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The Cabibbo -Kobayashi  -Maskawa  matrix

Gauge interactions do not violate flavor:

Yukawa interactions (mass) violate flavor:

LGauge =
�

ψ,a,b

ψ̄a(i∂/ − gA/ δab)ψb

The Yukawas are complex 3x3 matrices:
YU = ULY diag

U UR, YD = DLY diag
D DR, YE = ELY diag

E ER

2

✹ ★ ★

★ = Real Nobel Laureate
✹ =  Virtual Nobel Laureate

LYukawa =
�

ψ,a,b

ψ̄La H Y
abψRb = Q̄LHYUuR + Q̄LHYDdR + L̄LHYEER

From Gauge to Mass eigenstates

• neutral currents: 

• charged currents:

ū0
LZ/ u0

L =⇒ ūLZ/ ULU†
LuL = ūLZ/ uL

ū0
LW/ d0

L =⇒ ūLW/ ULD†
LdL = ūLW/ VCKMdL

huge potential
for NP effects

(MFV?) 
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


Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb





λ: β-decay, K→πlν, D→(π,K)lν, νN→μX, ....

A: B→D(*)lν, B→Xclν
=1: t→Wb (single top)

A: no direct meas. (B→Xsγ, ΔMBs, ...)

ρ,η: B→πlν, B→Xulν
       CP violation

ρ,η: no direct meas. (ΔMBd, CP violation, K mixing)

3

The Cabibbo -Kobayashi  -Maskawa  matrix✹ ★ ★

✹ =  Virtual Nobel Laureate
★ = Real Nobel Laureate




1− λ2/2 λ Aλ3(ρ− iη)
−λ 1− λ2/2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1



Wolfenstein 
parametrization:
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Unitarity Triangles:

βγ

α

VcdV
∗
cb

V u
d
V

∗
u
b V

td V ∗
tb

Vtd = |Vtd| e−iβ

Vub = |Vub| e−iγ

βsVtsV
∗
tb

V
u

s
V
∗ u
b

VcsV
∗
cb

βs = arg(Vts) = ηλ
2 + O(λ4)

4

The Cabibbo -Kobayashi  -Maskawa  matrix✹ ★ ★

★ = Real Nobel Laureate
✹ =  Virtual Nobel Laureate



Enrico Lunghi

The Unitarity Triangle Fit

5

β: time dependent ACP in 
B→J/ψ K and related modes 
(very clean)

α: time dependent ACP in B→
(ππ,ρρ,ρπ) modes (large 
penguin pollution removed with 
isospin analysis)

γ: B→D(*)K(*) decays (model 
independent studies - separation 
of D-meson flavor and CP 
eigenstates )

εK: CP violation in K mixing
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The Unitarity Triangle Fit

• Mass and CP eigenstates of K mesons differ:
KL ∼ K2 + ε̄K1

ππindirect (     )

direct (   )ε�
ππ

�
KS ∼ K1 + ε̄K2

KL ∼ K2 + ε̄K1

•            mass difference:

εK

B − B̄

∝
�
VtbV

∗
tq

�2
f2
Bq

B̂q

Γ(B̄0
phys(t)→ fCP ) �= Γ(B0

phys(t)→ fCP )• Time dependent CP asymmetries:

b
c

c

s

b t

VcbV
∗
cs VtbV

∗
ts = −VcbV

∗
cs − VubV

∗
us

s

c
c
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• Lattice QCD presently delivers 2+1 flavors determinations for all 
the quantities that enter the fit to the UT

• Results from different lattice collaborations are often correlated

MILC gauge configurations: fBd, fBs, ξ,  Vub, Vcb, fK

use of the same theoretical tools: BK, Vcb

experimental data:  Vub

• It becomes important to take these correlation into account 
when combining saveral lattice results

• We assume all errors to be normally distributed

• Updated averages at: http://www.latticeaverages.org

Treatment of lattice inputs and errors

7

[Laiho,EL,Van de Water, 0910.2928
[Laiho,EL,Van de Water, 1102.3917]

http://www.latticeaverages.org
http://www.latticeaverages.org
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Comments on systematic uncertainties

8

Gaussian
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• We treat all systematic uncertainties as gaussian

• Most relevant systematic errors come from lattice QCD 
(BK,ξ) and are obtained by adding in quadrature several 
different sources of uncertainty

• Gaussian treatment seems a fairly conservative choice



Enrico Lunghi

Comments on systematic uncertainties

9

Gaussian
Flat
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0.7� �flat�
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• We treat all systematic uncertainties as gaussian

• Most relevant systematic errors come from lattice QCD 
(BK,ξ) and are obtained by adding in quadrature several 
different sources of uncertainty

• Gaussian treatment seems a fairly conservative choice



Enrico Lunghi

Determining A

10

• Can be extracted by tree-level processes (b→clν)

• ΔMBs is conventionally used only to normalize ΔMBd but it 
should be noted that it provides an independent 
determination of A (that might be subject to NP effects):

• Other processes are very sensitive to A but also display a 
strong ρ-η and NP dependence and are therefore usually 
discussed in the framework of a Unitarity Triangle fit:

∆MBs ∝ f2
Bs

B̂BsA
2λ4

BR(B → τν) ∝ f2
BA2λ6(ρ2 + η2)

|εK | ∝ B̂K κε A4λ10η(ρ− 1)
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Note on        (K mixing)

11

εK

εK = eiφεsinφε

�
ImMK

12

∆MK
+

ImA0

ReA0

�Note on      : εK

from experiment
mostly short 

distance + χPT
long distance 
(use         ){ ε�/ε

κε

• Mass and CP eigenstates are different:
KL ∼ K2 + ε̄K1KS ∼ K1 + ε̄K2

• KL can decay into the CP even (ππ)I=0 final state through its 
tiny K1 component:

εK =
A(KL → (ππ)I=0)
A(KS → (ππ)I=0)

KL ∼ K2 + ε̄K1

ππindirect (  )

direct (   )

ε
ε�

ππ
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• Experimentally one has:

• ImA0/ReA0 can be extracted from experimental data on ε’/ε 
and theoretical calculation of isospin breaking corrections:

  

 

• Combining everything:

12

|εK | = κεCεB̂K |Vcb|
2λ2η

�
|Vcb|

2(1− ρ̄) + ηttS0(xt) + ηctS0(xc, xt)− ηccxc

�

φε = (43.51± 0.05)o

Re(ε�
K/εK)exp ∼

ω√
2|εK |

�
ImA2

ReA2
− ImA0

ReA0

�

[RBC/UK-QCD]
1st unquenched attempt!

[PDG]

K mixing (      )

κε = 0.92± 0.01 [Laiho,EL,Van de Water]

ImA2 = (−7.9± 4.2)× 10−13 GeV

εK
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K mixing (      )εK

• Buras, Guadagnoli & Isidori pointed out that also        
receives non-local corrections with two insertions of the 
ΔS=1 Lagrangian:

MK
12

u, c
s

d

d

s

K0 K0

u, cs

d

d

s

K0 K0

Figure 1: Contractions of the leading |∆S| = 1 four-quark effective operators contributing to M12 at
O(G2

F ).

diagrams in Fig. 1. In other words, the leading order result is obtained with the following substitutions
in Eq. (11):

ImM12 → ImM (6)
12 = ImMSD

12 and ξ → 0 . (15)

Going one step forward requires taking into account:

1. non-local contributions to both ImM12 and ImΓ12 generated by the O(GF ) dimension-six∆S = 1
operators,

2. local contributions to ImM12 generated by dimension-eight ∆S = 2 operators of O(G2
F ).

The structure of the subleading terms in ImM12 is very similar to the O(G2
F ) long-distance contribu-

tions to K → πνν̄, discussed in Ref. [11]. The relevant effective Hamiltonian changes substantially
if we choose a renormalization scale above or below the charm mass. Keeping the charm as explicit
degree of freedom, dimension-eight operators are safely negligible and the key quantity to evaluate is

T12 = −i

�
d4x�K0|T

�
H(u,c)

|∆S|=1(x)H
(u,c)
|∆S|=1(0)

�
|K̄0� , (16)

where the superscript in H(u,c)
∆S=1 denotes that the we have two dynamical up-type quarks. The ab-

sorptive part of T12 contributes to Γ12, while the dispersive part contributes to M12. In the latter case
the leading term in the expansion in local operators should be subtracted, being already included in

ImM (6)
12 . In principle, extracting the subleading contribution to ImM12 directly from Eq. (16) is the

best strategy: the result would be automatically scale independent. However, in practice this is far
from being trivial also on the lattice, given the disconnected diagrams in Fig. 1.

Following a purely analytical approach, we can integrate out the charm and renormalize H∆S=1

below the charm mass. This allows to identify ξ with the weak phase of the A0 amplitude, that, as
mentioned, has already been estimated in Ref. [5] (see also [12]). On the other hand, ImM12 assumes
the form

ImM12 = ImMSD
12 + ImMLD

12 , ImMLD
12 = ImMnon−local

12 + ImM (8)
12 , (17)

where ImMnon−local
12 and ImM (8)

12 are not separately scale independent. The structure of the dimension-
eight operators obtained integrating out the charm, and an estimate of their impact on �K , has been

presented in Ref. [13]. According to this estimate, ImM (8)
12 is less than 1% of the leading term.

The smallness of ImM (8)
12 can be understood by the following dimensional argument. First, it should

be noted that the CKM suppression of the dimension-eight operators is (V ∗
csVcd)2, namely the same

CKM factor of the genuine charm contribution in H(6)
∆S=2. Second, even if we are not able to precisely

evaluate the hadronic matrix elements of the dimension-eight operators, we expect

�K̄0|Q(8)
i |K0� = O(1)×m2

K × �K̄0|Q(6)|K0� . (18)

According to this scaling, the contribution of ImM (8)
12 is an O(m2

K/m2
c ≈ 15%) correction of the

charm contribution (charm-charm loops) to ImM (6)
12 , which itself is a O(15%) correction of the total

4

• Using CHPT they obtain a conservative estimate of these  
xxxxxxxxxxxxxeffects. Combining the latter with our 
xxxxxxxxxxxxxdetermination of ImA0 we obtain:

[Laiho,EL,Van de Water;

-6% !

κε = 0.94± 0.017
Buras, Guadagnoli, Isidori]

K0 K0π0, η (η�) K0 K0π

π

Figure 2: Tree-level and one-loop diagrams contributing to K̄0–K0 mixing in CHPT.

and F can be identified with the pion decay constant (F ≈ 92MeV). The effective coupling G8 can
be determined by K → 2π amplitudes. Neglecting the (27L, 1R) operator and evaluating the K → 2π
amplitudes at tree level leads to

A0 = A(K0 → (2π)I=0) =
√
2FG8(m

2
K −m2

π) , (25)

which implies |G8| ≈ 9× 10−6 (GeV)−2. As far as the weak phase of G8 is concerned, at this level of
accuracy we have Im(G8)/Re(G8) = ξ.

In principle L
(2)
|∆S|=1 could contribute to M12 already at O(p2), via the tree-level diagram in Fig. 2

(left). However, considering the O(p2) relation among π0, η and kaon masses (i.e. the Gell-Mann
Okubo mass formula), this contribution vanishes [14]. As a result, the first non-vanishing contribution

to M12 generated by L
(2)
|∆S|=1 arises only at O(p4).

At O(p4) we should evaluate loop amplitudes with two insertions of L(2)
|∆S|=1 and tree-level diagrams

with the insertion of appropriate O(p4) counterterms. Among all these O(p4) contributions, the only
model-independent, and presumably dominant, contribution to M12 is the non-analytic one generated
by the pion-loop amplitude in Fig. 2 (right),

T (ππ)
12 = A

(ππ)(K̄0 → K0) = − 3

16π2
F 2(G∗

8)
2(m2

K −m2
π)

2 ×

×
�
�

1− 4r2π

�
log

1 +
�

1− 4r2π
1−

�
1− 4r2π

− iπ

�
+ log

�
m2

π

µ2

��
, (26)

with r2π = m2
π/m

2
K and where we have absorbed all finite (mass-independent) terms in the definition

of the renormalization scale µ. This is the only contribution which has an absorptive part. As a
consequence, its weak phase can be unambiguously related to the weak phase of the K0 → (2π)I=0

amplitude to all orders in the chiral expansion. In addition, it is the only contribution that survives
in the limit of SU(2)L × SU(2)R CHPT, which is known to represent a good approximation of the
full O(p4) amplitude in several K-decay observables where contributions from counterterms are fully
under control (see e.g. Ref. [15]).

A CHPT calculation of M12 complete to O(p4) would require consideration of loops involving kaons
and η’s, as well as O(p4) local counterterms. However, all these additional pieces are not associated
with any physical cut. As such, they can effectively be treated as a local term whose overall weak
phase cannot be related to the phase of the K0 → (2π)I=0 amplitude.2 On account of the above
considerations,3 we refrain from a full O(p4) CHPT calculation, and we focus on the pion-loop non-

analytic contribution only. Using the relation T (ππ)
12 = 2mKM (ππ)

12 (µ), the result in Eq. (26) implies

M (ππ)
12 (µ) = − 3

64π2mK
(A∗

0)
2

�
log

�
m2

K

µ2

�
+O

�
m2

π

m2
K

��
. (27)

The absorptive part in Eq. (26) is nothing but the leading |(2π)I=0� contribution to Γ12, which gives
rise to the relation (10). The dispersive part is the dominant contribution to M12 in the leading-log

2
For a recent, elucidating discussion about the role of kaon loops in CHPT, see [16].

3
The authors warmly acknowledge Jean-Marc Gérard for triggering a discussion on this point.

6
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• Error budget:

14

|εK | = κεCεB̂K |Vcb|
2λ2η

�
|Vcb|

2(1− ρ̄) + ηttS0(xt) + ηctS0(xc, xt)− ηccxc

�

�1.0 �0.5 0.0 0.5 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Ρ

Η

Vcb only

BK only

All other uncertainties
have negligible impact 
on the combined error

Central value of κε is 
important

[Laiho,EL,van de Water]

K mixing (      )εK
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15

B → τν

BR(B → τν) =
G2

F m2
τmB+

8πΓB+

�
1−m2

τ/m2
B+

�2
f2

B |Vub|2

• Lattice inputs:

• Babar and Belle published measurements using semileptonic and hadronic 
tags (to reconstruct the recoiling B meson):

• In NP models with a charged Higgs (2HDM, MSSM,..):

BR(B → τν)NP = BR(B → τν)SM

�
1−

tan2 β m2
B+

m2
H+(1 + �0 tanβ)

�2

� �� �
rH

BR(B → τν)exp = (1.68± 0.31)× 10−6

B̂d, ξ, fBs

�
B̂s =⇒ fBd = fBs B̂

1/2
s

ξB̂d

Using fB directly is not recommended because of the large 
correlation between fB and ξ
As a consistency check we can compare direct and indirect 
determinations of fB
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 (GeV)bm
4.55 4.6 4.65 4.7

|
cb

|V

0.04

0.041

0.042

0.043

  l c  X
 s + X l c  X

HFAG
End of 2009

Vcb

16

• Exclusive from B→D(*)lν. Using form factor from lattice 
QCD (2+1 dynamical staggered fermions) one finds:

• Inclusive from global fit of B→Xclν moments.

[FNAL/MILC]

[Büchmuller,Flächer]

Inclusion of b→sγ has strong impact 
on quark masses but not on Vcb 
NNLO in αs and O(1/mb4) known
O(αs/mb2) corrections partially known
Issue of mb is relevant for Vub

1.7σ discrepancy between inclusive 
and exclusive

[exp. error on B→D* rescaled to account for the large χ2/dof = 39/21]
[average:Laiho,EL,Van de Water]|Vcb| = (39.5 ± 1.0)× 10−3

|Vcb| = (41.68± 0.73)× 10−3
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Vub

17

• Exclusive from B→πlν:
[HPQCD, FNAL/MILC]

3.3σ discrepancy between 
inclusive and exclusive (!)

[average:Laiho,EL,Van de Water]

|Vub| = (3.12 ± 0.26)× 10−3

]-3 10×|  [ub|V
2 3 4 5

]-3 10×|  [ub|V
2 3 4 5

 HFAG Ave. (BLNP) 
 0.16 + 0.22 - 0.23±4.32 

HFAG Ave. (DGE) 
 0.16 + 0.18 - 0.17±4.46 

HFAG Ave. (GGOU) 
 0.16 + 0.15 - 0.22±4.34 

HFAG Ave. (ADFR) 
 0.14 + 0.25 - 0.22±4.16 

HFAG Ave. (BLL) 
 0.38± 0.24 ±4.87 

 BABAR (LLR) 
 0.29± 0.45 ±4.43 

 BABAR endpoint (LLR) 
 0.48± 0.29 ±4.28 

 BABAR endpoint (LNP) 
 0.47± 0.30 ±4.40 

HFAG
End Of 2009

• Inclusive from global fit of B→Xulν moments
Legend:
BLNP = Bosch, Lange, Neubert, Paz
DGE = Andersen, Gardi
GGOU = Gambino,Giordano,Ossola,Uraltsev
ADFR = Aglietti, Di Lodovico, Ferrera, Ricciardi
BLL = Bauer, Ligeti, Luke
LLR = Leibovich, Low, Rothstein
LNP = Lange, Neubert, Paz

We will add a 10% “model” uncertainty 
to the GGOU result (but ...)



Enrico Lunghi

Inputs to the fit: summary

18

very small hadronic 
uncertainties

|Vcb|excl = (39.5± 1.0)× 10−3 |Vub|excl = (3.12± 0.26)× 10−3

B̂K = 0.737± 0.020 κε = 0.94± 0.02

fB = (207.8± 8.3) MeV fBs = (252.3± 8.2) MeV

B̂Bd = 1.26± 0.11 B̂Bs = 1.33± 0.06

fBd

�
B̂Bd = (233± 14) MeV fBs

�
B̂Bs = (291± 11) MeV

ξ ≡ fBs

�
B̂s/(fBd

�
B̂d) = 1.237± 0.032 fBs/fBd = 1.215± 0.019

|Vcb|incl = (41.68± 0.44± 0.09)× 10−3 α = (89.5± 4.3)o

|Vub|incl = (4.34± 0.16+0.15
−0.22)× 10−3 η1 = 1.51± 0.24

BR(B → τν) = (1.68± 0.31)× 10−4 SψKS = 0.668± 0.023

∆mBd = (0.507± 0.005) ps−1 γ = (78± 12)o

∆mBs = (17.77± 0.10± 0.07) ps−1 η2 = 0.5765± 0.0065

mt,pole = (172.4± 1.2) GeV η3 = 0.494± 0.046

mc(mc) = (1.268± 0.009) GeV ηB = 0.551± 0.007

εK = (2.229± 0.012)× 10−3 λ = 0.2255± 0.0007
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www.latticeaverages.org
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http://www.latticeaverages.org
http://www.latticeaverages.org
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Time dependent CP asymmetry in 

• Penguin polluting effects are CKM (10-2) and loop 
suppressed:

b
c

c

s

b t s

c

c

VcbV
∗
cs VtbV

∗
ts = −VcbV

∗
cs − VubV

∗
us

• It is a clean measurement of the Bd mixing phase 
(assuming no NP corrections to the Tree amplitude):

21

B → J/ψKS
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Hadronic uncertainties in SψK

• The small penguin pollution can be extracted in the SU(3) 
limit from time-dependent studies of                  and Bs → ψK B → ψπ0

• Using a conservative approach about SU(3) effects one finds:

[Faller, Jung, 
Fleischer, Mannel]

[Fleischer]

|∆SψK | < 0.02

• Quantitative studies based on QCD factorization, pQCD and  
rescattering effects yield effects that are one order of 
magnitude smaller

• We conclude that presently one should not use                 
decays as sole handle on hadronic uncertainties on  

B → ψπ0

SψK

• Improved measurements of                 (at super-B) and of  
sdsds         (at LHC-b) will allow to keep this uncertainty 
under control
Bs → ψK

B → ψπ0
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Current fit to the unitarity triangle (removing Vub)
[Lunghi,Soni 0803.4340 and 0903.5059]

• Vub is the \begin{personal opinion} most controversial \end{personal opinion} input

• Every single remaining input is on very solid exp/th ground
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Current fit to the unitarity triangle (removing Vub)

[sin 2β]fit = 0.875± 0.047 ⇒ 3.4 σ

[fB ]fit = (201.0± 9.2) MeV ⇒ 0.6 σ
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Current fit to the unitarity triangle (removing Vub)

[BR(B → τν)]fit = (0.779± 0.098)× 10−4 ⇒ 2.7 σ

[fB ]fit = (186.2± 9.0) MeV ⇒ 1.9 σ
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• The use of  Vcb seems to be necessary in order to use K 
mixing to constrain the UT:

Removing Vub and Vcb

|εK | = 2χεB̂Kκε ηλ6
�
A4λ4(ρ− 1)η2S0(xt) + A2

�
η3S0(xc, xt)− η1S0(xc)

��
∆MBs = χs f2

Bs
B̂BsA

2λ4

BR(B → τν) = χτf2
BA2λ6(ρ2 + η2)

|εK | ∝ B̂K (fBsB̂
1/2
s )−4 f(ρ, η)

|εK | ∝ B̂K BR(B → τν)2 f−4
B g(ρ, η)

• The interplay of these constraints allows to drop Vcb while 
still constraining new physics in K mixing:

[Lunghi,Soni 0912.002]
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• The use of  Vcb seems to be necessary in order to use K 
mixing to constrain the UT:

Removing Vcb !

ρ-η topology of the
constraint makes it 
relevant despite large 
errors on B→τν

X : B̂K |Vcb| fBsB̂
1/2
s BR(B → τν) fB

δX : 3.7% 2.5% 4.7% 21% 5%
δεK : 3.7% 10% 18.9% 42% 20%
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Removing Vub and Vcb
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Removing Vub and Vcb

[sin 2β]fit = 0.9013± 0.043 ⇒ 3.6 σ

[fB ]fit = (202.6± 9.1) MeV ⇒ 0.4 σ
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Removing Vub and Vcb

[BR(B → τν)]fit = (0.772± 0.098)× 10−4 ⇒ 2.7 σ

[fB ]fit = (185.3± 9.0) MeV ⇒ 1.8 σ
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• The tension in the UT fit can be interpreted as evidence for new 
physics contributions to      , to Bd mixing and to B→τν: 

31

Model Independent Interpretation

• This implies: 

εK

SψKs = sin 2(β + φd)

sin 2αeff = sin 2(α− φd)

∆MBd = (∆MBd)
SM r2d

εK = εSM
K

Cε

M12 = MSM
12 e2iφd r2

d

BR(B → τν) = rHBR(B → τν)SM
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Model Independent Interpretation

• NP in K mixing:

• NP in B mixing (marginalizing over rd):

• NP in B→τν:

Hard to reconcile with H+ effects: 
in “natural” configurations rH<1 
(see also B→Dτν)

(θd)fit =

�
−(8.4± 3.0)o (3.1σ)

−(11.2± 3.1)o (3.7σ)
(sin 2β)fit =

�
0.875± 0.047 (3.4σ)

0.913± 0.043 (3.6σ)

(Cε)fit =

�
1.25± 0.13 (2.1σ)

1.55± 0.24 (2.7σ)

(rH)fit =

�
2.20± 0.49 (2.8σ)

2.22± 0.49 (2.8σ)

[BR(B → τν)]fit =

�
(0.779± 0.098)× 10−4 (2.7σ)

(0.772± 0.098)× 10−4 (2.7σ)

pSM =

�
0.5% no Vub

0.2% no Vqb
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Model Independent Interpretation

• NP in B mixing (2 dimensional [θd,rd] contours)

no Vub no Vqb

• One dimensional      ranges compatible withrd rd = 1

pno Vub
SM = 0.5% p

no Vqb

SM = 0.2%
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• Even modest improvements on B→τν have tremendous 
impact on the UT fit (10/50 ab-1 ⇒ δτ = 10/3% )

Super-B expectations

δs = δ(fBs

�
Bs)δτ = δBR(B → τν)

• Interplay between Bs mixing and B→τν can result in 
a 6σ effect

• Reducing uncertainties on Bs mixing and B→τν :
δτ δs pSM θd ± δθd pθd δθd/θd
18% 3.9% 0.25% −11.2± 3.1 74.% 3.7σ
18% 2.5% 0.012% −11.5± 2.9 71.% 4.3σ
18% 1% 0.000017% −11.9± 2.7 67.% 5.2σ
10% 3.9% 0.0014% −10.9± 2.3 74.% 4.8σ
3% 3.9% 0.000015% −10.7± 1.9 73.% 5.7σ
10% 2.5% 0.000083% −11.0± 2.3 69.% 5.2σ
10% 1% 2.26e-7% −11.3± 2.2 63.% 5.8σ
3% 2.5% 9.59e-7% −10.8± 1.9 68.% 5.9σ
3% 1% 3.89e-9% −10.9± 1.8 60.% 6.3σ
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Operator Level Analysis

• Effective Hamiltonian for Bd mixing: 

Heff =
G2

F m2
W

16π2
(VtbV

∗
td)

2

�
5�

i=1

CiOi +
3�

i=1

C̃iÕi

�

• Parametrization of New Physics effects:

Heff =
G2

F m4
W

16π2
(VtbV

∗
td)

2
C

SM
1

�
1

m2
W

− eiϕ

Λ2

�
O1

• Analogue expressions for K mixing

O1 = (d̄LγµbL)(d̄LγµbL) Õ1 = (d̄RγµbR)(d̄RγµbR)
O2 = (d̄RbL)(d̄RbL) Õ2 = (d̄LbR)(d̄LbR)
O3 = (d̄α

Rb
β
L)(d̄β

Rbα
L) Õ3 = (d̄α

Lb
β
R)(d̄β

Lbα
R)

O4 = (d̄RbL)(d̄LbR) O5 = (d̄α
Rb

β
L)(d̄β

Lbα
R) .
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• The contribution of the LR operator O4 to K mixing is strongly 
enhanced (                              ):

C1(µL)�K|O1(µL)|K� � 0.8 C1(µH)
1
3
f

2
K

mKB1(µL)

C4(µL)�K|O4(µL)|K� � 3.7 C4(µH)
1
4

�
mK

ms(µL) + md(µL)

�2

f
2
K

mKB4(µL)

µL ∼ 2 GeV , µH ∼ mt

• No analogous enhancement in Bq mixing 

running from μH to μL chiral enhancement

C4(µL)�K|O4(µL)|K�
C1(µL)�K|O1(µL)|K� � (65 ± 14)

B4(µL)
B1(µL)

C4(µH)
C1(µH)

Operator Level Analysis: Mixing

O(1)
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Operator Level Analysis: Bd Mixing

• Lower limit on Λ induced by ∆MBs/∆MBd

• 2 dimensional [Λ,φ] contours:

• Projections of contours yield the one-dimensional nσ regions
• Fit points to Λ in the few hundred GeV range and O(1) phase

no Vub no Vqb

pno Vub
SM = 0.5% p

no Vqb

SM = 0.2%
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Operator Level Analysis: K Mixing

• 2 dimensional [Λ,φ] contours (O1):

• No lower limit on Λ: fitting one parameter only (Cε)
• Fit points to Λ in the few hundred GeV range and O(1) phase; fine 

tuning allow lower masses

no Vub no Vqb

pno Vub
SM = 0.5% p

no Vqb

SM = 0.2%
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Operator Level Analysis: K Mixing

• 2 dimensional [Λ,φ] contours (O4):

• No lower limit on Λ: fitting one parameter only (Cε)
• Fit points to Λ in the few TeV range and O(1) phase; fine tuning allow 

lower masses

no Vub no Vqb

pno Vub
SM = 0.5% p

no Vqb

SM = 0.2%
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Including Vub

40

!
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New Physics in Vub

• The 3.3 discrepancy between inclusive and exclusive Vub 
could be a hint for new physics in right-handed currents: 

VubuL /WbL =⇒ Vub(uL /WbL + ξ uR /WbR)

[Chen, Nam; Crivellin; Buras, Gemmler, Isidori; EL, Soni (in preparation)]

• Impact on semileptonic decays (B and π are pseudoscalars):

• Direct extraction of ξ from semileptonic decays (and fB) yields:

ξdirect = −0.223± 0.065 (3.4σ)

|Vub|incl =⇒ (1 + |ξ|2)|Vub|incl
|Vub|excl =⇒ |1 + ξ| |Vub|excl

BR(B → τν) =⇒ |1− ξ|2BR(B → τν)
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• Including the rest of the fit and allowing for new physics in Bd 
mixing we obtain we have a total of three phenomenological 
parameters (we take ξ to be real):

New Physics in Vub

|Vub|incl =⇒ (1 + |ξ|2)|Vub|incl
|Vub|excl =⇒ |1 + ξ| |Vub|excl

BR(B → τν) =⇒ |1− ξ|2BR(B → τν)

SψK =⇒ sin 2(β + θd)

∆MBd =⇒ r2d∆MBd

αρρ =⇒ αρρ − θd + arg(1 + ξ)



Enrico Lunghi

Including Vub

43
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• The result of the fit to the unitarity triangle in which we 
simultaneously allow ξ, rd and θd to vary independently 
yields:

|Vub|incl strenghten the case 
for NP in Bd mixing, this in 
turns implies a larger effect in 
|Vub|excl

New Physics in Vub

ξ = −0.251± 0.059 (4.0 σ)

θd = −0.102, 0.028 (3.4 σ)

rd = 0.978± 0.045 (0.5 σ)
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Unquenched Lattice-QCD + correlations → hint for a breakdown of the CKM 
paradigm at 3.x σ level

Most probable culprit is Bd mixing (B→τν & K mixing also possible)

Determinations of  Vub are a problem (3.3σ). Solution:

ignore (more theoretical work to understand QCD)

take seriously (new physics in right-handed currents)

Vub is not necessary to overconstrain the fit (i.e. its temporary exclusion 
allows to cast the UT fit as a clean & high-precision tool to identify NP)

Super-B precision on B→τν & improvements on              will test the 
SM at the 5σ level

Interpretation in terms of new physics points to O(1) phases and mass 
scales in the few hundred GeV range

Final Messages

45

fBs

√
Bs
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• Note the quartic dependence on Vcb: |Vcb|4~A4 λ8 

• Critical input from lattice QCD

47

|εK | = κεCεB̂K |Vcb|
2λ2η

�
|Vcb|

2(1− ρ̄) + ηttS0(xt) + ηctS0(xc, xt)− ηccxc

�

�K0
|OV V +AA(µ)|K̄0

� =
8
3
f2

KM2
KBK(µ)

K mixing (      )

B̂K = 0.737± 0.020

εK
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History of BK

Donoghue et al. 1983 �SU�3�

Buras 1998 �1�NC�

Gavela et al. 1984 �NF�0�
Kilcup et al. 1990 �NF�0�Bernard � Soni 1990 �NF�0�

JLQCD 1997 �NF�0�
Blum�Soni 1997 �NF�0�
RBC 2001 �NF�0, Q?�
CP�PACS 2001 �NF�0, Q?�
Becirevic 2003 �Review, NF�0�RBC 2004 �NF�2�HPQCD 2006 �NF�2�1�RBC�UKQCD 2007 �NF�2�1�JLQCD 2008 �NF�2�
CP�PACS 2008 �NF�0�
ETMC 2010 �NF�2�
ALV 2009 �NF�2�1�RBC�UKQCD 2010 �NF�2�1�SBW 2010 �NF�2�1�Average LS 2010 �NF�2�1�Average LLV 2011 �NF�2�1�

0.3

0.7�0.1

1�1

0.96�0.05
0.86�0.12

0.863�0.058
0.86�0.07

0.73�0.015
0.789�0.027

0.87�0.061
0.699�0.025
0.83�0.18
0.72�0.039

0.738�0.055
0.782�0.07

0.73�0.03
0.724�0.028

0.749�0.026
0.724�0.045
0.74�0.025
0.737�0.02

& PCAC�, No error estimate
Cabibbo et al. 1984 �NF�0�
Bernard et al. 1985 �NF�0��

0 0.5 1 1.5
1980

1985

1990

1995

2000

2005

2010

B
�
K

Y
ea
r
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• Alternative calculations of 

Large Nc + some quenched lattice results: 

Quenched lattice QCD:

49

K mixing (      )

κε

[Andryiash,Ovanesyan,Vysotsky;
Nierste; Buras,Jamin; 
Bardeen,Buras,Gerard; 
Buras,Guadagnoli]

Quenched ImA2 × 1013 GeV

RBC ’01 [51] −12.6

CP-PACS ’01 [52] −9.1

SPQCDR ’04 [53] −5.5

Babich et al ’06 [54] −9.2

Yamazaki ’08 [55] −11.8

Average −9.6

TABLE VIII: Quenched lattice values for ImA2.

φε = (43.51 ± 0.05)◦ |εK | = (2.229 ± 0.012)× 10−3

ω = 0.0450 Re(ε�K/εK) = 1.68 ± 0.19× 10−3

ReA2 = 1.50× 10−8 GeV ImA2 = (−7.9 ± 4.2)× 10−13 GeV

TABLE IX: Inputs used to determine κε.

the error in κ�. We note for comparison that if we use the average quenched value of ImA2,

assigning to it a 100% error, we find κ� = 0.92 ± 0.02.

F. fK

The kaon decay constant fK enters the CKM unitarity triangle through εK . Because

experiments can only measure the product fK × |Vus|, lattice calculations are needed to

obtain fK by itself. There have already been four 2+1 flavor lattice QCD determinations of

fK using different valence and sea quark actions, and several more calculations are underway.

Thus fK is one of the best-known hadronic weak matrix elements. Table X summarizes the

current status of 2+1 flavor lattice QCD calculations of fK .

The MILC Collaboration published the first 2+1 flavor determination of fK in 2004 [61],

and updated the result at Lattice 2007 by including data with lighter quarks and finer lattice

spacings [57]. The largest source of uncertainty in their calculation is from the extrapolation

to the physical light quark masses and the continuum. A small but non-negligible error also

arises due to the determination of the absolute lattice scale needed to convert dimensionful

17

±9.6

κε = 0.92± 0.02

κε = 0.92± 0.02

very conservative

Excellent consistency
of all determinations

[Laiho,EL,Van de Water]

εK
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• Ratio of the Bs and Bd mass differences:

Bq mixing

50

• No dependence on Vcb

∆MBs

∆MBd

=
mBs

mBd

B̂sf2
Bs

B̂df2
Bd

����
Vts

Vtd

����
2

=
mBs

mBd

ξ2

����
Vts

Vtd

����
2

• Two unquenched determinations:

FNAL/MILC: 

HPQCD: 

RBC/UKQCD:  

ξ = 1.205± 0.036± 0.037
ξ = 1.258± 0.025± 0.021

• Average: 

ξ = 1.13± 0.06± 0.10

ξ = 1.237± 0.032

WW

t

tq̄

qb

b̄

BqB̄q
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• In the fit we utilize only ξ and        

Bq mixing

51

fBs

�
Bs

• There is only one unquenched determination of the Bs 
matrix element from HPQCD but there are two 
determinations of fBs (FNAL/MILC and HPQCD):

+ }
HPQCD alone finds (266 ± 18) MeV

fB = (205± 12) MeV
fBs

�
Bs = (288± 15) MeV
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Three types of CP violation

• Mixing (mass and CP eigenstates are different)

• Decay

• Interference in decays with and without mixing

Γ(B̄0
phys(t)→ �+νX) �= Γ(B0

phys(t)→ �−ν̄X)

Γ(B+ → f+) �= Γ(B− → f−)

Γ(B̄0
phys(t)→ fCP ) �= Γ(B0

phys(t)→ fCP )

52
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• No tree-level contribution

• There is no loop suppression of the sub-dominant 
CKM combination: uncertainty is (1-10)%

• Analyses in the framework of QCD factorization 
(SCET) and PQCD conclude that some modes 
should be very clean:

A = (P c − P t)VcbV
∗
cs + (Pu − P t)VubV

∗
us

53

Time dependent CP asymmetry in b→ ss̄s

B → φKS
B → η�KS
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b
→

ss̄
s {

[HFAG 2010]

0.025{
• We will consider the asymmetries in the                 modesJ/ψ, φ, η�

• A case can be made for the               final stateKsKsKs

[Beneke,Neubert]

In QCDF:

[Cheng,Chua,Soni]

arg(V ∗
td)

Other approaches find similar results
[Chen,Chua,Soni; Buchalla,Hiller,Nir,Raz]

[EL, Soni]

Time dependent CP asymmetry in b→ qq̄s

SψKs = sin 2(β + θd) + O(0.1%)

∆Sf ≡ Sf − sin 2(β + θd)

= 2
����
VubV

∗
us

VcbV
∗
cs

���� cos 2β sin γ Re

�
au

f

ac
f

�

∆Sφ = 0.03± 0.01
∆Sη� = 0.01± 0.025
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• Proper treatment of new physics effects in penguin amplitudes 
is better implemented with NP contributions to the QCD and 
EW penguin operators

• Correlation between the              and Kπ asymmetries: 

New Physics in penguin amplitudes

55

b→ ss̄s

• Possible issue with large color suppressed contributions to 
the           final state  K−π0

• QCDF result very stable under variation of all the inputs

ACP (B− → K−π0)−ACP (B̄0 → K−π+) =
� (14.8± 2.8) % exp

(2.2± 2.4) % QCDF
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CP asymmetries in B→Kπ

• Amplitudes in QCD factorization:

b

s

q q

u
u
π+0

K-

B0-
b

q

s

u

u

qπ
+0

K-

B0-

b

u

u

u

u
s

B-

π0

K-

←color suppressed
[Gronau,Rosner]

56

T

C
PEW

P

b

u

u

s
q

q

B-

π0

K-

• We get: P

T
� 0.20,

C

T
� 0.16,

PEW

T
� 0.47

fits yield C/T ~ 0.6

AB̄0→π+K− = AπK̄

�

q=u,c

VqbV
∗
qs [δquα1 + α̂q

4]

√
2AB−→π0K− = AB̄0→π+K− + AK̄π

�

q=u,c

VqbV
∗
qs

�
δquα2 + δqc

3
2
αc

3,EW

�
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CP asymmetries in B→Kπ

• In QCDF:

57

ACP (B− → K−π0)−ACP (B̄0 → K−π+) = (2.2± 2.4) %

• Dominant sources of uncertainties
light-cone wave function parameters:                       

end-point singularities: 

αK
1 , αK

2 , απ
2 , λB

XH =
�
1 + ρH eiϕH

�
log

mB

Λ
XA =

�
1 + ρA eiϕA

�
log

mB

Λ

ρH , ϕH , ρA, ϕA

Figure 5: Hard spectator-scattering contribution to the coefficients ap
i . The

meaning of the external lines is the same as in Figure 2, but the spectator-quark
line is now included in the drawing.

if M2 is a pseudoscalar meson, and

P p
6 (M2) = −

CFαs

4πNc

{

C1 ĜM2(sp) + C3

[
ĜM2(0) + ĜM2(1)

]

+ (C4 + C6)
[
(nf − 2) ĜM2(0) + ĜM2(sc) + ĜM2(1)

] }

(42)

if M2 is a vector meson. In analogy with (40), the function ĜM2(s) is defined as

ĜM2(s) =

∫ 1

0

dxG(s − iε, 1 − x) Φm2(x) . (43)

As mentioned above we take into account electromagnetic corrections only for αp
3,EW

and αp
4,EW, and only if they are proportional to the large Wilson coefficients C1,2 and

Ceff
7γ . These corrections are present for i = 8, 10 and correspond to the penguin diagrams

of Figure 4 with the gluon replaced by a photon. (An additional contribution for neutral
vector mesons will be discussed separately below). For i = 10 we obtain

P p
10(M2) =

α

9πNc

{
(C1 + NcC2)

[
4

3
ln

mb

µ
+

2

3
− GM2(sp)

]
− 3Ceff

7γ

∫ 1

0

dx

1 − x
ΦM2(x)

}
.

(44)
For i = 8 we find

P p
8 (M2) =

α

9πNc

{
(C1 + NcC2)

[
4

3
ln

mb

µ
+

2

3
− ĜM2(sp)

]
− 3Ceff

7γ

}
(45)

if M2 is a pseudoscalar meson, and

P p
8 (M2) = −

α

9πNc
(C1 + NcC2) ĜM2(sp) (46)

if M2 is a vector meson.

18

Figure 8: Weak annihilation contributions.

coefficients can be taken from [10]. We consider b-quark decay and use the convention
that M1 contains an antiquark from the weak vertex with longitudinal momentum frac-
tion ȳ. For non-singlet annihilation M2 then contains a quark from the weak vertex with
momentum fraction x. The basic building blocks when both mesons are pseudoscalar
are given by (omitting the argument M1M2 for brevity)

Ai
1 = παs

∫ 1

0

dxdy

{
ΦM2(x) ΦM1(y)

[
1

y(1 − xȳ)
+

1

x̄2y

]
+ rM1

χ rM2
χ Φm2(x) Φm1(y)

2

x̄y

}
,

Af
1 = 0 ,

Ai
2 = παs

∫ 1

0

dxdy

{
ΦM2(x) ΦM1(y)

[
1

x̄(1 − xȳ)
+

1

x̄y2

]
+ rM1

χ rM2
χ Φm2(x) Φm1(y)

2

x̄y

}
,

Af
2 = 0 , (54)

Ai
3 = παs

∫ 1

0

dxdy

{
rM1
χ ΦM2(x) Φm1(y)

2ȳ

x̄y(1 − xȳ)
− rM2

χ ΦM1(y) Φm2(x)
2x

x̄y(1 − xȳ)

}
,

Af
3 = παs

∫ 1

0

dxdy

{
rM1
χ ΦM2(x) Φm1(y)

2(1 + x̄)

x̄2y
+ rM2

χ ΦM1(y) Φm2(x)
2(1 + y)

x̄y2

}
.

When M1 is a vector meson and M2 a pseudoscalar, one has to change the sign of the
second (twist-4) term in Ai

1, the first (twist-2) term in Ai
2, and the second term in Ai

3

and Af
3 . When M2 is a vector meson and M1 a pseudoscalar, one only has to change the

overall sign of Ai
2.

In (54) the superscripts ‘i’ and ‘f ’ refer to gluon emission from the initial and final-
state quarks, respectively (see Figure 8). The subscript ‘k’ on Ai,f

k refers to one of the
three possible Dirac structures Γ1 ⊗ Γ2, which arise when the four-quark operators in
the effective weak Hamiltonian are Fierz-transformed into the form (q̄1b)Γ1(q̄2q3)Γ2 , such
that the quarks in the first bracket refer to the constituents of the B̄ meson. Specifically,
we have k = 1 for (V − A) ⊗ (V − A), k = 2 for (V − A) ⊗ (V + A), and k = 3 for
(−2)(S − P ) ⊗ (S + P ). The power suppression of weak annihilation terms compared
to the leading spectator interaction via gluon exchange is evident from the fact that
annihilation terms are proportional to fB rather than fBmB/λB.

In terms of these building blocks the non-singlet annihilation coefficients are given

22

hard scattering weak annihilation

• NP contributions to the QCD and EW penguin
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• Effective Hamiltonian: 

Operator Level Analysis:         amplitudes

58

b→ s

2

mode experiment no Vub with Vub

aψKS 0.671 ± 0.024 2.1 σ 1.4 σ

aφKS 0.445 ± 0.175 2.1 σ 1.6 σ

aη′KS
0.59 ± 0.07 2.4 σ 1.8 σ

a(φ+η′)KS
0.57 ± 0.065 2.7 σ 2.2 σ

a(ψ+φ+η′)KS
0.66 ± 0.023 2.2 σ 1.7 σ

FIG. 1: Unitarity triangle fit in the SM. All constraints are
imposed at the 68% C.L.. The solid contours in the upper plot
is obtained using the constraints from εK , ∆MBs/∆MBd and
Vcb. In the lower plot, we include |Vub| as well. The regions
allowed by aψK and a(φ+η′)Ks are superimposed. In the table,
we show the deviations of the experimental determinations of
sin(2β) in b → cc̄s and b → ss̄s decays [22] from the SM
prediction obtained without and with the inclusion of Vub in
the fit. No use of γ is made.

the (Cε, θA) plane. We obtain:

Cε = 1.24 ± 0.14 (11)

θA = −(3.9 ± 2.4)o (12)

In this case, the extracted value of sin(2β) is very close
to aψK (the time dependent CP asymmetry in B →
J/ψKS) and does not depend much on the inclusion of
Vub; hence the amount of new physics required to bring
εK in agreement with the rest of the fit is quite insensi-
tive to the Vub constraint. In Fig. 4, the contours define
regions with an integrated confidence level of 68% and
95%; therefore, the projection of these contours on the
axes results in ranges that are larger than the single–
variables ranges we extracted in Eqs. (9-12).

3- Operator analysis of θA. In this section we in-
terpret the difference between the time dependent CP
asymmetries aψK and aφ,η′ in terms of new physics con-

mode experiment no Vub with Vub

aψKS 0.671 ± 0.024 1.9 σ 1.3 σ

aφKS 0.445 ± 0.175 2.0 σ 1.6 σ

aη′KS
0.59 ± 0.07 2.2 σ 1.7 σ

a(φ+η′)KS
0.57 ± 0.065 2.5 σ 2.1 σ

a(ψ+φ+η′)KS
0.66 ± 0.023 2.0 σ 1.7 σ

FIG. 2: Unitarity triangle fit in the SM. All constraints are
imposed at the 68% C.L.. The solid contours in the upper plot
is obtained using the constraints from εK , ∆MBs/∆MBd , Vcb

and γ from B → D(∗)K(∗) decays. In the lower plot, we in-
clude |Vub| as well. The regions allowed by aψK and a(φ+η′)Ks

are superimposed. In the table, we show the deviations of
the experimental determinations of sin(2β) in b → cc̄s and
b → ss̄s decays [22] from the SM prediction obtained without
and with the inclusion of Vub in the fit.
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Q3Q = (s̄LγµbL)
∑

q
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We adopt the following parametrization of new physics
effects:

likely to receive NP corrections

• Assume the following parametrization of NP effects:

loop suppression + QED/QCD 
penguin gs,e dependence

δC4,3Q(µ0) =
αs,e

4π

eiϕ

Λ2

�
4GF√

2
VcbV

∗
cs

�−1

Effective mass scale that absorbs 
NP couplings
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Operator Level Analysis:         amplitudesb→ s

Λ ∼ [350÷ 420] GeV Λ ∼ [140÷ 190] GeV
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• The tension in the UT fit can be interpreted as evidence for new 
physics contributions to       and to the phases of Bd mixing and 
of            amplitudes:

60

Model Independent Interpretation

• This implies: 

• In general NP will affect in different ways the various          channels

b→ s

b→ s

εK

εK = εSM
K Cε

M12 = MSM
12 e2iφd r2

d

A(b→ ss̄s) = [A(b→ ss̄s)]SM eiθA

SψKs = sin 2(β + φd)

sin 2αeff = sin 2(α− φd)

∆MBd = (∆MBd)
SM r2d

a(φ,η�)Ks
= sin 2(β + φd + θA)


