e a, a“, S must be stabilized by a new symmetry.

Residual unbroken Z» subgroup of U(1)4? [ Hur,Lee,Nasri '07]

o Multi-p Mystery: 1/ < Mg, M,?

— 1/ ~ GeV from an NMSSM-mechanism in hidden sector.
[Zurek '08, Chun4Park '08]

— Mgy~ Ms ~ TeV from an NMSSM in the visible sector.
— additional contributions to hidden SUSY breaking

— Gaugino mediation with residual anomaly mediation

in the hidden sector. [Katz4+Sundrum '09]



Summary
e Recent results could be non-gravitational DM signals!

e Inelastic DM can be consistent with the DAMA signal

and other direct detection experiments.

e Heavier DM masses can also work, but are more constrained.

e IDM scattering can be mediated by the A
a heavy visible Z’/, or a light hidden Z’.

e Reasonable models for IDM can arise in RS, SUSY.



Extra Slides



Indirect Detection Signals



DM in our Galaxy

e Flat galactic disc surrounded by a sherical DM halo:

DM Halo

Galactic Disc

20 kpc

e DM density is largest at the galactic center.

e DM in the halo can annihilate producing particle fluxes.

— e, eT, p, D, 9



Other Signals

e WMAP Haze: excess soft photons from

around the galactic center. [Finkbeiner '04]

Injected hard electrons will circulate in the galactic

magnetic field and emit synchrotron radiation.

o INTEGRAL 511 keV line

Soft eT injected near the galactic center will annihilate.

[Hooper et al. '04]
e HESS sees hard ~ rays from the galactic center.

e GLAST /Fermi telescope will test these further.



DM Annihilation to Leptons

e Most DM candidates decay too democratically.

e.g. xx — WtTw-— — qq, vy gives too many antiprotons.

e DM could be a heavy “lepton’.

[Kribs+Harnik '08; Ponton+Randall '08; Zurek '08; Phalen,Pierce,Weiner '09;. . .]

e DM decays to leptons can be enforced by kinematics:

[Arkani-Hamed,Finkbeiner,Slatyer,Weiner '08]

DM \(p< z

DM /(p< ©

mg < 280 MeV allows only decays to eTe™, ptpu~, v's, v's.



Enhanced DM Annihilation Today

e Need (o v)!°9% > 102(g v)/7¢¢#¢=0Ul for thermal relic DM.

e DM could be produced non-thermally.

e DM properties can change after freeze-out. [Cohen,DM,Pierce '08]

e.qg. “"Modulus’ field phase transition after freeze-out

L D (m%)]@ +(P)VpuVWpr

P — (P)~100GeV at T < Ty, ~mi%, /20

= modified DM properties today relative to freeze-out

The excitation around (P) must be very light: mp < GeV.



e DM annihilation can get a Sommerfeld enhancement today.
[Hisano et al. '04; Arkani-Hamed,Finkbeiner,Slatyer,Weiner '08; Pospelov+Ritz '08]

e.g. Scalar ¢ Exchange

DM R
m
DM e
today -3 freeze—out
am am
(gv)today ~ gy f-o- TTEPM g, o ¢,
m¢ mpm

= my S 1 GeV for sufficient enhancement



Alternatives to Dark Matter Annihilation

e New cosmic ray signhals could come from pulsars.

[Hooper et al. '08; Yuksel et al. '08; Profumo '08]
— Large astrophysics uncertainties.

— Not expected but could be possible?

e Decaying dark matter.
[Hamaguchi4Yanagida '08, Dimopoulos et al. '08]
— Annihilating DM can produce too many -~ rays.
— ~ flux from annihilations (~ n%M) is enhanced in the GC.

— ~ flux from decays (~ npj)s) is less enhanced.



