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Warping and its benefits

* In this talk, I'll focus on warped geometries in string theory

2 2ad..2 —2a 3,,2
dsip = e““dxy +e “* dy;

warp factor o = a(y)

* Such geometries have interesting phenomenology
- Address Hierarchy problem [RS; GKP]
- Late-time acceleration [KKLT:..]
- Inflation [KKLMMT:.. ]

- Sequestering [Luty, Sundrum; Kachru, McAllister, Sundrum;
Berg, Marsh, McAllister, Pajer;...]




Modull stabilization

* Warping also a “generic” feature of string models

e String compactifications usually come with moduli: zero-
energy deformations of the internal space

—

e Such moduli determine 4d effective field theory and result
in “fifth” forces so must be lifted




Moduli stabilization (cont.)

* Lifting can be achieved by the addition of fluxes

WHB:/Q/\G(S) WIIA:/Q/\H(S)—I—/GJ/\F

* Backreaction of fluxes complicates geometry (e.qg. spoils
Calabi-Yau)

e | east amount of complication: type IIB with ISD flux and
constant dilaton allows for warped Calabi-Yau

* NB: non-perturbative effects needed to stabilize Kahler

structure [KKLT] will break this condition [Koerber, Martucci;
Heidenreich, McAllister, Torroba]




Open strings

* In type Il theories, gauge
groups and charged matter
come from the open string
excitations of D-branes

e Example: In flat space, the
excitations of N coincident
Dp-branes described by
maximally supersymmetric
(16 supercharges) U(N)
Yang-Mills in (p+1)-
dimensions




Open strings (cont.)

e Bifundamental matter comes from the intersection of D-
branes (or from branes at singularities)

o Without fluxes, the
number of families Is the
number of intersections
of the branes




Chiral matter

* We will focus on D7-branes in warped IIB geometries

* [wo D7s intersect on a
2-cycle In the 6d internal
space and so to get a
chiral spectrum in 4d,
the branes need to be
magnetized

(FP)) #£0




Ad effective field theories

* Intersecting, magnetized D7 branes in flux
compactifications are thus promising for building realistic
string models (though other ingredients needed)

* A 4d effective field theory is useful to discuss long
wavelength phenomenology

e [WO routes to an eft:
» Conformal field theory techniques
e Dimensional reduction




4d effective field theories (cont.)

N4 =1 warped compactifications in type IIB necessarily
Involve Ramond-Ramond fluxes:

2 2ad..2 —2a q,,2
dsig = e”*dzy +e™ " dyg

F®) = (1+ *)]:(5) FO) = de*® A dvol g s

*6 G(S) — IG(S)

* This makes quantization of the string difficult and so the
4d eft cannot be easily extracted from stringy amplitudes




4d effective field theories (cont.)

e Alternate method:
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Warped spherical cow

e Our goal is to learn something about the 4d eft from the
8d eft via dimensional reduction

* Since our focus is to learn about the effects of warping, Il
focus here on a simple background
dsto = e**daj +e ™" dys
T6
F®) = (1 + >|<)]3<5) FO) = de** Advolgis G®) = 0
* As a warmup, consider the adjoint matter on a single D7
wrapping T4 c 71




Bosonic modes

* [he 8d bosonic degrees of freedom are

A, 8d gauge boson\>AM 4d gauge boson

$'  transverse fluctuations— A4, ®* 4d scalars

* The bosonic action is the DBI+CS action

Spr = —Tm/ d*z \/|det Gap) + AFap)]
2 _ /
SD7 — TD7/ 0(4)] N\ e)\F( ) A =271Q
w

P [gozﬁ] = JaB T )‘2gijaaq)iaﬁq)j




Bosonic modes (cont.)

* [n this case, warping does not effect the zero modes
r1.3®" + e**Opa®* = 0
Rr13A;, + et 72 A, =0
r13 A 42 F 4 220y (e** Frog) = 0

* The zero modes satisfy

R1,3X — O
and so are constant




Fermionic modes

* The 8d fermionc degrees of freedom are encoded in a pair
of 10d Majorana-Weyl fermions subject to a gauge
redundancy called x-symmetry (c.f. GS superstring)

1 ::iF(g)
:iF(g) 1

* The 4d degrees of freedom are fermionic superpartners of
the gauge boson and complexitied scalars

Yo <> Ay gaugino

P12 > Aj o Wilsonini
g <> O modulino




Fermionic modes (cont.)

* The fermionic action is [Martucci, Rosseel, Van denBleeken,
Van Proeyen]

_ 1 .
S N—— / et (00s) OPPTT (Vo 4 - F T io) 0
W

e Then 4-0}//Cle chirality operator
1
(ﬁRl,S -+ $T4 -+ §$T4a [1 —+ QFTAL})H =0

,‘éconstant SpINOrs

e For the zero modes:




Fermionic modes (cont.)

e Since the I'—matrices are warped, these are consistent
with supersymmetry

5A, ~ &l 10 2
5A, ~ el ), e.= o

0P ~ €13 Killing spinor

* This analysis can be generalized (see 0812.2247)
- Abelian magnetic flux
- Calabi-Yau
- Bulk fluxes (see also [Camara, Marchesano])

« \We'll return to the above wavefunctions later
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Biftundamental matter

e Chiral matter is much more phenomenologically
interesting, but more involved.

e Consider first vector-like bifundamental matter:

T =T2 x T5 x T3

matter curve
D71 : 2° = M3z?

D72 . ZS — —M32’2




Intersections as Higgsing

* \When the branes are coincident, the symmetry is
enhanced to U (2). The transverse fluctuations are
promoted to an adjoint-valued scalar ®

Position of D71 Position of D75

\cb“ ¢,
o (cb:/cb’ﬁ/

7172 strings (bifundamental)

« vevs for »*° correspond to background D7 positions

<¢a>:)\/:1M322 <¢b>:—)\_1M322 ><

small angle needed to neglect «' corrections




Non-Abelian bosonic action

* Must use the non-Abelian action [Myers]

— —TD7 / dSZU Str < \/|det (Maﬂ) det (Q;) ‘}
1%% -\ ] 2) |

14%

/

symmetrization interior product
P [va} — v, + \D_,d"v;

/ 3
Mag =P [gas + 90i(Q " = 6) "gjs] + AFap
Q% = 0% — iA@', "] gy




D7 bosonic action (cont.)

* Bulk fields given as a non-Abelian Taylor expansion

adjoint valued PN |
\\1;[ | = Z Z_@h ... D, - 0; T

n!
n=0

neutral—

=Wy + O()\)/

e Leading order in ¢, action is warped Yang-Mills

e Equations of motion are second order and hard to solve In
general




Non-Abelian fermionic action

* Abelian analogue of Martucci action not known

1 _ 1
SIF)7 = — d%z (9{604@31,3 -+ eo‘ﬁw -+ eo‘§$T4a(1 -+ QFT4) }9

93

» To leading order in & [Wynants]

d— I 0L = —ifle™°T; [P, 0]




Equations of motion

e For the biftundamental zero modes, take the ansatz

% 3= ¢ 3a/2y ()_,3 wi_,Q — ea/ZXi_,z

N\ \

gaugino, modulino wilsonini

* Equations of motion from Fermionic action (no flux yet)

0 =01X]




BPS conditions

* For a single D7 brane, the equations of motion follow from
F- and D-flathess conditions: [Jockers, Louis: Martucci]

W= [ PRHIAM? D= [ Pllmn] A" warped

fundamental T4 T4 . Kahler
3-form PQ A B n=e>*Imre’ A e form

e Comparing to the CS-action, the non-Abelian version
should be (see also [Bultti et. al.])

W — Str{P[eiAchL@,Y} /\e)\F(Q)} D :/

T4 T4

These yield the previous equations of motion with ¢)g = 0

S{P[e“”q”’q’lm 77} A eAF@)}




Unwarped zero mode

* In the absence of warping, the zero modes are
exponentially localized on the intersection

4D field

e Mixture of deformation modulus and Wilson lines of the
un-Higgsed theory




Warped zero mode

* For arbitrary warping, no simple analytic solution

n the weak warping case, can treat the warping as a
oerturbation

e ' =1+ €0 e < 1

» Can then expand the warped zero mode Iin terms of the
unwarped massive modes




Unwarped spectrum

* The equation of motion for the massive modes Is

[ 0 0, 9, Di\
—0, 0 DFf* —o3
—0, -DFf* 0 O

\-pf % -9 0

DTX] =m\X5" DT =

e Easiest to work in a rotated basis X’

s \
1/vV2 i/vV2

i/vV2 1/v2)




Unwarped spectrum (cont.)

* Boundary conditions:
e Periodicity along matter curve T+
 |_ocalized on intersection

e — - sector modes built from ladder operators (giving two
simple harmonic oscillator algebras) and Fourier modes

1(D/2+) *:> raising
Dy
212N [i(Dy)] (105

Fourier mode




Unwarped spectrum (cont.)

* Unwarped spectrum:

m;y =m”+n° + Ms(l+p+ 1) ) = ( 0,0,0

gpm,nl]ﬁ

m%\ = m? +n? + M (l + P+ 1) (I)/,\_ — (O, SO;znlp»

m§:m2_|_n2_|_M3(l‘|—p) (I)/A_:(O’O

0)"

) SOmnlgﬁ

m3 =m” +n”° + M (I +p+2) ¢y = (0,0,0, gO'r_rmlp)T




Expanding the warped zero mode

* \Write the warped zero mode as
X = (I)a -+ Z C)\(Ii;
A

AN

| unwarped modes
* To leading order

)"+ (D) PK™ ®;

D~ =Dj + K+ O(¢°)

* Examples given in [1012.2759]




Chirality

* Without magnetic flux, the spectrum is vector-like

* [n order to have a chiral theory, the intersection must be
magnetized

1
F(Q) — M10'3

27-‘- T2

e SUSY requires [Marino, Minasian, Moore, Strominger; ...]
F — _,

\

Hodge-*xon Sy




Unwarped zero modes

*or example, it M; > 0, only the —-sector has zero modes

*Due to magnetic flux, wavefunction are quasi-periodic
[Cremades, lbanez, Marchesano;...]

—x|2?]

0y 7’

e2miMiz Im 2" g {/20M1 (2M1z1,i2M1)
KZ\/(%)QH\@ i=0.....2M; —1

families orthogonal: Y (90”8’_)*%018’_ — Ski
T4
e Each family is a Gaussian peak at a different location on
the matter curve




Warped zero modes

* As In unmagnetized case, warped zero mode has no
general simple analytic solution

* Again, expand in unwarped massive modes

e Spectrum built from three QSHO algebras

D/f': = 01 3
D/Q:F X 82 _
Dé:': X 1(82 -




Warped zero modes (cont.)

e Expand warped zero mode in terms of unwarped massive
modes

x0Ty Y el

\ ko f

unwarped modes

N

k,—)* . (D(_)I_)*ﬂK_q)(J)’_

family mixing Is generic

* Examples given in [1012.2759]
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Warped kinetic terms

* [he warped wavefunctions are useful in deducing the
warped effective field theory

* Example: kinetic terms for modulino
O3 (2, y") = e3/2 Y3 (2") @ n3(y”)

/ dSZIZ‘ \/§9_3F“3M93
W i
- / L s / d'y /Ge—1ontn;
R1,3

84

TH ~e™® =17




Warped kinetic terms (cont.)

e Can infer that the Kahler metric behaves as

Ve :/ d®y \/ge o
Y 6

VZ :/ d4?/ ge 42
84

* Agrees with bosonic analysis:
CID(:U““, y“) — const X a(x“)

/ d8£13‘ @g“”gijﬁudﬂ@y@j
1 4%

rv/ d4x77“’/8u08“0*/ d4y\/§e_4o‘
R1.3 S4




Warped kinetic terms (cont.)

* For a more general Calabi-Yau,
o (:I;“, ya) — o4 (x”) S A (y) + c.c.

o4 ma Amp ma = tg,
S4

"hen borrowing from warped closed string results [Shiu,

Torroba, Underwood, Douglas] and unwarped closed-open

results [Jockers, Louis]

K = —log[-i(S — §) — 2L 4 5045 7]

S:T—,CABO' 5'B



Wilson lines

e Similarly, for Wilson lines
1 = b
Kap ~ P vV G§"
6 JS4

* In the Calabi-Yau case harmonic (1,0)-forms

Al(ig — Wy (:E“)WI é) -+ c.c.
1
Ve Jga

PLJ] AW AW

unwarped Kahler form

ICIJ ™

e Kahler potential can be found in special cases




Biftundamentals

* Warping modifications for chiral matter more complex -
much less is known about Kahler potential even in the
unwarped toroidal case

e For non-chiral bifundamental matter

1 1 . .
S=—— d3z \/gtﬂ in“yfjabFM&Fyb + e4an“”§ijf9”<1>zc?,,<1>3}
98 ) 4% \

1 ) *
Cr ~ — 4d4y \/5( XF) e X

Vi 3/ N
e = diag (6_40‘, 1,1, e_4o‘)

warped zero mode




Bifundamentals (cont.)

* Recall the bifundamental wavefunctions are exponentially
localized In the weakly warped case

* Approximating the Gaussians as §-functions, for weak
warping

Vi + V1

m/ V6M3\

Wilson line contribution Modulus contribution

V2V / d2y fe—4a




Chiral matter

* For chiral matter, warping induces off-diagonal entries In
Kahler metric

/C:— N i d4y \/E(Xk’:)*-e#O‘Xj’:_

: W
ik Ve Jga

* Even to leading order in weak warping, the family
orthogonality is spoiled

_e—4a # 5kj

* Requires care for model building of this sort




Soft terms

 All of the above analysis was performed in the
supersymmetric case

* Non-supersymmetric perturbations will induce soft susy-
breaking terms that calculated using the above analysis
(work in progress)

e Example (see also [Camara, Ibanez, Urangra;...])

b [ oGO s
84




Probe approximation

 All of the above was discussed in the probe approximation
where the gravitational backreaction of D7 is ignored

* There are situations where this is ok (e.g. Sen limit,
guenched approximation) but generically questionable

* Progress has been made for the adjoint case in the
unwarped limit [Grimm]

e Such effects likely lead to problematic soft terms




Modull stabilization

* We were lead to consider warping from the consideration
of moduli stabilization (i.e. fluxes— warping) but effects
were fluxes were largely neglected here

* Since fluxes generate a potential for D7 moduli as well,
expect impact on wavefunctions and 4d physics

* Additionally, stabilization of Kahler moduli requires
departure from conformally Calabi-Yau




Conclusions

* We analyzed the wavefunctions for open string fields coming from
D7s and intersections of D7s in warped geometries
* Warping effect on adjoint matter simple, but not so for chiral
matter
e Such wavefunctions are important for understanding the 4d
effective field theory of such constructions
* Here, | talked about some of the effects on kinetic terms (more on
Kinetic terms and Yukawas detailed in 0812.2247,1012.2759)
* More realistic models will also include:
- Fluxes
- (-brane backreaction
- Non-perturbative effects (for stabilizing Kahler moduli)




Thank you!



