The f_{DS} Puzzle

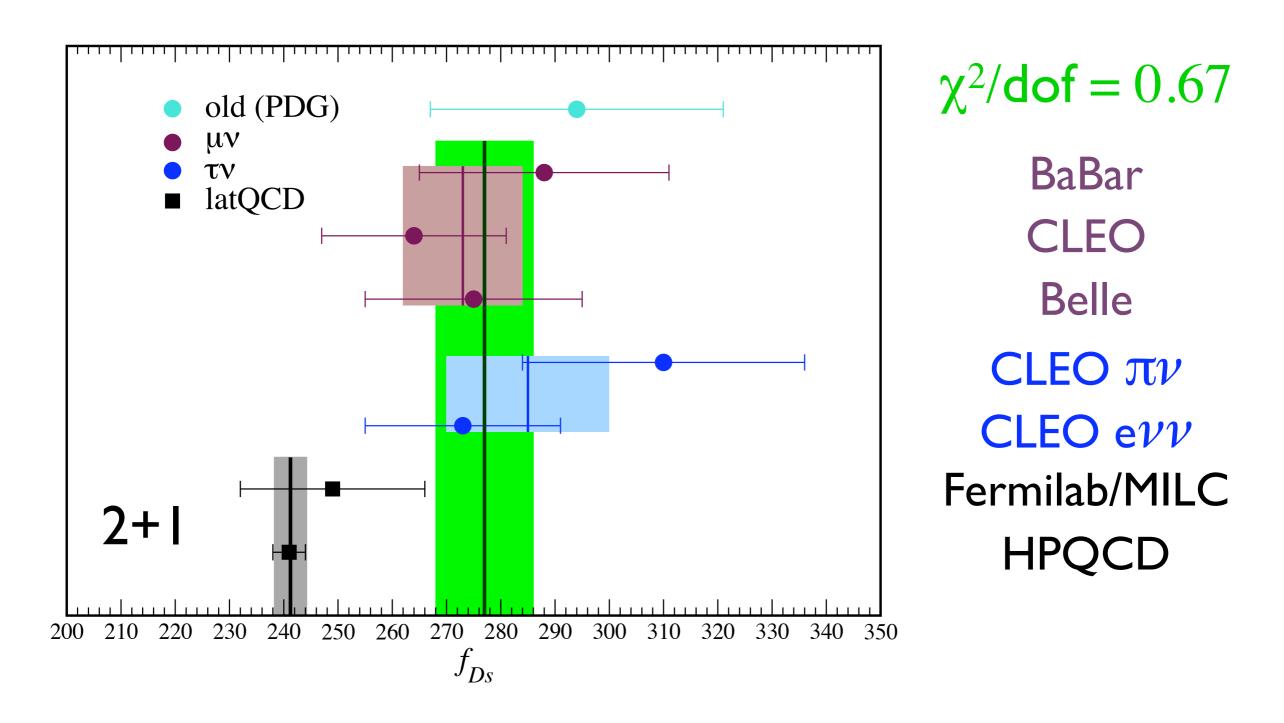
Andreas S. Kronfeld

based on Accumulating Evidence for Nonstandard Leptonic Decays of D_s Mesons arXiv: 0803.0512 [hep-ph] with Bogdan Dobrescu and talk presented at Lattice 2008, proceedings to appear

$D_s \rightarrow l\nu$

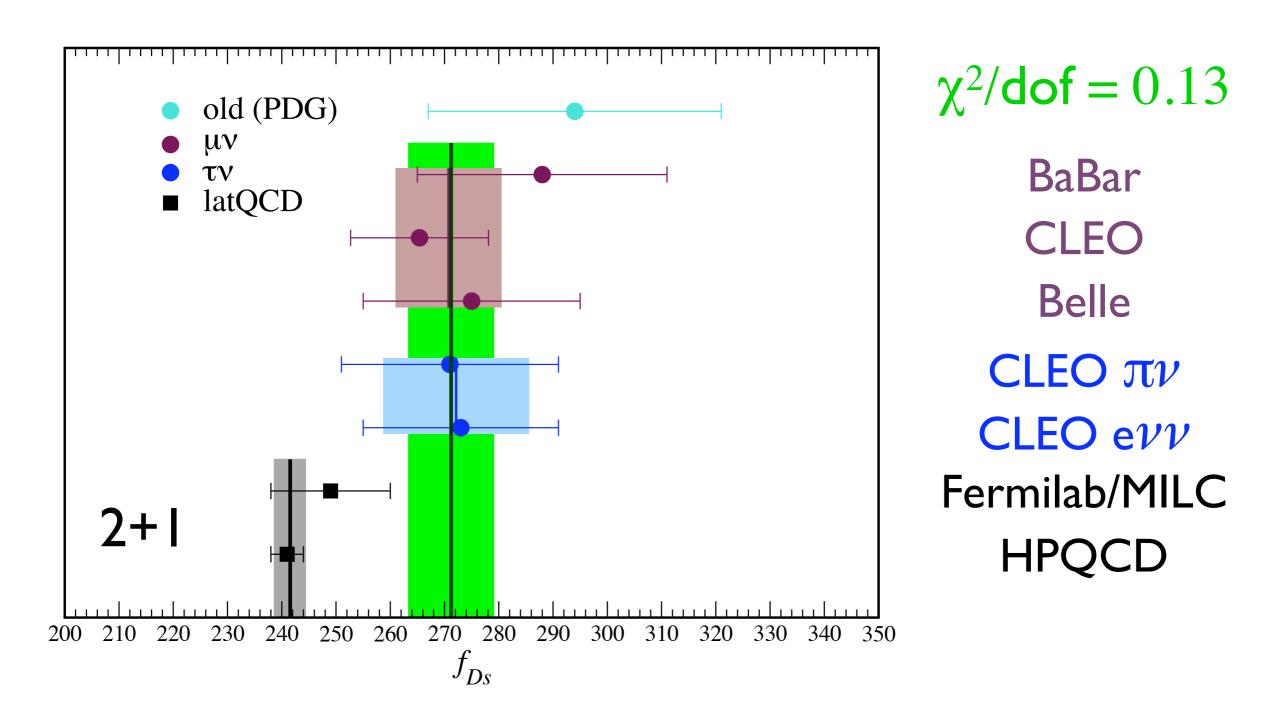
- The leptonic decay $D_s \rightarrow l\nu$ has been advertised as a good test of lattice QCD.
- Counting experiment at CLEO, B factories.
- A simple matrix element $\langle 0|\bar{s}\gamma_{\mu}\gamma_{5}c|D_{s}\rangle$
- No light valence quarks.
- New physics thought to be very unlikely.

And then something funny happened ...



a 3.8 σ discrepancy, or $2.7\sigma \oplus 2.9\sigma$.

With CLEO's (our) update from FPCP (Lat08)...



a 3.5 σ discrepancy, or 2.9 $\sigma \oplus$ 2.2 σ .

A Puzzle

- Excluding BaBar [Rosner, Stone], it is (now) 3.2σ ; with the old experiments, it is 3.8σ .
- What is the origin of the discrepancy?
 - experiments or radiative corrections
 - lattice QCD
 - non-Standard phenomena

The Decay

The branching fraction is

$$B(D_s \to \ell
u) = rac{m_{D_s} au_{D_s}}{8\pi} f_{D_s}^2 |G_F V_{cs}^* m_\ell|^2 \left(1 - rac{m_\ell^2}{m_{D_s}^2}\right)^2$$

where the decay constant f_{Ds} is defined by

$$\langle 0|\bar{s}\gamma_{\mu}\gamma_{5}c|D_{s}(p)\rangle=if_{D_{s}}p_{\mu}$$

• Usually experiments quote f_{Ds} .

• The $\mu\nu$ final state is helicity suppressed,

$$\frac{m_{\mu}^2}{m_{D_s}^2} = 2.8 \times 10^{-3}$$

• The $\tau \nu$ final state is phase-space suppressed

$$\left(1 - \frac{m_{\tau}^2}{m_{D_s}^2}\right)^2 = 3.4 \times 10^{-2}$$

CLEO $(\mu\nu)$

- CLEO produces $D_s D_s^{(*)}$ pairs just above threshold, where the multiplicity is low.
- Neutrino is "detected" by requiring missing mass-squared to be consistent with 0.
- Events with $E_{\gamma} > 300 \text{ MeV}$ are rejected, to suppress non-helicity suppressed radiation.

CLEO $(\tau \nu)$

- Same production mechanism as above.
- Two daughter τ decay modes: $\tau \rightarrow e\nu\nu$, and $\tau \rightarrow \pi\nu$.
- Also veto radiative events, but here it is more a matter of τ detection/identification.
- No constraint on missing mass-squared.

BaBar $(\mu\nu)$

- BaBar observes $D_s^* \to D_s \gamma$ and counts the relative number of $D_s \gamma \to \mu \nu \gamma$, $D_s \gamma \to \phi \pi \gamma$.
- Then uses its own measurement of $B(D_S \to \phi \pi)$ to get $B(D_S \to \mu \nu)$.
- Subtlety: really a window of KK around ϕ in three-body $D_s \to KK\pi$, and $f_0 \to KK$ interferes [CLEO, 0801.0680 [hep-ex]].

Belle $(\mu\nu)$

- Belle also observes $D_s^* \to D_s \gamma$.
- Uses a Monte Carlo simulation to guide full reconstruction and obtain an absolute normalization.
- Thus, they obtain $B(D_s \to \mu \nu)$ directly.

CKM

- Experiments take $|V_{cs}|$ from 3-generation unitarity, either with PDG's global CKM fit or setting $|V_{cs}| = |V_{ud}|$. No difference.
- Even *n*-generation CKM requires $|V_{cs}| < 1$, and would need $|V_{cs}| > 1.1$ to explain effect.

Summary

- The modern measurements of BR($D_s \rightarrow l\nu$) [BaBar, CLEO, Belle] do not rely on models for interpretation of the central value or error bar.
- Hard to see a misunderstood systematic.
- Could all fluctuate high?
- Use SM to get from BR to f_{Ds} .

Radiative Corrections

- Fermi constant from muon decay, so these radiative corrections implicit in $\mu\nu$ and $\tau\nu$.
- Standard treatment [Marciano & Sirlin] has a cutoff, set (for f_{π}) to m_{ρ} . Only 1–2%.
- More interesting is $D_s \to D_s^* \gamma \to \mu \nu \gamma$, which is *not* helicity suppressed. Applying CLEO's cut: 1% for $\mu \nu$ [Burdman, Goldman, Wyler].
- Only 9.3 MeV kinetic energy in $D_s \rightarrow \tau \nu$.

2+1 Sea Quarks

• There are two calculations of f_{D_s} with 2+1 flavors of sea quarks:

$$f_{D_s} = 249 \pm 3 \pm 16 \text{ MeV}, \text{ hep-lat/0506030}$$

 $f_{D_s} = 241 \pm - \pm 03 \text{ MeV}, \text{ 0706.1726 [hep-lat]}$

Compared with experimental averages:

$$f_{D_s} = 277 \pm 09 \; \mathrm{MeV} \rightarrow 271.2 \pm 7.9 \; \mathrm{MeV}, \quad \ell \nu$$

 $f_{D_s} = 273 \pm 11 \; \mathrm{MeV} \rightarrow 270.7 \pm 9.7 \; \mathrm{MeV}, \quad \mu \nu$
 $f_{D_s} = 285 \pm 15 \; \mathrm{MeV} \rightarrow 272 \; \pm 13 \; \mathrm{MeV}, \quad \tau \nu$

2+1 Sea Quarks

• There are two calculations of f_{D_s} with 2+1 flavors of sea quarks:

$$f_{D_s} = 249 \pm 3 \pm 16 \text{ MeV}, \rightarrow 249.0 \pm 2.5 \pm 10.7 \text{ MeV}$$

 $f_{D_s} = 241 \pm -\pm 03 \text{ MeV}, \quad 0706.1726 \text{ [hep-lat]}$

Compared with experimental averages:

$$f_{D_s} = 277 \pm 09 \text{ MeV} \rightarrow 271.2 \pm 7.9 \text{ MeV}, \quad \ell v$$

 $f_{D_s} = 273 \pm 11 \text{ MeV} \rightarrow 270.7 \pm 9.7 \text{ MeV}, \quad \mu v$
 $f_{D_s} = 285 \pm 15 \text{ MeV} \rightarrow 272 \pm 13 \text{ MeV}, \quad \tau v$

Elements of HPQCD

- Staggered valence quarks
 - HISQ (highly improved staggered quark) action;
 - discretization errors $O(\alpha_s a^2)$, $O(a^4)$;
 - absolutely normalization from PCAC;
 - less "taste breaking" (see below);
 - tiny statistical errors: 0.5% on f_{Ds} .

- 2+1 rooted staggered sea quarks:
 - Lüscher-Weisz gluon + asqtad action;
 - discretization errors $O(\alpha_s a^2)$, $O(a^4)$;
 - discretization errors cause small violations of unitarity, controllable by chiral perturbation theory.

• Combined fit to a^2 , m_{sea} , m_{val} dependence: not fully documented, but irrelevant for f_{Ds} .

Many people do not like this:

- 2+1 rooted staggered sea quarks:
 - Lüscher-Weisz gluon + asqtad action;
 - discretization errors $O(\alpha_s a^2)$, $O(a^4)$;
 - discretization errors cause small violations of unitarity, controllable by chiral perturbation theory.

hep-lat/0509026, hep-lat/0610094, 0711.0699 [hep-lat]

• Combined fit to a^2 , $m_{\rm sea}$, $m_{\rm val}$ dependence: not fully documented, but irrelevant for f_{Ds} .

Staggered Fermions

[Susskind; Karsten & Smit; Sharatchandra, Thun & Weisz]

- One Grassmann variable per site.
- Fermion doubling implies there are 16 degrees of freedom.
- Extensive theoretical and numerical evidence that these become 4 Dirac fermions in the continuum limit:
 - beta function, anomalies, ... in PT;
 - eigenvalues, index theorem, ... in MC.

Tastes

The staggered Dirac operator can be written

$$(\cancel{D}+m)_{\text{stag}} = \begin{pmatrix} \cancel{D}+m \\ \cancel{D}+m \\ \cancel{D}+m \end{pmatrix}$$

• Does the taste-breaking defect $a\Delta$ vanish in continuum limit?

Tastes

The staggered Dirac operator can be written

$$(\cancel{D}+m)_{\text{stag}} = \begin{pmatrix} \cancel{D}+m & a\Delta \\ \cancel{D}+m & \\ a\Delta & \cancel{D}+m \end{pmatrix}$$

• Does the taste-breaking defect $a\Delta$ vanish in continuum limit?

Tastes

The staggered Dirac operator can be written

$$(\cancel{D}+m)_{\text{stag}} = \begin{pmatrix} \cancel{D}+m & a\Delta \\ \cancel{D}+m & \\ a\Delta & \cancel{D}+m \end{pmatrix}$$

• Does the taste-breaking defect $a\Delta$ vanish in continuum limit?

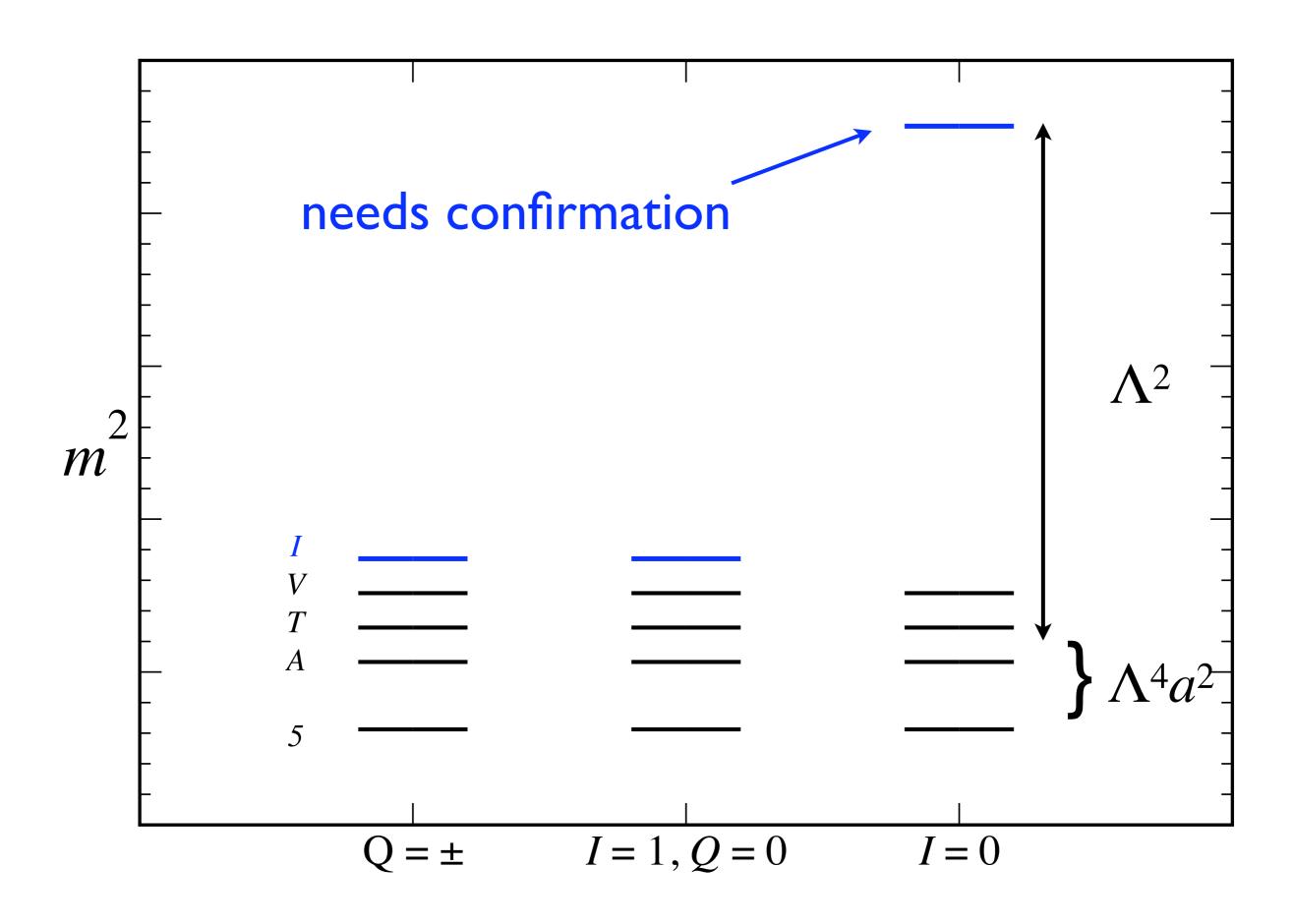
- Does taste defect Δ have an anomalously large anomalous dimension?
- Most important consequence:

$$m_{\pi,\xi}^2 = (m_u + m_d)B + a^2 \Delta_{\xi},$$

 $m_{K,\xi}^2 = (m_d + m_s)B + a^2 \Delta_{\xi},$

where ξ labels irrep of Γ_4 taste symmetry group (P, A, T, V, I); $\Delta_P = 0$.

• For n_f flavors, $(4n_f)^2 - 1$ Goldstones.



Rooting

 For sea quarks, reduce the number of tastes, by assuming

$$\left[\det_{\mathbf{4}}(\mathbf{p}_{\text{stag}} + m)\right]^{1/4} \doteq \det_{\mathbf{1}}(\mathbf{p}_{\text{cont}} + m)$$

[Hamber, Marinari, Parisi, Rebbi].

 Uncontroversial for 20 years, until we saw that it reproduces experiment.

Gedanken Algorithm

 Suppose someone with a good imagination found a way to speed up "your favorite" fermions by substituting

$$\det_{\mathbf{1}}(\mathbf{D}+m) = \{\det_{\mathbf{4}}[(\mathbf{D}+m) \otimes 1_{\mathbf{4}}]\}^{1/4}$$

with four "tastes," but no taste breaking.

- This is fine when det is real and positive.
- (So it doesn't work for m < 0, or $\mu \neq 0$.)

One can introduce sources:

$$\{\det_{\mathbf{4}}[(D+m+J+J_5)\otimes 1_{\mathbf{4}}]\}^{1/4}$$

where (J^a, J_5^a) is source for $\bar{\psi}(T^a, T^a\gamma_5)\psi$.

Now generalize the sources:

$$\{\det_{\mathbf{4}}[(D+m)\otimes 1_{\mathbf{4}}+J+J_{5}]\}^{1/4}$$

which means "ask more."

• Start with $(\mathcal{D}\mathcal{U} = \text{gauge-field measure})$

$$Z(J,J_5) = \int \mathcal{D}\mathcal{U}\{\det_{4}[(D+m)\otimes 1_{4}+J+J_{5}]\}^{1/4}$$

- All correlators taken in original, tastesymmetric ensemble.
- Legendre transform $J^A \to \sigma^A, J_5^A \to \pi^A$, and derive mass matrices (for constant fields)

$$\frac{\partial^2 \Gamma}{\partial \sigma^A \partial \sigma^B}$$
, $\frac{\partial^2 \Gamma}{\partial \pi^A \partial \pi^B}$

• Find usual pattern of spontaneous breaking.

- This formulation has $(4n_f)^2 1$ pseudo-Goldstone bosons, instead of $(n_f)^2 1$.
- The extra ones are phantoms—a figment of the algorithm's imagination.
- Their total contribution to any tasteless correlation function *must* cancel.
- Not unitary; not worrisome either.
- A safe house for phantom Goldstones.

Rooted & Staggered

- If the taste breaking does not vanish, then the phantoms' spectrum is split:
 - the unitarity violations no longer cancel;
 - taste non-singlet signals propagate faster than the (physical) taste singlets (non-local, but not the "expected" nonlocality).
- Still, we think, controlled by RSχPT.

Essentials

- The taste-breaking defect must vanish in the continuum limit:
 - supported by RG papers of Shamir and experience with scaling in QCD.
- Functional $\Gamma(\pi, \sigma, ...)$ must behave such that (non-unitary) RS χ PT [Aubin, Bernard] to describe the computed correlators:
 - supported by numerical evidence.

HPQCD

E. Follana, C.T.H. Davies, G.P. Lepage and J. Shigemitsu [HPQCD Collaboration]

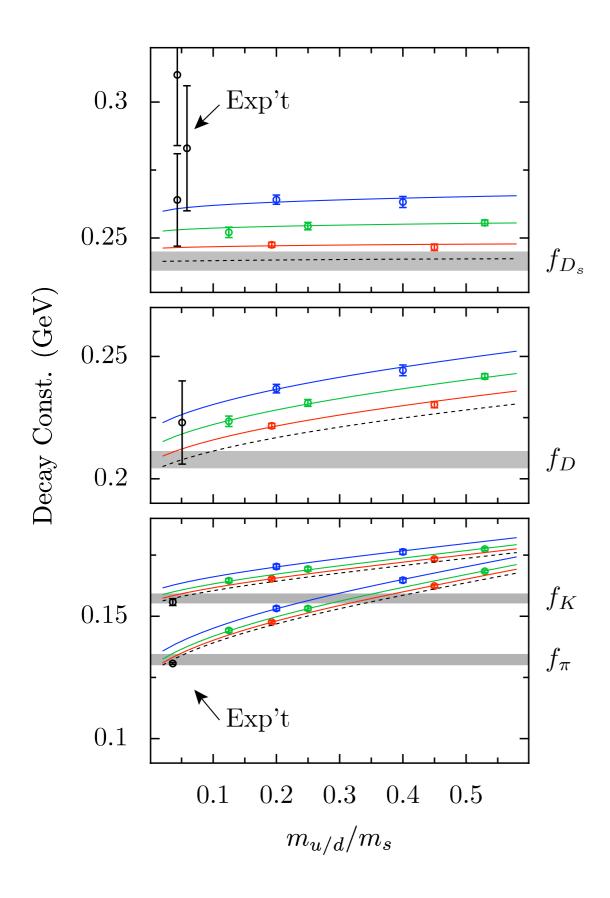
High Precision determination of the π , K, D and D_s decay constants from lattice QCD

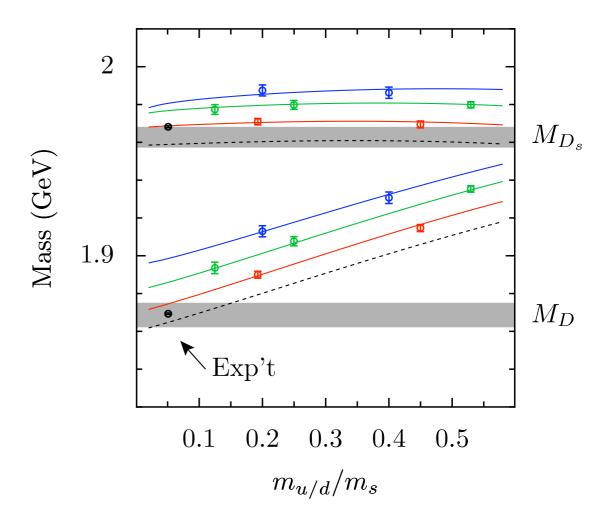
Phys. Rev. Lett. **I 00**, 062002 (2008)

[arXiv:0706.1726 [hep-lat]]

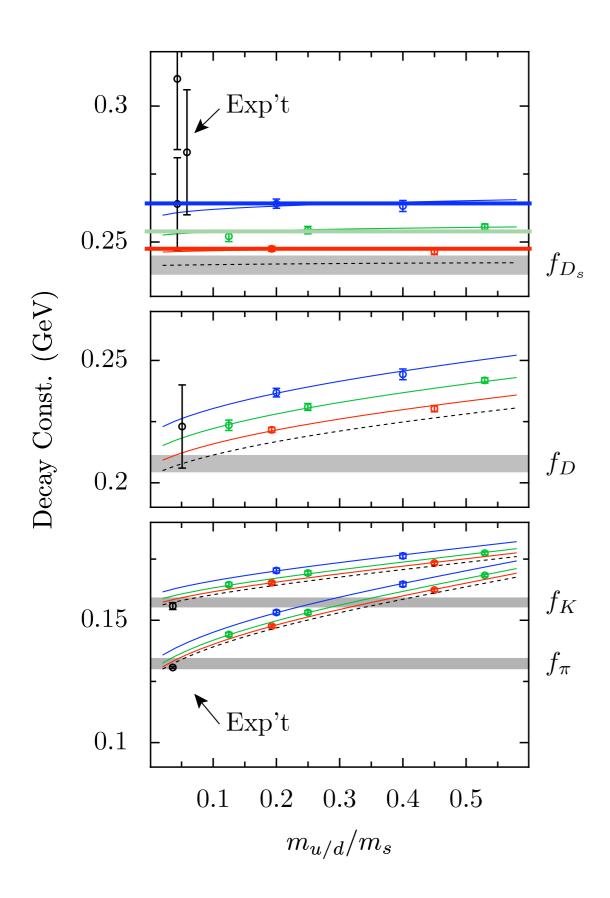
Continuum Limit

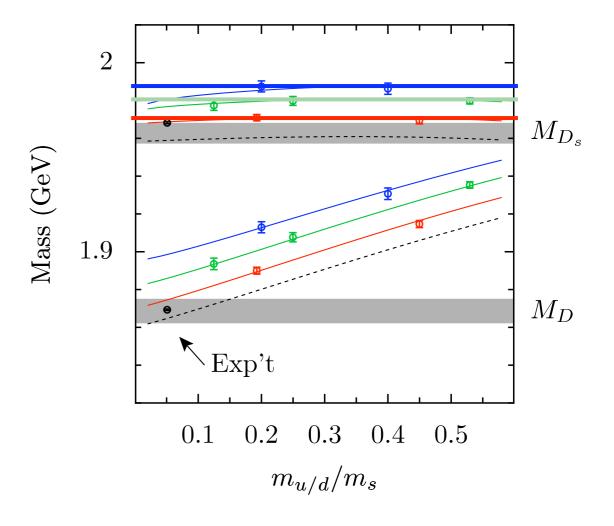
- The key to HPQCD's result for f_{Ds} is the extrapolation to the continuum limit.
- RS χ PT needed only for benign $m_K^2 \ln m_K^2$.
- I will show their plots, followed by my own back-of-the-envelope analysis.





 m_K and m_{π} set m_S , m_q charmonium sets m_c

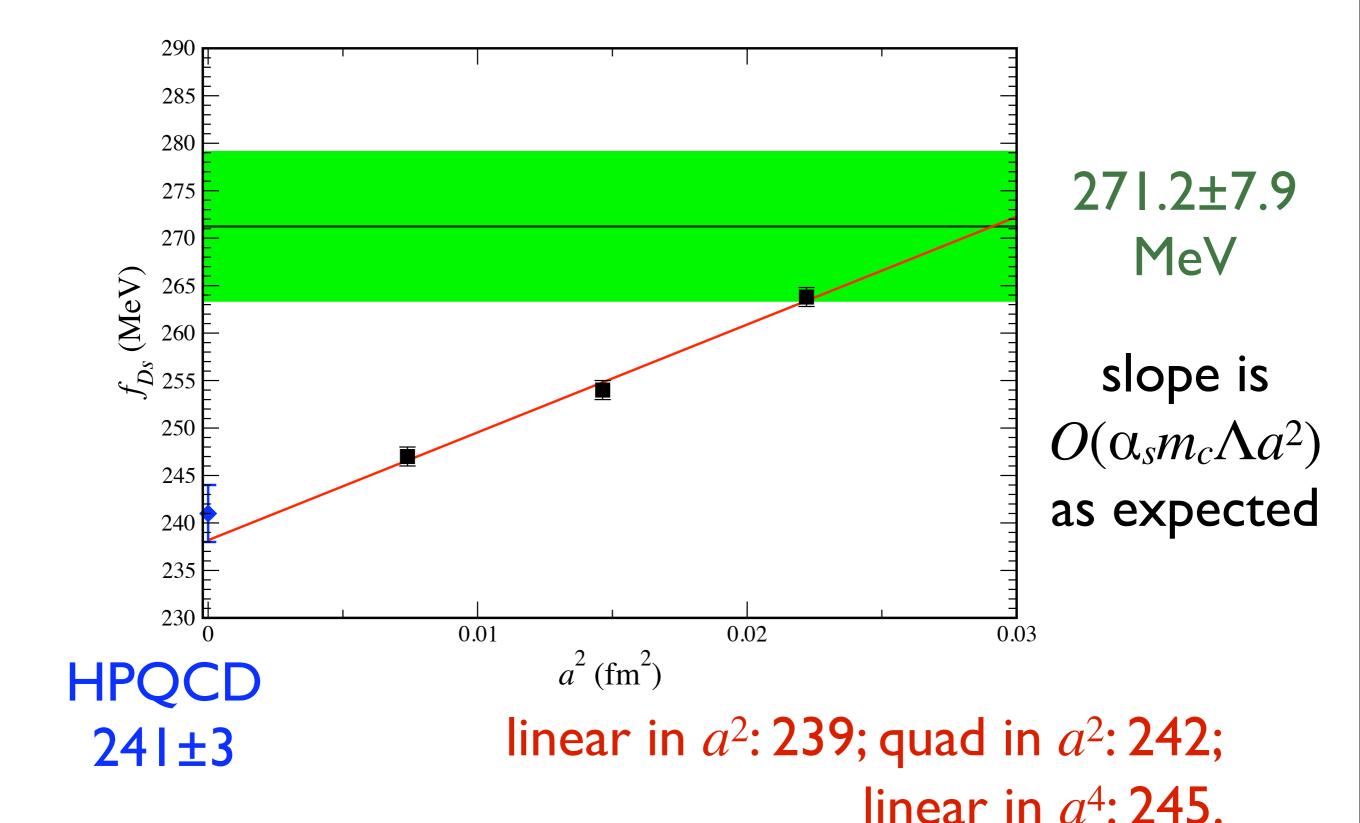




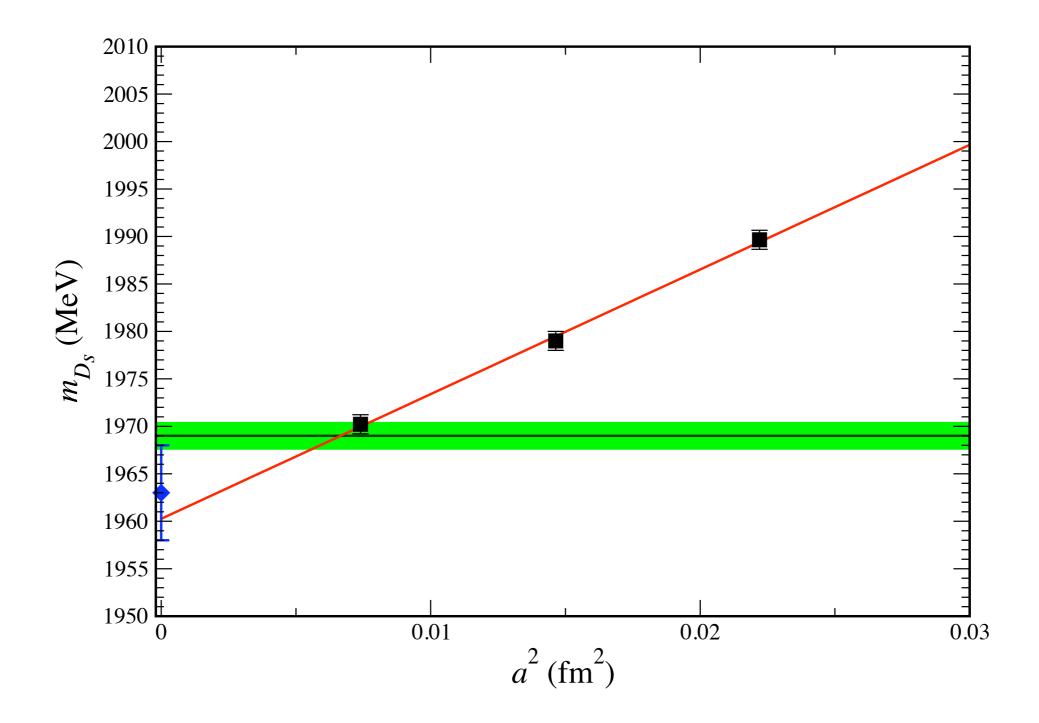
 m_K and m_{π} set m_s , m_q charmonium sets m_c

Assuming flat in m_{sea} .

As the lattice gets finer, the discrepancy grows:



Wednesday, October 29, 2008



If m_c (set from η_c) were retuned to flatten this, f_{Ds} (at $a \neq 0$) would not change much.

Error Budget

$$\Delta_q = 2m_{Dq} - m_{\eta c}$$

	f_K/f_{π}	f_K	f_{π}	f_{D_s}/f_D	f_{D_s}	f_D	Δ_s/Δ_d
r_1 uncerty.	0.3	1.1	1.4	0.4	1.0	1.4	0.7
a^2 extrap.	0.2	0.2	0.2	0.4	0.5	0.6	0.5
Finite vol.	0.4	0.4	0.8	0.3	0.1	0.3	0.1
$m_{u/d}$ extrap.	0.2	0.3	0.4	0.2	0.3	0.4	0.2
Stat. errors	0.2	0.4	0.5	0.5	0.6	0.7	0.6
m_s evoln.	0.1	0.1	0.1	0.3	0.3	0.3	0.5
m_d , QED, etc.	0.0	0.0	0.0	0.1	0.0	0.1	0.5
Total %	0.6	1.3	1.7	0.9	1.3	1.8	1.2

charmed sea $\ll 0.5\%$?

Other Results

what	expt	HPQCD	
$m_{J/\psi}-m_{\eta c}$	118.1	III ± 5 [‡]	MeV
m_{Dd}	1869	1868 ± 7	MeV
m_{Ds}	1968	1962 ± 6	MeV
Δ_s/Δ_d	1.260 ± 0.002	1.252 ± 0.015	
f_{π}	130.7 ± 0.4	132 ± 2	MeV
f_{K}	159.8 ± 0.5	157 ± 2	MeV
f_{D^+}	205.8 ± 8.9*	207 ± 4	MeV

*CLEO arXiv:0806.2112

‡annihilation corrected

HPQCD Summary

- The trend in lattice spacing drives a value around 240 MeV.
- Systematic errors are always devilish.
- Doubling theirs still leaves a discrepancy of a 3.0σ , for $\mu\nu$ & $\tau\nu$ combined.
- So I believe their result, i.e., values around 240-250 MeV, will prove to be robust.

Sufficient Condition

- Tree-level & Cabibbo-favored, ...
- but this decay could be sensitive to new physics, if:
 - a new particle couples predominantly to leptons and up-type quarks,
 - but not to the first generation.

Necessary Condition

• To mediate $D_s \rightarrow l\nu$ we need

$$\mathcal{L}_{\text{eff}} = \frac{C_A^{\ell}}{M^2} \left(\bar{s} \gamma_{\mu} \gamma_5 c \right) \left(\bar{\mathbf{v}}_L \gamma^{\mu} \ell_L \right) + \frac{C_P^{\ell}}{M^2} \left(\bar{s} \gamma_5 c \right) \left(\bar{\mathbf{v}}_L \ell_R \right) + \text{H.c.}$$

In rate, replace

$$G_F V_{cs}^* m_\ell \to G_F V_{cs}^* m_\ell + \frac{1}{\sqrt{2}M^2} \left(C_A^\ell m_\ell + \frac{C_P^\ell m_{D_s}^2}{m_c + m_s} \right)$$

because
$$\langle 0|\bar{s}\gamma_5c|D_s\rangle=-if_{D_s}m_{D_s}^2(m_c+m_s)^{-1}$$

- Because V_{cs} has a small imaginary part (in PDG parametrization), one of C_A , C_P must be real and positive, to explain the effect.
- To reduce the combined effect to 1σ ,

$$rac{M}{(\mathrm{Re}\,C_A^\ell)^{1/2}}\lesssim 855\,\mathrm{GeV}, \ rac{M}{(\mathrm{Re}\,C_P^\ell)^{1/2}}\lesssim 1070\,\mathrm{GeV}\sqrt{rac{m_ au}{m_\ell}},$$

New Particles

• The effective interactions can be induced by heavy particles of charge +1, +2/3, -1/3.



• Charged Higgs, new W'; leptoquarks.

W'

- Contributes only to C_A .
- New gauge symmetry, but couplings to lefthanded leptons constrained by other data.
- If W and W' mix, electroweak data imply it's too weak to affect $D_s \rightarrow lv$.
- Seems unlikely, barring contrived, finely tuned scenarios.

Charged Higgs

Multi-Higgs models include Yukawa terms

$$y_c \bar{c}_R s_L H^+ + y_s \bar{c}_L s_R H^+ + y_\ell \bar{\mathbf{v}}_L^\ell \ell_R H^+ + \text{H.c.},$$

(mass-eigenstate basis) leading to

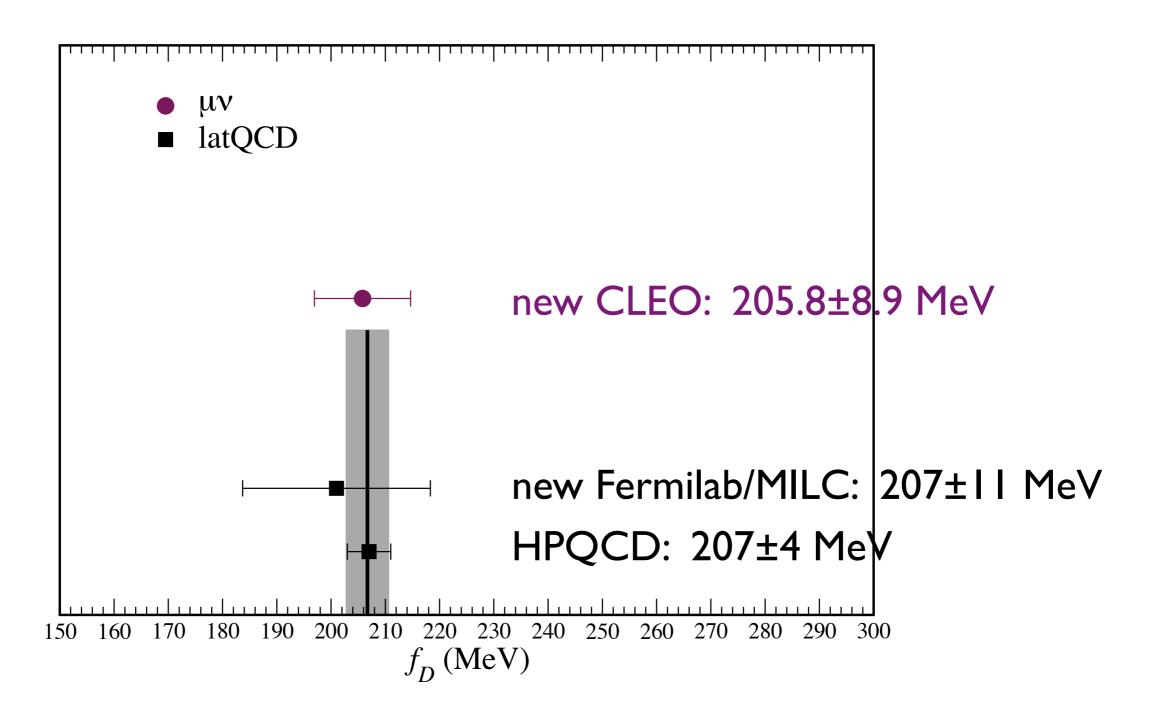
$$C_P^\ell = \frac{1}{2} (y_c^* - y_s^*) y_\ell, \qquad M = M_{H^\pm}$$

 $\propto V_{cs}^* (m_c - m_s \tan^2 \beta) m_\ell \quad \text{in Model II}$

• Note that C_P can have either sign.

- But consider a two-Higgs-doublet model
 - one for c, u, l, with VEV 2 GeV or so;
 - other for *d*, *s*, *b*, *t*, VEV 245 GeV.
- No FCNC; CKM suppression.
- Need to look at one-loop FCNCs.
- Naturally has same-sized increase for μ & τ .

• This model predicts a similarly-sized deviation in $D \rightarrow lv$, so it is now disfavored:



Leptoquarks

- Color triplet, scalar doublet with Y = +7/6 has a component with charge +2/3.
- Dobrescu and Fox use this in a new theory of fermion masses [arXiv:0805.0822].
- Leads to $C_A = 0$ and C_P of any phase, and no connection between μ & τ .
- LFV $\tau \rightarrow \mu s\bar{s}$ disfavors this.

• LFV $\tau \rightarrow \mu s\bar{s}$ also disfavors leptoquarks of

•
$$J = 1, (3, 3, +2/3)$$
 and $(3, 1, +2/3)$

•
$$J = 0, (3, 3, -1/3)$$

• But J = 0, (3, 1, -1/3) seems promising:

$$\kappa_{2l}(\bar{c}_L l_L^c - \bar{s}_L v_L^{lc})\tilde{d} + \kappa'_{2l}\bar{c}_R l_R^c \tilde{d} + \text{H.c.}$$

(an interaction in R-violating SUSY), with

$$C_A^l = \frac{1}{4} |\kappa_{2l}|^2, \qquad C_P^l = \frac{1}{4} \kappa_{2l} \kappa_{2l}^{\prime*}.$$

• If $|\kappa_l'/\kappa_l| \ll m_l m_c/m_{D_s}^2$, independent of lepton, or if $\kappa_l' \propto m_l$, then the interference is constructive and creates the same-sized deviation for $\mu\nu$ and $\tau\nu$.

Other Processes

- New physics in $D_s \rightarrow l\nu$ would also modify:
 - neutrino production of charm;
 - semileptonic $D \rightarrow Kl\nu$.
- Extend effective Lagrangian to

$$\mathcal{L}_{\text{eff}} = M^{-2}C_A^l(\bar{s}\gamma^{\mu}\gamma_5c)(\bar{\mathbf{v}}_L\gamma_{\mu}l_L) + M^{-2}C_P^l(\bar{s}\gamma_5c)(\bar{\mathbf{v}}_Ll_R)$$

$$- M^{-2}C_V^l(\bar{s}\gamma^{\mu}c)(\bar{\mathbf{v}}_L\gamma_{\mu}l_L) + M^{-2}C_S^l(\bar{s}c)(\bar{\mathbf{v}}_Ll_R)$$

$$+ M^{-2}C_T^l(\bar{s}\sigma^{\mu\nu}c)(\bar{\mathbf{v}}_L\sigma_{\mu\nu}l_R)$$

- Real models possess relations between effective couplings, from SM left-handed doublets and right-handed singlets.
- For example, in the favored leptoquark

$$C_A^l = C_V^l = |\kappa_{2l}|^2,$$

 $C_P^l = C_S^l = \kappa_{2l} \kappa_{2l}^{\prime *} = 2C_T^l$

• Examine semileptonic decay $D \rightarrow Kl\nu$.

Kinematics

• Two independent Lorentz invariants:

$$E_{\ell} = rac{p \cdot \ell}{m_D}, \qquad E_K = rac{p \cdot k}{m_D}$$

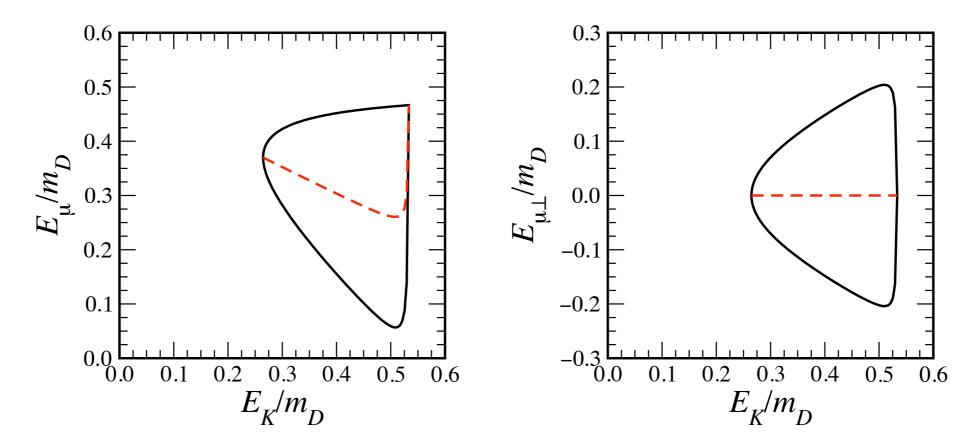
lepton and kaon energy in D rest frame (p = k + l + v).

• Or
$$q^2 = (p-k)^2 = m_D^2 + m_K^2 - 2m_D E_K$$
.

Dalitz Plot(s)

Expressions somewhat simpler with

$$E_{\ell\perp} = E_{\ell} - (m_D - E_K) \left(1 + m_{\ell}^2 / q^2 \right)$$



dashed line is $E_{\ell\perp}=0$.

Doubly differential rate

$$G_{V,S,T}^{\ell}=C_{V,S,T}^{\ell}/\sqrt{2}M^2$$

$$\begin{split} \frac{d^2\Gamma}{dE_K\,dE_{\ell\perp}} &= \frac{m_D}{(2\pi)^3} \left\{ \left[\left(E_K^2 - m_K^2 \right) \left(1 - m_\ell^2/q^2 \right) - 4 E_{\ell\perp}^2 \right] \left| G_F V_{cs}^* + G_V^\ell \right|^2 \underbrace{\left(f_+(q^2) \right)^2} \right. \\ &+ \left. \frac{q^2 - m_\ell^2}{4m_D^2} \left| m_\ell \left(G_F V_{cs}^* + G_V^\ell \right) \frac{m_D^2 - m_K^2}{q^2} + G_S^\ell \frac{m_D^2 - m_K^2}{m_c - m_s} \right|^2 \underbrace{\left(f_0(q^2) \right)^2} \right. \\ &+ \left. \left[\frac{m_\ell^2}{4m_D^2} \left(E_K^2 - m_K^2 \right) \left(1 - m_\ell^2/q^2 \right) + \frac{4q^2}{m_D^2} E_{\ell\perp}^2 \right] \left| G_T^\ell \right|^2 \underbrace{\left(f_2(q^2) \right)^2} \right. \\ &- \left. \frac{2m_\ell}{m_D} \left(E_K^2 - m_K^2 \right) \left(1 - m_\ell^2/q^2 \right) \operatorname{Re} \left[\left(G_F V_{cs}^* + G_V^\ell \right) G_T^{\ell*} f_+(q^2) f_2^*(q^2) \right] \right. \\ &- \left. \frac{2m_\ell}{m_D} E_{\ell\perp} \operatorname{Re} \left[\left(m_\ell \left(G_F V_{cs}^* + G_V^\ell \right) \frac{m_D^2 - m_K^2}{q^2} + G_S^\ell \frac{m_D^2 - m_K^2}{m_c - m_s} \right) \times \right. \\ & \left. \left. \left(G_F V_{cs} + G_V^{\ell*} \right) f_0(q^2) f_+^*(q^2) \right] \right. \\ &+ \left. \frac{2q^2}{m_D^2} E_{\ell\perp} \operatorname{Re} \left[\left(m_\ell \left(G_F V_{cs}^* + G_V^\ell \right) \frac{m_D^2 - m_K^2}{q^2} + G_S^\ell \frac{m_D^2 - m_K^2}{m_c - m_s} \right) G_T^{\ell*} f_0(q^2) f_2^*(q^2) \right] \right\}, \end{split}$$

Doubly differential rate

$$G_{V,S,T}^{\ell}=C_{V,S,T}^{\ell}/\sqrt{2}M^2$$

$$\begin{split} \frac{d^2\Gamma}{dE_K dE_{\ell\perp}} &= \frac{m_D}{(2\pi)^3} \left\{ \left[\left(E_K^2 - m_K^2 \right) \left(1 - m_\ell^2 / q^2 \right) - 4 E_{\ell\perp}^2 \right] \left| G_F V_{cs}^* + G_V^\ell \right|^2 \left| f_+(q^2) \right|^2 \right\} C_A \sim C_V \\ &+ \frac{q^2 - m_\ell^2}{4m_D^2} \left| m_\ell \left(G_F V_{cs}^* + G_V^\ell \right) \frac{m_D^2 - m_K^2}{q^2} + G_S^\ell \frac{m_D^2 - m_K^2}{m_c - m_s} \right|^2 \left| f_0(q^2) \right|^2 \\ &+ \left[\frac{m_\ell^2}{4m_D^2} \left(E_K^2 - m_K^2 \right) \left(1 - m_\ell^2 / q^2 \right) + \frac{4q^2}{m_D^2} E_{\ell\perp}^2 \right] \left| G_T^\ell \right|^2 \left| f_2(q^2) \right|^2 \\ &- \frac{2m_\ell}{m_D} \left(E_K^2 - m_K^2 \right) \left(1 - m_\ell^2 / q^2 \right) \operatorname{Re} \left[\left(G_F V_{cs}^* + G_V^\ell \right) G_T^{\ell*} f_+(q^2) f_2^*(q^2) \right] \\ &- \frac{2m_\ell}{m_D} E_{\ell\perp} \operatorname{Re} \left[\left(m_\ell \left(G_F V_{cs}^* + G_V^\ell \right) \frac{m_D^2 - m_K^2}{q^2} + G_S^\ell \frac{m_D^2 - m_K^2}{m_c - m_s} \right) \times \right. \\ &\left. \left(G_F V_{cs} + G_V^{\ell*} \right) f_0(q^2) f_+^*(q^2) \right] \\ &+ \frac{2q^2}{m_D^2} E_{\ell\perp} \operatorname{Re} \left[\left(m_\ell \left(G_F V_{cs}^* + G_V^\ell \right) \frac{m_D^2 - m_K^2}{q^2} + G_S^\ell \frac{m_D^2 - m_K^2}{m_c - m_s} \right) G_T^{\ell*} f_0(q^2) f_2^*(q^2) \right] \right\}, \end{split}$$

Doubly differential rate

$$G_{V,S,T}^{\ell}=C_{V,S,T}^{\ell}/\sqrt{2}M^2$$

$$\begin{split} \frac{d^{2}\Gamma}{dE_{K} dE_{\ell \perp}} &= \frac{m_{D}}{(2\pi)^{3}} \left\{ \left[\left(E_{K}^{2} - m_{K}^{2} \right) \left(1 - m_{\ell}^{2}/q^{2} \right) - 4E_{\ell \perp}^{2} \right] \left| G_{F} V_{cs}^{*} + G_{V}^{\ell} \right|^{2} \left| f_{+}(q^{2}) \right|^{2} \right\} C_{A} \sim C_{V} \\ &+ \frac{q^{2} - m_{\ell}^{2}}{4m_{D}^{2}} \left| m_{\ell} \left(G_{F} V_{cs}^{*} + G_{V}^{\ell} \right) \frac{m_{D}^{2} - m_{K}^{2}}{q^{2}} + G_{S}^{\ell} \frac{m_{D}^{2} - m_{K}^{2}}{m_{c} - m_{s}} \right|^{2} \left| f_{0}(q^{2}) \right|^{2} \\ &+ \left[\frac{m_{\ell}^{2}}{4m_{D}^{2}} \left(E_{K}^{2} - m_{K}^{2} \right) \left(1 - m_{\ell}^{2}/q^{2} \right) + \frac{4q^{2}}{m_{D}^{2}} E_{\ell \perp}^{2} \right] \left| G_{T}^{\ell} \right|^{2} \left| f_{2}(q^{2}) \right|^{2} \\ &- \frac{2m_{\ell}}{m_{D}} \left(E_{K}^{2} - m_{K}^{2} \right) \left(1 - m_{\ell}^{2}/q^{2} \right) \operatorname{Re} \left[\left(G_{F} V_{cs}^{*} + G_{V}^{\ell} \right) G_{T}^{\ell*} f_{+}(q^{2}) f_{2}^{*}(q^{2}) \right] \\ &- \frac{2m_{\ell}}{m_{D}} E_{\ell \perp} \operatorname{Re} \left[\left(m_{\ell} \left(G_{F} V_{cs}^{*} + G_{V}^{\ell} \right) \frac{m_{D}^{2} - m_{K}^{2}}{q^{2}} + G_{S}^{\ell} \frac{m_{D}^{2} - m_{K}^{2}}{m_{c} - m_{s}} \right) \times \right. \\ &\left. \left(G_{F} V_{cs} + G_{V}^{\ell*} \right) f_{0}(q^{2}) f_{+}^{*}(q^{2}) \right] \qquad C_{P} \sim C_{S} \sim C_{T} \\ &+ \frac{2q^{2}}{m_{D}^{2}} E_{\ell \perp} \operatorname{Re} \left[\left(m_{\ell} \left(G_{F} V_{cs}^{*} + G_{V}^{\ell} \right) \frac{m_{D}^{2} - m_{K}^{2}}{q^{2}} + G_{S}^{\ell} \frac{m_{D}^{2} - m_{K}^{2}}{m_{c} - m_{s}} \right) G_{T}^{\ell*} f_{0}(q^{2}) f_{2}^{*}(q^{2}) \right] \right\}, \end{split}$$

Form Factors

$$\langle K(k) | \bar{s} \gamma^{\mu} c | D(p) \rangle = \left(p^{\mu} + k^{\mu} - \frac{m_D^2 - m_K^2}{q^2} q^{\mu} \right) f_+(q^2)$$

$$+ \frac{m_D^2 - m_K^2}{q^2} q^{\mu} f_0(q^2),$$

$$\langle K(k)|\bar{s}\sigma^{\mu\nu}c|D(p)\rangle = im_D^{-1}(p^{\mu}k^{\nu}-p^{\nu}k^{\mu})f_2(q^2),$$

$$\langle K(k)|\bar{s}c|D(p)\rangle = \frac{m_D^2 - m_K^2}{m_C - m_S} f_0(q^2),$$

Phenomenology

- If the D_s puzzle is solved by C_A interaction, and if $C_V = C_A$, then we expect the same size enhancement in $D \rightarrow Klv$:
 - need $f_{+}(q^2)$ to 1–2%.
- If solved by C_P interaction, and if $C_S = C_P$, $C_T \propto C_P$, then it will be washed out.

$E_{l\perp}$ Asymmetry

These contributions could be seen in

$$\mathcal{A}_{\perp} = rac{N(E_{l\perp} > 0) - N(E_{l\perp} < 0)}{N(E_{l\perp} > 0) + N(E_{l\perp} < 0)}$$

or any observable odd in $E_{l\perp}$.

- Need 10⁷ semimuonic events for 7% measurement.
- Needs f_0 and f_2 .

- Experiments are statistics limited
 - CLEO will get +50% (+100%) for $\mu\nu$ ($\tau\nu$);
 - and Belle, BES (also D^+), Super-B.
- Radiative corrections should, perhaps, be collected into a single place.
- Lattice calculations must be done by other groups, with other sea quarks.

LHC

- Prejudice against new physics in this decay should be questioned.
- Mass/coupling bounds suggest new particles
 - evade Tevatron bounds if $C_{P,A}$ are largish;
 - are observable at the LHC.
- Charged Higgs: similar to usual search.
- Leptoquarks: $gg \rightarrow d\bar{d}\bar{d} \rightarrow \ell_1^+ \ell_2^- j_c j_c$.