

Lessons for New Physics from CKM studies

Enrico Lunghi Indiana University

E.L. and A. Soni, 0707.02 12
E.L. and A. Soni, 0803.4340
E.L. and A. Soni, 0903.5059
J. Laiho, E.L., R.Van de Water: 0910.2928
E.L. and A. Soni, 09I2.0002
E.L. and A. Soni, IOIO.6069
J. Laiho, E.L., R.Van de Water: I I02.39I7
www.latticeaverages.org

The Cabibbo"-Kobayashi*-Maskawa ${ }^{\star}$ matrix

Gauge interactions do not violate flavor:
$\mathcal{L}_{\text {Gauge }}=\sum_{\psi, a, b} \bar{\psi}_{a}\left(i \not \partial-g \not A^{\prime} \delta^{a b}\right) \psi_{b}$
Yukawa interactions (mass) violate flavor:
$\mathcal{L}_{\text {Yukawa }}=\sum_{\psi, a, b} \bar{\psi}_{L a} H Y^{a b} \psi_{R b}=\bar{Q}_{L} H Y_{U} u_{R}+\bar{Q}_{L} H Y_{D} d_{R}+\bar{L}_{L} H Y_{E} E_{R}$
The Yukawas are complex 3×3 matrices:
$Y_{U}=U_{L} Y_{U}^{\text {diag }} U_{R}, \quad Y_{D}=D_{L} Y_{D}^{\text {diag }} D_{R}, \quad Y_{E}=E_{L} Y_{E}^{\text {diag }} E_{R}$
huge potential for NP effects (MFV?)

From Gauge to Mass eigenstates

- neutral currents:

$$
\bar{u}_{L}^{0} \boldsymbol{Z} u_{L}^{0} \Longrightarrow \bar{u}_{L} \not \boldsymbol{Z} U_{L} U_{L}^{\dagger} u_{L}=\bar{u}_{L} \not \boldsymbol{Z} u_{L}
$$

- charged currents:

$$
\bar{u}_{L}^{0} W d_{L}^{0} \Longrightarrow \bar{u}_{L} W U_{L} D_{L}^{\dagger} d_{L}=\bar{u}_{L} W V_{\mathrm{CKM}} d_{L}
$$

The Cabibbo"-Kobayashi*-Maskawa ${ }^{\star}$ matrix

$\lambda: \beta$-decay, $K \rightarrow \pi I V, D \rightarrow(\pi, K) I V, v N \rightarrow \mu X, \ldots$.

A: no direct meas. $\left(B \rightarrow X_{s} \gamma, \Delta M_{B s}, \ldots\right)$
ρ, η : no direct meas. ($\Delta M_{B d}, C P$ violation, K mixing)

The Cabibbo"-Kobayashi-Maskawa ${ }^{\star}$ matrix

Unitarity Triangles:

${\underset{\sim}{c}}_{\substack{*}}^{V_{c s}^{*} V_{c b}} \frac{V_{t s}^{*}}{V_{c s} V_{s}^{*}} \beta_{\mathrm{s}}=\arg \left(V_{t s}\right)=\eta \lambda^{2}+O\left(\lambda^{4}\right)$

The Unitarity Triangle Fit

$\varepsilon_{K}: C P$ violation in K mixing
α : time dependent $A_{C P}$ in $B \rightarrow$ ($\pi \pi, \rho \rho, \rho \pi)$ modes (large penguin pollution removed with isospin analysis)
β : time dependent $A_{C P}$ in $B \rightarrow J / \Psi \mathrm{K}$ and related modes (very clean)
$\gamma: B \rightarrow D^{(*)} K^{*}$ decays (model independent studies - separation of D-meson flavor and CP eigenstates)

The Unitarity Triangle Fit

- Mass and CP eigenstates of K mesons differ:

$$
\left\{\begin{array}{l}
K_{S} \sim K_{1}+\bar{\varepsilon} K_{2} \\
K_{L} \sim K_{2}+\bar{\varepsilon} K_{1}
\end{array} \quad \rightarrow \quad \begin{array}{c}
K_{L} \sim K_{2}+\bar{\varepsilon} K_{1} \\
{\text { Lindirect }\left(\varepsilon_{K}\right)}^{\bar{D}} \pi \pi \\
\text { direct }\left(\varepsilon^{\prime}\right)
\end{array}\right.
$$

- $B-\bar{B}$ mass difference:

$\propto\left(V_{t b} V_{t q}^{*}\right)^{2} f_{B_{q}}^{2} \hat{B}_{q}$
- Time dependent CP asymmetries: $\Gamma\left(\bar{B}_{\mathrm{phys}}^{0}(t) \rightarrow f_{C P}\right) \neq \Gamma\left(B_{\mathrm{phys}}^{0}(t) \rightarrow f_{C P}\right)$

$$
V_{c b} V_{c s}^{*}
$$

$V_{t b} V_{t s}^{*}=-V_{c b} V_{c s}^{*}-V_{u b} V_{u s}^{*}$

Treatment of lattice inputs and errors

- Lattice QCD presently delivers 2+ / flavors determinations for all the quantities that enter the fit to the UT
- Results from different lattice collaborations are often correlated
${ }^{\text {a }}$ MILC gauge configurations: $\mathrm{f}_{\mathrm{Bd}}, \mathrm{f}_{\mathrm{Bs}}, \xi, \mathrm{V}_{\mathrm{ub}}, \mathrm{V}_{\mathrm{cb}}, \mathrm{f}_{\mathrm{K}}$
${ }^{9}$ use of the same theoretical tools: $\mathrm{B}_{\mathrm{k}}, \mathrm{V}_{\mathrm{cb}}$
${ }^{\text {o }}$ experimental data: V_{ub}
- It becomes important to take these correlation into account when combining saveral lattice results [Laiho,EL,Van de Water, 0910.2928

Laiho,EL,Van de Water, I I 02.39I7]

- We assume all errors to be normally distributed
- Updated averages at: http://www.latticeaverages.org

Comments on systematic uncertainties

- We treat all systematic uncertainties as gaussian
- Most relevant systematic errors come from lattice QCD $\left(B_{k}, \xi\right)$ and are obtained by adding in quadrature several different sources of uncertainty
- Gaussian treatment seems a fairly conservative choice

Comments on systematic uncertainties

- We treat all systematic uncertainties as gaussian
- Most relevant systematic errors come from lattice QCD $\left(B_{k}, \xi\right)$ and are obtained by adding in quadrature several different sources of uncertainty
- Gaussian treatment seems a fairly conservative choice

Determining A

- Can be extracted by tree-level processes ($\mathrm{b} \rightarrow \mathrm{clv}$)
- ΔM_{s} is conventionally used only to normalize $\Delta M B_{d}$ but it should be noted that it provides an independent determination of A (that might be subject to NP effects):

$$
\Delta M_{B_{s}} \propto f_{B_{s}}^{2} \hat{B}_{B_{s}} A^{2} \lambda^{4}
$$

- Other processes are very sensitive to A but also display a strong $\rho-\eta$ and NP dependence and are therefore usually discussed in the framework of a Unitarity Triangle fit:

$$
\begin{aligned}
\left|\varepsilon_{K}\right| & \propto \hat{B}_{K} \kappa_{\varepsilon} A^{4} \lambda^{10} \eta(\rho-1) \\
\operatorname{BR}(B \rightarrow \tau \nu) & \propto f_{B}^{2} A^{2} \lambda^{6}\left(\rho^{2}+\eta^{2}\right)
\end{aligned}
$$

Note on ε_{K} (K mixing)

- Mass and CP eigenstates are different:

$$
K_{S} \sim K_{1}+\bar{\varepsilon} K_{2} \quad K_{L} \sim K_{2}+\bar{\varepsilon} K_{1}
$$

- K_{L} can decay into the $C P$ even ($\left.\pi \pi\right)_{I=0}$ final state through its tiny K। component:

$$
\varepsilon_{K}=\frac{A\left(K_{L} \rightarrow(\pi \pi)_{I=0}\right)}{A\left(K_{S} \rightarrow(\pi \pi)_{I=0}\right)} \quad K_{L} \sim K_{2}+\bar{\varepsilon} K_{1}
$$

Note on ε_{K} :

K mixing $\left(\varepsilon_{K}\right)$

$\left|\varepsilon_{K}\right|=\kappa_{\varepsilon} C_{\varepsilon} \hat{B}_{K}\left|V_{c b}\right|^{2} \lambda^{2} \eta\left(\left|V_{c b}\right|^{2}(1-\bar{\rho})+\eta_{t t} S_{0}\left(x_{t}\right)+\eta_{c t} S_{0}\left(x_{c}, x_{t}\right)-\eta_{c c} x_{c}\right)$

- Experimentally one has: $\phi_{\varepsilon}=(43.51 \pm 0.05)^{o}$
- $\operatorname{Im} A_{0} / R e A_{0}$ can be extracted from experimental data on ε '/ ε and theoretical calculation of isospin breaking corrections:
$\bullet \operatorname{Re}\left(\varepsilon_{K}^{\prime} / \varepsilon_{K}\right)_{\exp } \sim \frac{\omega}{\sqrt{2}\left|\varepsilon_{K}\right|}\left(\frac{\operatorname{Im} A_{2}}{\operatorname{Re} A_{2}}-\frac{\operatorname{Im} A_{0}}{\operatorname{Re} A_{0}}\right)$
- $\operatorname{Im} A_{2}=(-7.9 \pm 4.2) \times 10^{-13} \mathrm{GeV}$
[RBC/UK-QCD]
Ist unquenched attempt!
- Combining everything:

$$
\kappa_{\varepsilon}=0.92 \pm 0.01
$$

[Laiho,EL,Van de Water]

K mixing $\left(\varepsilon_{K}\right)$

- Buras, Guadagnoli \& Isidori pointed out that also M_{12}^{K} receives non-local corrections with two insertions of the $\Delta S=\mid$ Lagrangian:

- Using CHPT they obtain a conservative estimate of these
 effects. Combining the latter with our determination of $\operatorname{ImA} A_{0}$ we obtain:

$$
\begin{gathered}
\kappa_{\varepsilon}=0.94 \pm 0.017 \\
-6 \%!
\end{gathered}
$$

K mixing $\left(\varepsilon_{K}\right)$

$$
\left|\varepsilon_{K}\right|=\kappa_{\varepsilon} C_{\varepsilon} \hat{B}_{K}\left|V_{c b}\right|^{2} \lambda^{2} \eta\left(\left|V_{c b}\right|^{2}(1-\bar{\rho})+\eta_{t t} S_{0}\left(x_{t}\right)+\eta_{c t} S_{0}\left(x_{c}, x_{t}\right)-\eta_{c c} x_{c}\right)
$$

- Error budget:
[Laiho,EL,van de Water]

All other uncertainties have negligible impact on the combined error

Central value of K_{ε} is important

$$
\mathrm{BR}(B \rightarrow \tau \nu)=\frac{G_{F}^{2} m_{\tau}^{2} m_{B^{+}}}{8 \pi \Gamma_{B^{+}}}\left(1-m_{\tau}^{2} / m_{B^{+}}^{2}\right)^{2} f_{B}^{2}\left|V_{u b}\right|^{2}
$$

- Lattice inputs: $\hat{B}_{d}, \xi, f_{B_{s}} \sqrt{\hat{B}_{s}} \Longrightarrow f_{B_{d}}=\frac{f_{B_{s}} \hat{B}_{s}^{1 / 2}}{\xi \hat{B}_{d}}$
- Using f_{B} directly is not recommended because of the large correlation between f_{B} and ξ
- As a consistency check we can compare direct and indirect determinations of $f \mathrm{~B}$
- Babar and Belle published measurements using semileptonic and hadronic tags (to reconstruct the recoiling B meson):
$\mathrm{BR}(B \rightarrow \tau \nu)_{\exp }=(1.68 \pm 0.31) \times 10^{-6}$
- In NP models with a charged Higgs (2HDM, MSSM,..):

$$
\mathrm{BR}(B \rightarrow \tau \nu)^{\mathrm{NP}}=\mathrm{BR}(B \rightarrow \tau \nu)^{\mathrm{SM}} \underbrace{\left(1-\frac{\tan ^{2} \beta m_{B^{+}}^{2}}{m_{H^{+}}^{2}\left(1+\epsilon_{0} \tan \beta\right)}\right)^{2}}_{r_{H}}
$$

- Exclusive from $B \rightarrow D^{*} \mid \boldsymbol{V}$. Using form factor from lattice QCD (2+I dynamical staggered fermions) one finds:

$$
\left|V_{c b}\right|=(39.5 \pm 1.0) \times 10^{-3}
$$

[FNAL/MILC]
[average:Laiho,EL,Van de Water] [exp. error on $B \rightarrow D^{*}$ rescaled to account for the large $X^{2} /$ dof $=39 / 2 I$]

- Inclusive from global fit of $B \rightarrow X_{d} / V$ moments.
[Büchmuller,Flächer]

- Inclusion of $b \rightarrow s \gamma$ has strong impact on quark masses but not on V_{cb}
- NNLO in α_{s} and $O\left(1 / m_{b}^{4}\right)$ known
${ }^{-} \mathrm{O}\left(\alpha_{s} / \mathrm{m}_{b}{ }^{2}\right)$ corrections partially known
- Issue of m_{b} is relevant for $V_{u b}$ $\left|V_{c b}\right|=(41.68 \pm 0.73) \times 10^{-3}$
I.7 σ discrepancy between inclusive and exclusive
- Exclusive from $\mathrm{B} \rightarrow \mathrm{T}\left|\mathrm{V}:\left|V_{u b}\right|=(3.12 \pm 0.26) \times 10^{-3}\right.$
[HPQCD, FNAL/MILC] [average:Laiho,EL,Van de Water]
- Inclusive from global fit of $B \rightarrow X_{u} I V$ moments

Legend:
BLNP = Bosch, Lange, Neubert, Paz
DGE = Andersen, Gardi GGOU = Gambino,Giordano,Ossola,Uraltsev ADFR = Aglietti, Di Lodovico, Ferrera, Ricciardi BLL = Bauer, Ligeti, Luke
LLR = Leibovich, Low, Rothstein
LNP = Lange, Neubert, Paz
3.3σ discrepancy between inclusive and exclusive (!)

We will add a I0\% "model" uncertainty to the GGOU result (but ...)

Inputs to the fit: summary

$$
\begin{aligned}
& \left|V_{c b}\right|_{\mathrm{excl}}=(39.5 \pm 1.0) \times 10^{-3} \\
& \hat{B}_{K}=0.737 \pm 0.020 \\
& f_{B}=(207.8 \pm 8.3) \mathrm{MeV} \\
& \hat{B}_{B_{d}}=1.26 \pm 0.11 \\
& f_{B_{d}} \sqrt{\hat{B}_{B_{d}}}=(233 \pm 14) \mathrm{MeV} \\
& \xi \equiv f_{B_{s}} \sqrt{\hat{B}_{s}} /\left(f_{B_{d}} \sqrt{\hat{B}_{d}}\right)=1.237 \pm 0.032 \\
& \hline \hline\left|V_{c b}\right|_{\text {incl }}=(41.68 \pm 0.44 \pm 0.09) \times 10^{-3} \\
& \left|V_{u b}\right|_{\text {incl }}=\left(4.34 \pm 0.16_{-0.22}^{+0.15}\right) \times 10^{-3} \\
& \mathrm{BR}(B \rightarrow \tau \nu)=(1.68 \pm 0.31) \times 10^{-4} \\
& \Delta m_{B_{d}}=(0.507 \pm 0.005) \mathrm{ps}^{-1} \\
& \Delta m_{B_{s}}=(17.77 \pm 0.10 \pm 0.07) \mathrm{ps}^{-1} \\
& m_{t, p o l e}=(172.4 \pm 1.2) \mathrm{GeV} \\
& m_{c}\left(m_{c}\right)=(1.268 \pm 0.009) \mathrm{GeV} \\
& \varepsilon_{K}=(2.229 \pm 0.012) \times 10^{-3}
\end{aligned}
$$

www.latticeaverages.org

2+1 Flavor Lattice QCD Averages

For use in determinations of CKM matrix elements, Unitarity Triangle fits, and other flavor physics phenomenology

Lattice Averages for FPCP 2010 and Lattice 2010

If you use these results in proceedings or publications, please cite our original publication (Laiho. Lunghi, \& Van de Water, Phys.Rev.D81:034503,2010) as well as this webpage.

Note on the correlations between the various lattice calculations
For each quantity we quote the average that we obtain (in which statistic and systematic errors have been combined) and the statistic component of the total error (in round brackets in the stat error column).

Table of contents:
Light meson decay constants
$K \rightarrow \pi$ lv form factor
Light quark masses
CP violation in the kaon sector
Charmed meson decay constants
B_{d} and B_{s} meson decay constants and mixing
Exclusive semileptonic B decays

Light meson decay constants:

	$\mathrm{f}_{\pi}(\mathrm{MeV})$	$\left(\delta f_{\pi}\right)_{\text {stat }}$	$\left(\delta f_{\pi}\right)_{\text {syst }}$
Aubin, Laiho, Van de Water '08	129.1	1.9	4.0
HPQCD/UKQCD '10 *	132	1	2
MILC '10 $^{\text {R }}$	129.2	0.4	1.4
AvC/UKQCD '10	124	2	5

* Although the HPQCD collaboration recently updated their result for f_{π} in a publication focusing on $f_{D S}$, they did not present a new error budget. Since the only change from their previous publication was in the determination of r_{1}, most of the errors did not

Introduction

Methodology
Lattice Averages >| Fit Results and Plots Papers and Talks
Contact Info

www.latticeaverages.org

Time dependent CP asymmetry in $B \rightarrow J / \psi K_{S}$

- Penguin polluting effects are CKM (10^{-2}) and loop suppressed:

$$
V_{c b} V_{c s}^{*}
$$

$$
V_{t b} V_{t s}^{*}=-V_{c b} V_{c s}^{*}-V_{u b} V_{u s}^{*}
$$

- It is a clean measurement of the B_{d} mixing phase (assuming no NP corrections to the Tree amplitude):

Hadronic uncertainties in $S_{\psi K}$

- The small penguin pollution can be extracted in the $\mathrm{SU}(3)$ limit from time-dependent studies of $\underset{\text { [Fleischer] }}{B_{s} \rightarrow \psi} \underset{\text { and }}{\text { [Feischer, Mannel] }}$ [Jun,
- Using a conservative approach about $\mathrm{SU}(3)$ effects one finds:

$$
\left|\Delta S_{\psi K}\right|<0.02
$$

- Quantitative studies based on QCD factorization, PQCD and rescattering effects yield effects that are one order of magnitude smaller
- We conclude that presently one should not use $B \rightarrow \psi \pi^{0}$ decays as sole handle on hadronic uncertainties on $S_{\psi K}$
- Improved measurements of $B \rightarrow \psi \pi^{0}$ (at super- B) and of $B_{s} \rightarrow \psi K$ (at LHC-b) will allow to keep this uncertainty under control

Current fit to the unitarity triangle (removing $V_{u b}$)

- V_{ub} is the begin\{personal opinion\} most controversial lend\{personal opinion\} input

- Every single remaining input is on very solid exp/th ground

Current fit to the unitarity triangle (removing $V_{u b}$)

$$
\begin{gathered}
{[\sin 2 \beta]_{\mathrm{fit}}=0.875 \pm 0.047 \Rightarrow 3.4 \sigma} \\
{\left[f_{B}\right]_{\mathrm{fit}}=(201.0 \pm 9.2) \mathrm{MeV} \Rightarrow 0.6 \sigma}
\end{gathered}
$$

Current fit to the unitarity triangle (removing $V_{u b}$)

$$
\begin{gathered}
{[B R(B \rightarrow \tau \nu)]_{\mathrm{fit}}=(0.779 \pm 0.098) \times 10^{-4} \Rightarrow 2.7 \sigma} \\
{\left[f_{B}\right]_{\mathrm{fit}}=(186.2 \pm 9.0) \mathrm{MeV} \Rightarrow 1.9 \sigma}
\end{gathered}
$$

Removing $V_{u b}$ and $V_{c b}$

- The use of V_{cb} seems to be necessary in order to use K mixing to constrain the UT:

$$
\begin{aligned}
& \Delta M_{B_{s}}=\chi_{s} f_{B_{s}}^{2} \hat{B}_{B_{s}} A^{2} \lambda^{4} \\
& \left|\varepsilon_{K}\right|=2 \chi_{\varepsilon} \hat{B}_{K} \kappa_{\varepsilon} \eta \lambda^{6}\left(A^{4} \lambda^{4}(\rho-1) \eta_{2} S_{0}\left(x_{t}\right)+A^{2}\left(\eta_{3} S_{0}\left(x_{c}, x_{t}\right)-\eta_{1} S_{0}\left(x_{c}\right)\right)\right) \\
& \operatorname{BR}(B \rightarrow \tau \nu)=\chi_{\tau} f_{B}^{2} A^{2} \lambda^{6}\left(\rho^{2}+\eta^{2}\right)
\end{aligned}
$$

- The interplay of these constraints allows to drop V_{cb} while still constraining new physics in K mixing:

$$
\begin{aligned}
& \left|\varepsilon_{K}\right| \propto \hat{B}_{K}\left(f_{B_{s}} \hat{B}_{s}^{1 / 2}\right)^{-4} f(\rho, \eta) \\
& \left|\varepsilon_{K}\right| \propto \hat{B}_{K} \operatorname{BR}(B \rightarrow \tau \nu)^{2} f_{B}^{-4} g(\rho, \eta)
\end{aligned}
$$

Removing $V_{c b}$!

- The use of V_{cb} seems to be necessary in order to use K mixing to constrain the UT:

$\rho-\eta$ topology of the constraint makes it relevant despite large errors on $B \rightarrow T V$

$X:$	\hat{B}_{K}	$\left\|V_{c b}\right\|$	$f_{B_{s} \hat{B}_{s}^{1 / 2}}$	$\operatorname{BR}(B \rightarrow \tau \nu)$	f_{B}
$\delta X:$	3.7%	2.5%	4.7%	21%	5%
$\delta \varepsilon_{K}:$	3.7%	10%	18.9%	42%	20%

Enrico Lunghi

Removing $V_{u b}$ and $V_{c b}$

Removing $V_{u b}$ and $V_{c b}$

Removing $V_{u b}$ and $V_{c b}$

$$
\begin{aligned}
& \begin{array}{l}
\begin{array}{l}
\mathrm{BR}(\mathrm{~B} \rightarrow \tau v)=(0.772 \pm 0.098) 10^{-4}(2.7 \sigma) \\
f_{B}=(185.3 \pm 9.0) \mathrm{MeV}(1.8 \sigma)
\end{array} \\
S_{\psi \mathrm{K}} \\
\epsilon_{K}+\mathrm{B} \rightarrow \tau \nu+\Delta \mathrm{M}_{s} \\
\text { End of 2010 }
\end{array} \\
& {[B R(B \rightarrow \tau \nu)]_{\mathrm{fit}}=(0.772 \pm 0.098) \times 10^{-4} \Rightarrow 2.7 \sigma} \\
& {\left[f_{B}\right]_{\mathrm{fit}}=(185.3 \pm 9.0) \mathrm{MeV} \Rightarrow 1.8 \sigma}
\end{aligned}
$$

Model Independent Interpretation

- The tension in the UT fit can be interpreted as evidence for new physics contributions to ε_{K}, to B_{d} mixing and to $B \rightarrow T V$:

$$
\begin{aligned}
\varepsilon_{K} & =\varepsilon_{K}^{\mathrm{SM}} C_{\varepsilon} \\
M_{12} & =M_{12}^{\mathrm{SM}} e^{2 i \phi_{d}} r_{d}^{2} \\
\operatorname{BR}(B \rightarrow \tau \nu) & =r_{H} \mathrm{BR}(B \rightarrow \tau \nu)^{\mathrm{SM}}
\end{aligned}
$$

- This implies:

$$
\begin{aligned}
S_{\psi K_{s}} & =\sin 2\left(\beta+\phi_{d}\right) \\
\sin 2 \alpha_{\mathrm{eff}} & =\sin 2\left(\alpha-\phi_{d}\right) \\
\Delta M_{B_{d}} & =\left(\Delta M_{B_{d}}\right)^{\mathrm{SM}} r_{d}^{2}
\end{aligned}
$$

Model Independent Interpretation

- NP in B mixing (marginalizing over r_{d}):

$$
\left(\theta_{d}\right)_{\mathrm{fit}}=\left\{\begin{array}{ll}
-(8.4 \pm 3.0)^{o} & (3.1 \sigma) \\
-(11.2 \pm 3.1)^{o} & (3.7 \sigma)
\end{array} \quad(\sin 2 \beta)_{\mathrm{fit}}= \begin{cases}0.875 \pm 0.047 & (3.4 \sigma) \\
0.913 \pm 0.043 & (3.6 \sigma)\end{cases}\right.
$$

- NP in K mixing:

$$
\left(C_{\varepsilon}\right)_{\mathrm{fit}}= \begin{cases}1.25 \pm 0.13 & (2.1 \sigma) \\ 1.55 \pm 0.24 & (2.7 \sigma)\end{cases}
$$

$$
p_{\mathrm{SM}}=\left\{\begin{array}{l}
0.5 \% \text { no } V_{u b} \\
0.2 \% \text { no } V_{q b}
\end{array}\right.
$$

- NP in $B \rightarrow T V$:

$$
\begin{gathered}
\left(r_{H}\right)_{\mathrm{fit}}= \begin{cases}2.20 \pm 0.49 & (2.8 \sigma) \\
2.22 \pm 0.49 & (2.8 \sigma)\end{cases} \\
{[\mathrm{BR}(B \rightarrow \tau \nu)]_{\mathrm{fit}}= \begin{cases}(0.779 \pm 0.098) \times 10^{-4} & (2.7 \sigma) \\
(0.772 \pm 0.098) \times 10^{-4} & (2.7 \sigma)\end{cases} }
\end{gathered}
$$

Hard to reconcile with H^{+}effects: in "natural" configurations $\mathrm{r}_{\mathrm{H}}<1$ (see also B \rightarrow DTv)

Model Independent Interpretation

- NP in B mixing (2 dimensional $\left[\theta_{d}, r_{d}\right.$] contours)

- One dimensional r_{d} ranges compatible with $r_{d}=1$

Super-B expectations

- Reducing uncertainties on Bs mixing and $\mathrm{B} \rightarrow$ TV :

δ_{τ}	δ_{s}	p_{SM}	$\theta_{d} \pm \delta \theta_{d}$	$p_{\theta \mathrm{d}}$	$\delta \theta_{d} / \theta_{d}$
18%	3.9%	0.25%	-11.2 ± 3.1	$74 . \%$	3.7σ
18%	2.5%	0.012%	-11.5 ± 2.9	$7 . \%$	4.3σ
18%	1%	0.000017%	-11.9 ± 2.7	$67 . \%$	5.2σ
10%	3.9%	0.0014%	-10.9 ± 2.3	$74 . \%$	4.8σ
3%	3.9%	0.000015%	-10.7 ± 1.9	$73 . \%$	5.7σ
10%	2.5%	0.000083%	-11.0 ± 2.3	$69 . \%$	5.2σ
10%	1%	$2.26 \mathrm{e}-7 \%$	-11.3 ± 2.2	$63 . \%$	5.8σ
3%	2.5%	$9.59 \mathrm{e}-7 \%$	-10.8 ± 1.9	$68 . \%$	5.9σ
3%	1%	$3.89 \mathrm{e}-9 \%$	-10.9 ± 1.8	$60 . \%$	6.3σ
$\delta_{s}=\delta\left(f_{B_{s}} \sqrt{B_{s}}\right)$					

- Even modest improvements on $B \rightarrow T V$ have tremendous impact on the UT fit ($10 / 50 a b^{-1} \Rightarrow \delta_{T}=10 / 3 \%$)
- Interplay between B_{s} mixing and $B \rightarrow T V$ can result in a 6 σ effect

Operator Level Analysis

- Effective Hamiltonian for B_{d} mixing:

$$
\begin{array}{ll}
& \mathcal{H}_{\text {eff }}=\frac{G_{F}^{2} m_{W}^{2}}{16 \pi^{2}}\left(V_{t b} V_{t d}^{*}\right)^{2}\left(\sum_{i=1}^{5} C_{i} O_{i}+\sum_{i=1}^{3} \tilde{C}_{i} \tilde{O}_{i}\right) \\
O_{1}=\left(\bar{d}_{L} \gamma_{\mu} b_{L}\right)\left(\bar{d}_{L} \gamma_{\mu} b_{L}\right) & \tilde{O}_{1}=\left(\bar{d}_{R} \gamma_{\mu} b_{R}\right)\left(\bar{d}_{R} \gamma_{\mu} b_{R}\right) \\
O_{2}=\left(\bar{d}_{R} b_{L}\right)\left(\bar{d}_{R} b_{L}\right) & \tilde{O}_{2}=\left(\bar{d}_{L} b_{R}\right)\left(\bar{d}_{L} b_{R}\right) \\
O_{3}=\left(\bar{d}_{R}^{\alpha} b_{L}^{\beta}\right)\left(\bar{d}_{R}^{\beta} b_{L}^{\alpha}\right) & \tilde{O}_{3}=\left(\bar{d}_{L}^{\alpha} b_{R}^{\beta}\right)\left(\bar{d}_{L}^{\beta} b_{R}^{\alpha}\right) \\
O_{4}=\left(\bar{d}_{R} b_{L}\right)\left(\bar{d}_{L} b_{R}\right) & O_{5}=\left(\bar{d}_{R}^{\alpha} b_{L}^{\beta}\right)\left(\bar{d}_{L}^{\beta} b_{R}^{\alpha}\right) .
\end{array}
$$

- Parametrization of New Physics effects:

$$
\mathcal{H}_{\mathrm{eff}}=\frac{G_{F}^{2} m_{W}^{4}}{16 \pi^{2}}\left(V_{t b} V_{t d}^{*}\right)^{2} C_{1}^{\mathrm{SM}}\left(\frac{1}{m_{W}^{2}}-\frac{e^{i \varphi}}{\Lambda^{2}}\right) O_{1}
$$

- Analogue expressions for K mixing

Operator Level Analysis: Mixing

- The contribution of the LR operator O_{4} to K mixing is strongly enhanced ($\mu_{L} \sim 2 \mathrm{GeV}, \mu_{H} \sim m_{t}$):

$$
\square \frac{C_{4}\left(\mu_{L}\right)\langle K| O_{4}\left(\mu_{L}\right)|K\rangle}{C_{1}\left(\mu_{L}\right)\langle K| O_{1}\left(\mu_{L}\right)|K\rangle} \simeq(65 \pm 14) \frac{B_{4}\left(\mu_{L}\right)}{B_{1}\left(\mu_{L}\right)} \frac{C_{4}\left(\mu_{H}\right)}{C_{1}\left(\mu_{H}\right)}
$$

- No analogous enhancement in B_{q} mixing

Operator Level Analysis: B_{d} Mixing

- 2 dimensional $[\wedge, \varphi]$ contours:

- Lower limit on Λ induced by $\Delta M_{B_{s}} / \Delta M_{B_{d}}$
- Projections of contours yield the one-dimensional no regions
- Fit points to Λ in the few hundred GeV range and O (I) phase

Operator Level Analysis: K Mixing

- 2 dimensional $[\wedge, \varphi]$ contours $\left(O_{I}\right)$:

- No lower limit on Λ : fitting one parameter only $\left(\mathrm{C}_{\varepsilon}\right)$
- Fit points to Λ in the few hundred GeV range and $O(I)$ phase; fine tuning allow lower masses

Operator Level Analysis: K Mixing

- 2 dimensional $[\Lambda, \varphi]$ contours $\left(\mathrm{O}_{4}\right)$:

- No lower limit on Λ : fitting one parameter only $\left(\mathrm{C}_{\varepsilon}\right)$
- Fit points to Λ in the few TeV range and O (I) phase; fine tuning allow lower masses

Including $\mathrm{Vub}_{\mathrm{ub}}$

New Physics in Vub

- The 3.3 discrepancy between inclusive and exclusive V_{ub} could be a hint for new physics in right-handed currents: [Chen, Nam; Crivellin; Buras, Gemmler, Isidori; EL, Soni (in preparation)]

$$
V_{u b} u_{L} W b_{L} \Longrightarrow V_{u b}\left(u_{L} W b_{L}+\xi u_{R} W b_{R}\right)
$$

- Impact on semileptonic decays (B and π are pseudoscalars):

$$
\begin{aligned}
\left|V_{u b}\right|_{\text {incl }} & \Longrightarrow\left(1+|\xi|^{2}\right)\left|V_{u b}\right|_{\text {incl }} \\
\left|V_{u b}\right|_{\text {excl }} & \Longrightarrow|1+\xi|\left|V_{u b}\right|_{\text {excl }} \\
\operatorname{BR}(B \rightarrow \tau \nu) & \Longrightarrow|1-\xi|^{2} \operatorname{BR}(B \rightarrow \tau \nu)
\end{aligned}
$$

- Direct extraction of ξ from semileptonic decays (and f_{B}) yields:

$$
\xi_{\text {direct }}=-0.223 \pm 0.065 \quad(3.4 \sigma)
$$

New Physics in Vub

- Including the rest of the fit and allowing for new physics in B_{d} mixing we obtain we have a total of three phenomenological parameters (we take ξ to be real):

$$
\begin{aligned}
\left|V_{u b}\right|_{\text {incl }} & \Longrightarrow\left(1+|\xi|^{2}\right)\left|V_{u b}\right|_{\text {incl }} \\
\left|V_{u b}\right|_{\text {excl }} & \Longrightarrow|1+\xi|\left|V_{u b}\right|_{\text {excl }} \\
\operatorname{BR}(B \rightarrow \tau \nu) & \Longrightarrow|1-\xi|^{2} \mathrm{BR}(B \rightarrow \tau \nu) \\
S_{\psi K} & \Longrightarrow \sin 2\left(\beta+\theta_{d}\right) \\
\Delta M_{B_{d}} & \Longrightarrow r_{d}^{2} \Delta M_{B_{d}} \\
\alpha_{\rho \rho} & \Longrightarrow \alpha_{\rho \rho}-\theta_{d}+\arg (1+\xi)
\end{aligned}
$$

Including $\mathrm{Vub}_{\mathrm{ub}}$

New Physics in Vub

- The result of the fit to the unitarity triangle in which we simultaneously allow ξ, r_{d} and θ_{d} to vary independently yields:

$$
\begin{aligned}
\xi & =-0.251 \pm 0.059 & & (4.0 \sigma) \\
\theta_{d} & =-0.102,0.028 & & (3.4 \sigma) \\
r_{d} & =0.978 \pm 0.045 & & (0.5 \sigma)
\end{aligned}
$$

$|V u b|_{\text {incl }}$ strenghten the case for NP in B_{d} mixing, this in turns implies a larger effect in |Vub|excl

Final Messages

Q Unquenched Lattice-QCD + correlations \rightarrow hint for a breakdown of the CKM paradigm at 3.x σ level

- Most probable culprit is B_{d} mixing ($B \rightarrow$ TV \& K mixing also possible)
- Determinations of $V_{u b}$ are a problem (3.3б). Solution:
- ignore (more theoretical work to understand QCD)
- take seriously (new physics in right-handed currents)
- Vub is not necessary to overconstrain the fit (i.e. its temporary exclusion allows to cast the UT fit as a clean \& high-precision tool to identify NP)
- Super- B precision on $\mathrm{B} \rightarrow \mathrm{TV}$ \& improvements on $f_{B_{s}} \sqrt{B_{s}}$ will test the SM at the 5σ level
- Interpretation in terms of new physics points to $O(I)$ phases and mass scales in the few hundred GeV range

Back-up Slides

K mixing $\left(\varepsilon_{K}\right)$

$$
\left|\varepsilon_{K}\right|=\kappa_{\varepsilon} C_{\varepsilon} \hat{B}_{K}\left|V_{c b}\right|^{2} \lambda^{2} \eta\left(\left|V_{c b}\right|^{2}(1-\bar{\rho})+\eta_{t t} S_{0}\left(x_{t}\right)+\eta_{c t} S_{0}\left(x_{c}, x_{t}\right)-\eta_{c c} x_{c}\right)
$$

- Note the quartic dependence on $\mathrm{V}_{\mathrm{cb}}:\left|\mathrm{V}_{\mathrm{cb}}\right|^{4} \sim \mathrm{~A}^{4} \lambda^{8}$
- Critical input from lattice QCD

$$
\left\langle K^{0}\right| \mathcal{O}_{V V+A A}(\mu)\left|\bar{K}^{0}\right\rangle=\frac{8}{3} f_{K}^{2} M_{K}^{2} B_{K}(\mu)
$$

	\mathbf{B}_{K}	$\left(\delta \mathrm{B}_{\mathrm{K}}\right)_{\text {stat }}$	$\left(\delta \mathbf{B}_{\mathrm{K}}\right)_{\text {syst }}$
Aubin, Laiho, Van de Water '09	0.724	0.008	0.029
HPQCD/UKQCD '06	0.83	0.02	0.18
RBC/UKQCD '10	0.749	0.007	0.026
Seoul, BNL, Washington '10	0.724	0.012	0.043
Average: $0.737 \pm \mathbf{0 . 0 2 0}$		(0.0056)	

$$
\hat{B}_{K}=0.737 \pm 0.020
$$

History of BK

Enrico Lunghi

K mixing $\left(\varepsilon_{K}\right)$

- Alternative calculations of κ_{ε}
- Large Nc + some quenched lattice results:

$$
\kappa_{\varepsilon}=0.92 \pm 0.02
$$

[Andryiash,Ovanesyan,Vysotsky; Nierste; Buras,Jamin;
Bardeen,Buras,Gerard; Buras,Guadagnoli]

- Quenched lattice QCD:

B_{q} mixing

- Ratio of the B_{s} and B_{d} mass differences:

$$
\frac{\Delta M_{B_{s}}}{\Delta M_{B_{d}}}=\frac{m_{B_{s}}}{m_{B_{d}}} \frac{\hat{B}_{s} f_{B_{s}}^{2}}{\hat{B}_{d} f_{B_{d}}^{2}}\left|\frac{V_{t s}}{V_{t d}}\right|^{2}=\frac{m_{B_{s}}}{m_{B_{d}}} \xi^{2}\left|\frac{V_{t s}}{V_{t d}}\right|^{2}
$$

- No dependence on V_{cb}
- Two unquenched determinations:

- FNAL/MILC: $\quad \xi=1.205 \pm 0.036 \pm 0.037$
- HPQCD: $\quad \xi=1.258 \pm 0.025 \pm 0.021$
- RBC/UKQCD: $\quad \xi=1.13 \pm 0.06 \pm 0.10$
- Average: $\xi=1.237 \pm 0.032$

B_{q} mixing

- In the fit we utilize only ξ and $f_{B_{s}} \sqrt{B_{s}}$
- There is only one unquenched determination of the B_{s} matrix element from HPQCD but there are two determinations of $f_{\text {Bs }}$ (FNAL/MILC and HPQCD):

	$\mathrm{f}_{\mathrm{B}}(\mathrm{MeV})$	$\left(\delta f_{B}\right)_{\text {stat }}$	$\left(8 f_{B}\right)_{\text {syst }}$	
FNAL/MILC '10	212	6	6	
HPQCD '09 Average: $(205 \pm 12) \mathrm{MeV}$	190	$\begin{aligned} & 7 \\ & (6.4) \end{aligned}$	11	$f_{B}=(205 \pm 12)$ MeV
FNAL/MILC '10	$\mathrm{f}_{\mathrm{B}_{\mathrm{s}}}(\mathrm{MeV})$ 256	${ }_{\left(8 f_{B_{5}}\right)_{\text {stat }}}$	$\left(\delta \mathrm{f}_{\mathrm{B}_{5}}\right)_{\text {syst }}$ 6	$f_{B_{s}} \sqrt{B_{s}}=(288 \pm 15) \mathrm{MeV}$
HPQCD '09	231	5	14	
Average: $(250 \pm 12) \mathrm{MeV}$		(5.4)		-
	$\mathrm{B}_{\text {Bd }}$	$\delta \mathrm{B}_{\text {Bd }}$		
HPQCD '09 Average: 1.26 ± 0.11	1.26	0.11		HPQCD alone finds (266 ± 18) MeV
	$\mathrm{B}_{\text {Bs }}$	$\delta \mathrm{B}_{\mathrm{BS}}$		
$\frac{\text { HPQCD '09 }}{\text { Average: } 1.33 \pm 0.06}$	1.33	0.06		

Three types of CP violation

- Mixing (mass and CP eigenstates are different)

$$
\Gamma\left(\bar{B}_{\mathrm{phys}}^{0}(t) \rightarrow \ell^{+} \nu X\right) \neq \Gamma\left(B_{\mathrm{phys}}^{0}(t) \rightarrow \ell^{-} \bar{\nu} X\right)
$$

- Decay

$$
\Gamma\left(B^{+} \rightarrow f^{+}\right) \neq \Gamma\left(B^{-} \rightarrow f^{-}\right)
$$

- Interference in decays with and without mixing

$$
\Gamma\left(\bar{B}_{\mathrm{phys}}^{0}(t) \rightarrow f_{C P}\right) \neq \Gamma\left(B_{\mathrm{phys}}^{0}(t) \rightarrow f_{C P}\right)
$$

Time dependent CP asymmetry in $b \rightarrow s \bar{s} s$

- No tree-level contribution
- There is no loop suppression of the sub-dominant CKM combination: uncertainty is (I-IO)\%

$$
\mathcal{A}=\left(P^{c}-P^{t}\right) V_{c b} V_{c s}^{*}+\left(P^{u}-P^{t}\right) V_{u b} V_{u s}^{*}
$$

- Analyses in the framework of QCD factorization (SCET) and PQCD conclude that some modes should be very clean: $B \rightarrow \phi K_{S}$

$$
B \rightarrow \eta^{\prime} K_{S}
$$

Time dependent CP asymmetry in $b \rightarrow q \bar{q} s$

- We will consider the asymmetries in the $J / \psi, \phi, \eta^{\prime}$ modes
- A case can be made for the $K_{s} K_{s} K_{s}$ final state
[Cheng,Chua,Soni]

New Physics in penguin amplitudes

- Proper treatment of new physics effects in penguin amplitudes is better implemented with NP contributions to the QCD and EW penguin operators
- Correlation between the $b \rightarrow s \bar{s} s$ and $\mathrm{K} \pi$ asymmetries:

$$
A_{C P}\left(B^{-} \rightarrow K^{-} \pi^{0}\right)-A_{C P}\left(\bar{B}^{0} \rightarrow K^{-} \pi^{+}\right)= \begin{cases}(14.8 \pm 2.8) \% & \exp \\ (2.2 \pm 2.4) \% & \text { QCDF }\end{cases}
$$

- QCDF result very stable under variation of all the inputs
- Possible issue with large color suppressed contributions to the $K^{-} \pi^{0}$ final state

CP asymmetries in $\mathrm{B} \rightarrow \mathrm{K} \pi$

- Amplitudes in QCD factorization:

- We get: $\frac{P}{T} \simeq 0.20, \frac{C}{T} \simeq 0.16, \frac{P_{\mathrm{EW}}}{T} \simeq 0.47$
fits yield $C / T \sim 0.6$

CP asymmetries in $\mathrm{B} \rightarrow \mathrm{K} \pi$

- In QCDF: $A_{C P}\left(B^{-} \rightarrow K^{-} \pi^{0}\right)-A_{C P}\left(\bar{B}^{0} \rightarrow K^{-} \pi^{+}\right)=(2.2 \pm 2.4) \%$
- Dominant sources of uncertainties
- light-cone wave function parameters: $\alpha_{1}^{K}, \alpha_{2}^{K}, \alpha_{2}^{\pi}, \lambda_{B}$
e end-point singularities: $\rho_{H}, \varphi_{H}, \rho_{A}, \varphi_{A}$

$$
X_{H}=\left(1+\rho_{H} e^{i \varphi_{H}}\right) \log \frac{m_{B}}{\Lambda}
$$ hard scattering

$X_{A}=\left(1+\rho_{A} e^{i \varphi_{A}}\right) \log \frac{m_{B}}{\Lambda}$
weak annihilation

- NP contributions to the QCD and EW penguin

Operator Level Analysis: $b \rightarrow s$ amplitudes

- Effective Hamiltonian:

$$
\begin{aligned}
& \mathcal{H}_{\mathrm{eff}}=\frac{4 G_{F}}{\sqrt{2}} V_{c b} V_{c s}^{*}\left(\sum_{i=1}^{6} C_{i}(\mu) O_{i}(\mu)+\sum_{i=3}^{6} C_{i Q}(\mu) O_{i}(\mu)\right) \\
& Q_{4}=\left(\bar{s}_{L} \gamma^{\mu} T^{a} b_{L}\right) \sum_{q}\left(\bar{q} \gamma_{\mu} T^{a} q\right) \quad Q_{3 Q}=\left(\bar{s}_{L} \gamma^{\mu} b_{L}\right) \sum_{q} Q_{q}\left(\bar{q} \gamma_{\mu} q\right)
\end{aligned}
$$

likely to receive NP corrections

- Assume the following parametrization of NP effects:
loop suppression + QED/QCD penguin $g_{s, e}$ dependence

Effective mass scale that absorbs
NP couplings

Operator Level Analysis: $b \rightarrow s$ amplitudes

$\Lambda \sim[350 \div 420] \mathrm{GeV}$
$\Lambda \sim[140 \div 190] \mathrm{GeV}$

Model Independent Interpretation

- The tension in the UT fit can be interpreted as evidence for new physics contributions to ε_{K} and to the phases of B_{d} mixing and of $b \rightarrow s$ amplitudes:

$$
\begin{aligned}
\varepsilon_{K} & =\varepsilon_{K}^{\mathrm{SM}} C_{\varepsilon} \\
M_{12} & =M_{12}^{\mathrm{SM}} e^{2 i \phi_{d}} r_{d}^{2} \\
A(b \rightarrow s \bar{s} s) & =[A(b \rightarrow s \bar{s} s)]_{\mathrm{SM}} e^{i \theta_{A}}
\end{aligned}
$$

- This implies:

$$
\begin{aligned}
S_{\psi K_{s}} & =\sin 2\left(\beta+\phi_{d}\right) \\
\sin 2 \alpha_{\mathrm{eff}} & =\sin 2\left(\alpha-\phi_{d}\right) \\
\Delta M_{B_{d}} & =\left(\Delta M_{B_{d}}\right)^{\mathrm{SM}} r_{d}^{2} \\
a_{\left(\phi, \eta^{\prime}\right) K_{s}} & =\sin 2\left(\beta+\phi_{d}+\theta_{A}\right)
\end{aligned}
$$

- In general NP will affect in different ways the various $b \rightarrow s$ channels

