ISR Tagging

David Krohn (Harvard)

Cornell, 12/1/10

Based on work in progress with L. Randall and L.-T. Wang, as well as work with J. Thaler and L.-T. Wang

CERTING CONTRACT

Some Upcoming Jet Conferences

* Boston Jet Physics Workshop [1/12-1/14]

Goal: Bring together formal QCD theorists, BSM phenomenologists, and experimentalists.

http://jets.physics.harvard.edu

* Boost 2011, Princeton [5/23-5/27]

Goal: Study jets from boosted heavy objects, as well as exotic jets (lepton jets, etc.).

http://boost2011.org

Outline

- Introduction to final/initial state radiation (FSR/ISR) and the parton shower
- * Warmup Jet Trimming
- * What we can learn by tagging ISR jets
- Tagging example: SUSY disquarks
- Conclusion

- * Initial state radiation (ISR) is normally a nuisance.
 - * It can contaminate jets, and makes combinatorics hard.
- However,
 - 1. New techniques (e.g. *Jet Trimming*) have been developed to reduce the effects of contamination (from ISR, as well as other sources).
 - 2. Remarkably, by measuring the properties of ISR (i.e. through *ISR Tagging*) we can learn new things about an event.
 - Some of these measurements require calculations from QCD, others are more simple kinematic variables - in any case, there's a lot one can do.

Introduction & Motivations

Motivations

- The LHC will, hopefully, allow us to produce and study new physics particles.
- Usual collider study workflow:
 - 1. Calculate spectrum / couplings for model
 - 2. Calculate leading order processes for production/decay

 - 3. Find useful observables4. Determine backgrounds
- An iterative process

Initial & Final State Radiation (ISR/FSR)

- However, what we observe in the detector is more complicated than the leading tree level diagrams
- Final state particles will emit soft/collinear radiation (FSR)
 - * These are resolved in jets a spray of radiation in one direction
- Similarly, partons in the proton will emit soft/collinear radiation (ISR) before they scatter via the new physics states
 - * We see these emissions as additional states in the detector.
 - Some emissions will contaminate jets, others will be assigned their own jets

- Basically, this happens because the amplitude for a colored particle to emit a soft/and or collinear gluon diverges in the soft/collinear limit.
- So, if we have a Z' decaying to quarks, each quark will split into a quark with many gluons.

* Similarly, we can think of a proton as starting from two up quarks and a down, which then split and recombine into gluons, which then split again, into other quarks, etc.

Parton Distribution Functions

This splitting gives us PDFs - it's why, for instance, we can think of the proton as being composed of charm/strange, etc. PDF - http://hepdata.cedar.ac.uk/pdf/pdf3.html To see this in more detail, start with some amplitude, and its associated matrix element & cross section:

 When you take a final state and add on a soft and/or collinear particle the new amplitude factorizes into the lower-order amplitude times a new, potentially large, factor:

$$\mathcal{M}_n|^2 \to \frac{4g^2}{t}\hat{P}(z)|\mathcal{M}_n|^2 \qquad d\sigma_{n+1} = \frac{\alpha}{2\pi}d\sigma_n\frac{dt}{t}dz\hat{P}(z)$$

 We make this approximation because while it's no longer exact at a given order, it allows us to handle emissions at very high orders.

See R. K. Ellis, W. J. Stirling, and B. R. Webber, QCD and Collider Physics.

The Splitting Functions

$$a \to b + c, \ z = \frac{E_b}{E_a} \qquad d\sigma_{n+1} = \frac{\alpha}{2\pi} d\sigma_n \frac{dt}{t} dz \hat{P}(z)$$

$$\hat{P}_{q \to qg}(z) = C_F \frac{1+z^2}{1-z}$$

$$\hat{P}_{g \to gg}(z) = C_A \left[\frac{1-z}{z} + \frac{z}{1-z} + z(1-z) \right]$$

Divergences

- The probability of emitting a soft/collinear emission diverges in the soft/collinear limit (consider z->0).
 - * We know that the divergence gets cancelled by loops, but there's still an large finite enhancement for soft/collinear emissions.
 - This means we expect to see lots of soft emissions as we let ourselves resolve softer/more collinear objects
- This is handled via the parton shower formalism:

$$\mathcal{P}(t_1, t_2) = \exp\left(-\int_{t_1}^{t_2} \frac{dt}{t} \int dz \frac{\alpha_S}{2\pi} \hat{P}(z)\right)$$

Write evolution equation. Find probability of "no emission" between two scales

Here's what the results look like (jets):

Aside: Substructure

 Looking for the presence/absence of these divergences can help us distinguish normal "QCD Jets" from the jets of from the collimated decay of heavy particles (e.g. Higgses)

ISR Introduces New Difficulties

- ISR, comes from the showering of the incoming particles. At least for hadron colliders, is normally a nuisance.
- There are more jets in the final state identifying FSR jets to construct kinematic variables becomes more challenging.
 - Combinatorics becomes difficult.
 - Event becomes "messy" ISR will pollute the jets coming from new physics.
 - Events are no longer balanced hard to use MT2

Pair production of gluinos, with each going to four jets and an LSP

Source: 1006.0653

Here we can plainly see the effects of contamination and the combinatoric difficulties arising from ISR. The particular observable here doesn't matter.

$$\sqrt{s_{min}}(M) \equiv \sqrt{E^2 - P_z^2} + \sqrt{M^2 + P_T^2}$$

Source: 1006.0653

However, ISR is Not Always Bad

- * ISR jets can be used to trigger on difficult BSM processes
 - Monojet searches (e.g. looking for DM)
 - * Squeezed spectra [0803.0019,0809.3264]

- * Can increase missing energy, add another jet
- More intriguingly, its characteristics give us information about the "hard process" we're interested in
 - Some recent studies have studied ISRs effect on inclusive variables [0903.2013, 1004.4762]

- End of introduction / motivations.
- * Two main ideas ahead:
 - 1. ISR contamination can be removed from jets
 - 2. We can, on a jet by jet basis, identify ISR with a high degree of certainty.
 - This allows us to do even more than the inclusive observables mentioned before.

Jet Trimming

Source: DK, J. Thaler, and L. Wang, JHEP 1002 (2010) 084 [arXiv:0912.1342]

What is a Jet?

- * A jet is a kinematical object we construct from collider data.
 - Specifically, jets are collections of hadronic four-vectors used to approximate the kinematics of the hard scattering in a collider event (i.e. jets should, ideally, correspond to FSR emissions).
- They help us map things we cannot easily calculate (the exact energy distribution in the calorimeter) to things we can (perturbative Feynman amplitudes)

Event picture from http://atlas.ch/photos/events.html

- * The LHC is a messy place.
- Contaminating radiation can always come from ISR and multiple interactions.
- Also, pileup can contaminate events

Quantifying Contamination

- * How much contamination is there?
- Contamination density in GeV/area:

$$\rho \sim \left(1 + \frac{N_{\rm PU}}{4}\right) \times (2 \leftrightarrow 3 \text{ GeV})$$

 The number of pileup events per crossing (NPU) depends on the LHC running parameters. Roughly though, at 14 TeV we should start at ~20 and go to ~40.

Unfortunate Tradeoff

- * When we cluster jets there's inevitably a tradeoff:
 - * Larger cones are less likely to miss radiation
 - * But, they're also more susceptible to contamination

Contamination in Resonance Reconstruction

Contamination On

Contamination Off

- * In *Jet Trimming* we investigated ways to systematically remove jet contamination and improve reconstruction.
- * There's a lot of room for reconstruction improvement.
- Irreducible contamination (we can't distinguish radiation in the same cell) is not a problem

	Improvement	R_0	$\Gamma [\text{GeV}]$	$M \; [\text{GeV}]$		
	$gg \rightarrow \phi \rightarrow gg$					
All cells	-	1.2	69	518		
FSR cells	309%	1.5	15	501		
	$q\bar{q} \to \phi \to q\bar{q}$					
All cells	-	0.8	31	505		
FSR cells	189%	1.5	11	501		

 If we knew what cells contained significant FSR, then we'd be able to remove everything else and nearly reproduce the distribution without contamination:

Trimming in Practice

- Contamination is usually quite soft (total ~5% of p_T).
- Use this to our advantage by only keeping the hard parts of a jet.

Implementation

1. Cluster all calorimeter data using any algorithm

2. Take the constituents of each jet and recluster them using another, possibly different, algorithm (we advocate k_T) with smaller radius R_{sub} ($R_{sub} = 0.2$ seems to work well).

3. Discard the subjet *i* if

 $p_{Ti} < f_{\rm cut} \cdot \Lambda_{\rm hard}$

4. Reassemble the remaining subjets into the trimmed jet

Cluster into subjets

Results

* Find a significant improvement from using trimming to reconstruct a resonance decaying to dijets $(gg \rightarrow \phi \rightarrow gg)$

	Improvement	$f_{\rm cut}, N_{\rm cut}$	$R_{\rm sub}$	R_0, ho	$\Gamma [\text{GeV}]$	$M \; [\text{GeV}]$
anti- k_T	-	-	-	1.0^{*}	71	522
anti- k_T (N)	40%	5^{*}	0.2^{*}	1.5^{*}	62	499
anti- k_T (f, p_T)	59%	$3 \times 10^{-2*}$	0.2	1.5	52	475
anti- k_T (f, H)	61%	$1 \times 10^{-2*}$	0.2	1.5	50	478
VR	30%	-	-	$200^* { m GeV}$	62	511
$\operatorname{VR}(N)$	53%	5	0.2	$275^* { m GeV}$	53	498
VR (f, p_T)	68%	3×10^{-2}	0.2	$300^*~{\rm GeV}$	49	475
$\mathrm{VR}\;(f,H)$	73%	1×10^{-2}	0.2	$300^*~{\rm GeV}$	47	478
Filtering	27%	2	$R_{0}/2$	1.3^{*}	61	515

All histograms (those with and without trimming) are made using optimized parameters.

Jet Topiary

- Trimming was designed to clean up boosted "QCD Jets". There are other approaches focused on cleaning up jets from boosted heavy objects
 - 1. Jet Pruning (Ellis, Vermilion, Walsh): 0903.5081, 0912.0033

2. Filtering (Butterworth, Davison, Rubin, Salam): 0802.2470

- We just saw how we can, to some extent, deal with ISR contaminating other jets.
- * What about when an ISR emission forms a jet unto itself?

What can we hope to learn by tagging ISR?

Radiative measure of scale

- The spectrum of ISR emissions is governed by the scale of the event (usually the mass of the new physics states).
- By looking at the ISR spectrum over many events, we can recover information about this original scale

$$\mathcal{P}(t_1, t_2, x) = \exp\left(-\int_{t_1}^{t_2} \frac{dt}{t} \int \frac{dz}{z} \frac{\alpha_S}{2\pi} \hat{P}(z) \frac{f(x/z, t)}{f(x, t)}\right) \frac{\text{ISR}}{\text{Sudakov}}$$

Initial State Partons

- The ISR spectrum also depends on the identity of the initial state because
 - 1. The splitting functions are different

$$\hat{P}_{q \to qg}(z) = C_F \frac{1+z^2}{1-z}$$
$$\hat{P}_{g \to gg}(z) = C_A \left[\frac{1-z}{z} + \frac{z}{1-z} + z(1-z) \right]$$

2. The PDFs are different

Kinematic Measure of Scale

- To preserve momentum, new physics objects must recoil against ISR.
- This is especially useful in studying processes with invisible particles.
 - * We get to see how the system reacts against a "push" of known pT
 - Another measure of scale perhaps less sensitive to QCD corrections.

Background reduction

- ISR is well defined for new physics processes through narrow width resonances
- However, in a SM process like Z+jets, it's no longer well defined (why is one jet in Z+jets more "ISR"-like than another? - it's not).
- A lot of the qualities we look for to tag ISR jets aren't present in SM events.

ISR tagging can serve as a nice cut.

Example: Disquark production

Tagging Procedure

* Tag

- Take three hardest jets. Look for those
- 1. Distinguished in pT

OR

2. Distinguished in rapidity

OR

3. Distinguished in m/pT

Check

- Require the candidate ISR jet
 - 1. Not be central

AND

- 2. Remain somewhat isolated in rapidity
- And, require that the implicit FSR jets be

1. Close in pT

Efficiencies

The efficiencies are remarkably stable across a wide range of spectra

Squark mass [GeV]	LSP Mass [GeV]	Tagging Efficiency [%]	Fake Rate [%]	
1000	900	46	12	
1000	500	42	14	
1000	100	40	11	

- So we can identify the ISR jet in an event with ~90% certainty
 - This is surprising, because it works even when there is missing energy and no real energy scale difference between ISR and FSR.
- Let's now see what we can use it for. Can we measure the squark mass by looking at the system's recoil?

In our system there is missing energy - the above picture is only true on average

Boosting Procedure

- Let's see how we can use the recoil of the system to probe the new physics scale.
 - 1. Boost both FSR jets along the z-direction so they're z-momenta are balanced
 - 2. Boost along transverse direction to compensate for ISR. This requires an assumption of the system's mass.
 - 3. Measure the projection of the FSR along the ISR's direction. If the boost has been performed "correctly" there should be no net projection.

Over boost

Correct boost

distribution ~ $2m_{squark}$

center-of-mass energy

Future Directions

- Using jet substructure / superstructure
 - Distinguish, at least statistically, quark from gluon jets
 - Measure jet production "scale" should see similarity between two jets
 - Look for color connections [1001.5027]

Future Directions (contd.)

- Other ISR observables:
 - ISR rapidity as a probe of valence/sea parton couplings
- Develop taggers for other scenarios of new physics.
 - Add flavor information: tops, b-jets
- * How well can we improve, say, MT2, by reducing combinatorics?

Conclusions

- * In looking for new physics at the LHC, we'll have to contend with initial state radiation (ISR).
- * We're used to thinking of ISR as an annoying fact of life, but recent advancements (e.g. Jet Trimming) have helped to mitigate its effects.
- * Perhaps more interestingly, ISR can even be helpful
 - By tagging jets as being from ISR we can learn new things about an event.

jets.physics.harvard.edu
 boost2011.org