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A tale of many scales

✦ Collider processes characterized by many 
scales:  s, sij, Mi, ΛQCD, ...

✦ Large Sudakov logarithms arise, which 
need to be resummed (e.g. parton showers, 
mass effects, aspects of underlying event)

✦ Effective field theories provide modern, 
elegant approach to this problem based on 
scale separation (factorization theorems) 
and RG evolution (resummation)



Soft-collinear factorization

✦ Factorize cross section:

✦ Define components in 
terms of field theory 
objects in SCET

✦ Resum large Sudakov 
logarithms directly in 
momentum space using 
RG equations 

H

J J

J J

S

dσ ∼ H({sij}, µ)
�

i

Ji(M2
i , µ)⊗ S({Λ2

ij}, µ)

Sen 1983; Kidonakis, Oderda, Sterman 1998



Soft-collinear effective theory (SCET)

✦ Two-step matching procedure: 

✦ Integrate out hard modes,                              
describe collinear and soft                          
modes by fields in SCET

✦ Integrate out collinear modes                           
(if perturbative) and match                          
onto a theory of Wilson lines

SCET soft Wilson 
linesSM

integrate out 
hard fields

integrate out 
collinear fields

hard

collinear

soft

sij

M2
i

Λ2
ij =

M4
i

sij

Bauer, Pirjol, Stewart et al. 2001 & 2002; Beneke et al. 2002; ...



NLO+NNLL resummation

✦ Necessary ingredients:
✦ Hard functions: from fixed-order results for 

on-shell amplitudes (but need amplitudes!) 

✦ Jet functions: from imaginary parts of two-
point functions (depend on cuts, jet definitions) 

✦ Soft functions: from matrix elements of 
Wilson-line operators

✦ Anomalous dimensions: known!
✦ Yields jet cross sections, not parton rates
✦ Goes beyond parton showers, which are accurate 

only at LL order even after matching

in few cases (Drell-Yan, Higgs production) NNLO+N3LL resummation



Anomalous dimension to two loops

✦ General result for arbitrary processes:

✦ Generalizes structure found for massless case
✦ Novel three-parton terms appear at two loops

with TF = 1
2 . Here mi denote the masses of the heavy quarks. Note that, as an alternative

to (2), one can convert the expression for the Z factor from the effective to the full theory by
replacing αs → ξ−1 αQCD

s . We will make use of this possibility in Section 4 to predict the IR
poles of the qq̄ → tt̄ and gg → tt̄ amplitudes in full QCD.

The relation

Z−1(ε, {p}, {m}, µ)
d

d lnµ
Z(ε, {p}, {m}, µ) = −Γ({p}, {m}, µ) (4)

links the renormalization factor to a universal anomalous-dimension matrix Γ, which governs
the scale dependence of effective-theory operators built out of collinear SCET fields for the
massless partons and heavy-quark effective theory (HQET [32]) fields for the massive ones. For
the case of massless partons, the anomalous dimension has been calculated at two-loop order
in [7, 8] and was found to contain only two-parton color-dipole correlations. It has recently
been conjectured that this result may hold to all orders of perturbation theory [10, 14, 16]. On
the other hand, when massive partons are involved in the scattering process, then starting at
two-loop order correlations involving more than two partons appear [25], the reason being that
constraints from soft-collinear factorization and two-parton collinear limits, which protect the
anomalous dimension in the massless case, no longer apply [26].

At two-loop order, the general structure of the anomalous-dimension matrix is [26]

Γ({p}, {m}, µ) =
∑

(i,j)

Ti · Tj

2
γcusp(αs) ln

µ2

−sij

+
∑

i

γi(αs)

−
∑

(I,J)

TI · TJ

2
γcusp(βIJ , αs) +

∑

I

γI(αs) +
∑

I,j

TI · Tj γcusp(αs) ln
mIµ

−sIj

+
∑

(I,J,K)

ifabc T a
I T b

J T c
K F1(βIJ , βJK , βKI) (5)

+
∑

(I,J)

∑

k

ifabc T a
I T b

J T c
k f2

(

βIJ , ln
−σJk vJ · pk

−σIk vI · pk

)

+ O(α3
s) .

The one- and two-parton terms depicted in the first two lines start at one-loop order, while
the three-parton terms in the last two lines start at O(α2

s). Starting at three-loop order also
four-parton correlations would appear. The notation (i, j, . . . ) etc. refers to unordered tuples
of distinct parton indices. We have defined the cusp angles βIJ via

cosh βIJ =
−sIJ

2mImJ

= −σIJ vI · vJ − i0 = wIJ . (6)

They are the hyperbolic angles formed by the time-like Wilson lines of two heavy partons.
The physically allowed values for wIJ are wIJ ≥ 1 (one parton incoming and one outgoing),
corresponding to βIJ ≥ 0, or wIJ ≤ −1 (both partons incoming or outgoing), corresponding
to βIJ = −b + iπ with real b ≥ 0.1 The first possibility corresponds to space-like kinematics,

1This choice implies that sinhβ =
√

w2 − 1. Alternatively, we could have used βIJ = b − iπ with b ≥ 0, in
which case sinhβ = w

√
1 − w−2. We have confirmed that our results are the same in both cases.
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new!

massless partons

massive partons

Mitov, Sterman, Sung 2009; Becher, MN 2009
Ferroglia, MN, Pecjak, Yang 2009 

Becher, MN 2009



EFT-based predictions for Higgs production 
at Tevatron and LHC

Ahrens, Becher, MN, Yang 2008 & update for ICHEP 2010            
                     http://projects.hepforge.org/rghiggs/

http://projects.hepforge.org/rghiggs
http://projects.hepforge.org/rghiggs


Large higher-order corrections

✦ Corrections are large:        
70% at NLO + 30% at NNLO 
[130% and 80% if PDFs and 
αs  are held fixed] 

✦ Only gg channel contains 
leading singular terms, which 
give 90% of NLO and 94% of 
NNLO correction

✦ Contributions of qg and qq 
channels are small: -1% and 
-8% of the NLO  correction

3

with

S(−µ2, µ2) = −

αs(µ2)
∫

αs(−µ2)

dα
ΓA

cusp(α)

β(α)

α
∫

αs(−µ2)

dα′

β(α′)
,

aΓ(−µ2, µ2) = −

αs(µ2)
∫

αs(−µ2)

dα
ΓA

cusp(α)

β(α)
,

(19)

and similarly for the function aγS . The perturba-
tive expansions of these functions obtained at NNLO in
renormalization-group improved perturbation theory can
be found in [20]. They can be simplified using relation
(16). To leading order we find

lnU(m2
H , µ2) =

ΓA
0

2β2
0

{

4π

αs(m2
H)

[

2a arctan(a) − ln(1 + a2)
]

+

(

ΓA
1

ΓA
0

−
β1

β0
−

γS
0 β0

ΓA
0

)

ln(1 + a2) (20)

+
β1

4β0

[

4 arctan2(a) − ln2(1 + a2)
]

+ O(αs)

}

,

where a ≡ a(m2
H). Note that the result is µ-independent at

this order. The relevant anomalous-dimension coefficients
are ΓA

0 = 4CA, γS
0 = 0, and

ΓA
1

ΓA
0

=

(

67

9
−

π2

3

)

CA −
20

9
TF nf , (21)

where CA = Nc, TF = 1/2, and nf = 5 is the number
of light quark flavors. The coefficients of the β-function
follow from (14).

The expression for the evolution function simplifies con-
siderably if we treat a(m2

H) ≈ 0.2 as a parameter of order
αs. Inserting the values of the one-loop anomalous dimen-
sions from above, we then find

lnU(m2
H , µ2) =

CAπαs(m2
H)

2

[

1 +
ΓA

1

ΓA
0

αs(m2
H)

4π
+ O(α2

s)

]

.

(22)
This result makes explicit that the “π2-enhanced” correc-
tions are terms of the form (CAπαs)n in perturbation the-
ory and exponentiate at leading order. The simplest way
to implement our resummation in existing codes for Higgs-
boson production would be to multiply the fixed-order re-
sult with exp[CAπαs(m2

H)/2] and subtract the expanded
form of this factor from the perturbative series. This treat-
ment is sufficient for practical purposes.

Numerically, setting µ = mH = 120GeV we obtain
lnU = {0.563, 0.565, 0.565} at LO, NLO, and NNLO from
the exact expression for the evolution function derived from
(18), indicating that the leading-order terms give by far
the dominant effect after renormalization-group improve-
ment. The analytical expressions (20) and (22) provide
accurate approximations to the exact results. The first
equation gives lnU = 0.562, while the second one yields
lnU = 0.567. The close agreement of these two numbers
shows that the running of coupling constant between µ2
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FIG. 1: LO (light), NLO (medium), and NNLO (dark) pre-
dictions for the Higgs-production cross section at the LHC in
fixed-order perturbation theory (left) and after resummation of
the π

2-enhanced terms (right).

and −µ2 is a minor effect compared with the evolution
driven by the anomalous dimension of the effective two-
gluon operator in (2).

We are now in a position to discuss our improved results
for the hard function in the formula for the Higgs-boson
production cross section. Setting µ = mH = 120GeV, we
obtain

H(m2
H , m2

H) = {1.756 (LO), 1.907 (NLO), 1.906 (NNLO)} .
(23)

This should be compared with the poorly converging series
H = {1, 1.623, 1.844} obtained using fixed-order perturba-
tion theory. Figure 1 illustrates the impact of the resumma-
tion of the π2-enhanced terms on the cross-section predic-
tions for Higgs-boson production at the LHC. The bands in
each plot show results obtained at LO, NLO, and NNLO
using MRST2004 parton distributions [21]. Their width
reflects the scale variation obtained by varying the factor-
ization and renormalization scales between mH/2 and 2mH

(setting µr = µf ). The convergence of the expansion and
the residual scale dependence at NLO and NNLO are much
improved by the resummation. The new LO and NLO
bands almost coincide with the NLO and NNLO bands in
fixed-order perturbation theory, and the new NNLO band
is now fully contained inside the NLO band.

IV. DRELL-YAN PRODUCTION

The cross section for the Drell-Yan process receives the
same type of π2-enhanced corrections as the Higgs-boson
production cross section, however in this case no anoma-
lously large K-factors arise at NLO and NNLO. Let us
briefly discuss why this is the case.

The vector-current matching coefficient CV appearing in
the Drell-Yan case is defined in analogy with CS in (2), but
with the two-gluon operator replaced by the electromag-
netic current q̄γµq [9, 10, 11]. It obeys an evolution equa-
tion of the same structure as (6), in which the cusp anoma-
lous dimension in the adjoint representation is replaced by

MRST’04 PDFs

Harlander, Kilgore 2002; Anastasiou, Melnikov 2002 
Ravindran, Smith, van Neerven 2003

LO

NNLO

NLO

LHC (√s=14 TeV)



Effective theory analysis
✦ Separate contributions associated with different 

scales, turning a multi-scale problems into a series 
of single-scale problems

✦ Evaluate each contribution at its natural scale, 
leading to improved perturbative behavior

✦ Use renormalization group to evolve contributions 
to a common factorization scale, thereby 
exponentiating (resumming) large corrections

When this is done consistently, large K-factors 
should not arise, since no large perturbative 

corrections are left unexponentiated!



Scale hierarchy

✦ Will analyze the Higgs cross section assuming 
the scale hierarchy (                   )

✦ Treating one scale at a time leads to a sequence 
of effective theories:

✦ Effects associated with each scale absorbed 
into matching coefficients

2mt � mH ∼
√

ŝ�
√

ŝ(1− z)� ΛQCD

z = M2
H

/ŝ

Figure 2: Sequence of matching steps and associated effective theories leading to the factor-
ization theorem (13).

momentum transfer q2 = m2
H , and with infrared divergences subtracted using the MS scheme

[16, 25, 27]:

H(m2
H , µ2) =

∣∣CS(−m2
H − iε, µ2)

∣∣2 . (14)

On a technical level, the function CS appears as a Wilson coefficient in the matching of the
two-gluon operator in (11) onto an operator in SCET, in which all hard modes have been
integrated out. This matching takes the form

Gµν,a Gµν
a → CS(Q2, µ2) Q2 gµν A

µ,a
n⊥ A

ν,a
n̄⊥ , (15)

where Q2 = −q2 is (minus) the square of the total momentum carried by the operator. The
fields A

µ,a
n⊥ and A

ν,a
n̄⊥ are effective, gauge-invariant gluon fields in SCET [42]. They describe

gluons propagating along the two light-like directions n, n̄ defined by the colliding hadrons.
The two-loop expression for the Wilson coefficient CS can be extracted from the results of
[43]. We write its perturbative series in the form

CS(−m2
H − iε, µ2) = 1 +

∞∑

n=1

cn(L)

(
αs(µ2)

4π

)n

, (16)

where L = ln[(−m2
H − iε)/µ2]. The one- and two-loop coefficients read

c1(L) = CA

(
−L2 +

π2

6

)
,

c2(L) = C2
A

[
L4

2
+

11

9
L3 +

(
−

67

9
+

π2

6

)
L2 +

(
80

27
−

11π2

9
− 2ζ3

)
L

+
5105

162
+

67π2

36
+

π4

72
−

143

9
ζ3

]
+ CFTF nf

(
4L −

67

3
+ 16ζ3

)

+ CATF nf

[
−

4

9
L3 +

20

9
L2 +

(
104

27
+

4π2

9

)
L −

1832

81
−

5π2

9
−

92

9
ζ3

]
.

(17)

The soft function S in (13) is defined in terms of the Fourier transform of a vacuum
expectation value of a Wilson loop in the adjoint representation of SU(Nc). In SCET is
arises after the decoupling of soft gluons from the hard-collinear and anti-hard-collinear fields
describing the partons originating from the colliding beam particles [27]. The soft function
in the case of Higgs-boson production is closely related to an analogous function entering

7

2



Scale hierarchy

✦ Evaluate each part at its characteristic scale 
and evolve to a common scale using RGEs:

m2
H

−m2
H

0

m2
t

µ2

ffgg(τ/z, µf )

S(ŝ(1− z), µ2
s)

H(m2
H

, µ
2
h
)

Ct(m2
t , µ

2
t )

µ2
f



RG evolution equations

✦ Top function:

✦ Hard function                                                     :

✦ Soft function:

the Drell-Yan cross section [17, 28]. At two-loop order (but not beyond) the two quantities
coincide after a simple replacement of color factors. In the notation of the second reference,
we have

S(ŝ(1 − z)2, µ2
f) =

√
ŝWHiggs(ŝ(1 − z)2, µ2

f)

=
√

ŝWDY(ŝ(1 − z)2, µ2
f)

∣∣∣
CF→CA

+ O(α3
s) .

(18)

The explicit form of the result can be derived using formulas compiled in Appendix B of [28].
When one inserts the two-loop expressions for the various component functions into (13)

and expands the product to O(α2
s), one recovers the expression given in (7). In the following

section we will discuss how improved perturbative expressions for the component functions
can be obtained by solving RG evolution equations with appropriate boundary conditions. In
this way one avoids perturbative logarithms arising when the factorization scale µf is chosen
different from the characteristic scales mt, mH , or

√
ŝ(1 − z). Even though these logarithms

are not particularly large, their resummation has the effect of improving the stability of the
prediction with respect to scale variations. More importantly, however, we will also be able to
resum the π2-enhanced terms in the perturbative expansion related to the time-like kinematics
of the Higgs-boson production process. They have been shown to be responsible for the bulk
of the large K-factors arising in calculations of the Higgs-production cross sections at the
Tevatron and the LHC [18].

3 Renormalization-group analysis and resummation

Our formalism for the resummation of large perturbative corrections in Higgs-boson production
is based on effective field theory and follows closely our previous analyses of DIS at large x
[26, 27] and Drell-Yan production [28]. The two key steps of the approach are deriving a
factorization formula such as (13) valid near the partonic threshold z → 1, and then using the
RG directly in momentum space to resum logarithms arising from ratios of the different scales.
We stress that the final, RG-improved formula for the cross section follows unambiguously by
applying the rules of effective field theory at each step of the derivation.

The Wilson coefficient Ct appearing when the top quark is integrated out satisfies the RG
equation

d

d ln µ
Ct(m

2
t , µ

2) = γt(αs) Ct(m
2
t , µ

2) , with γt(αs) = α2
s

d

dαs

β(αs)

α2
s

. (19)

The fact that the anomalous dimension is related to the QCD β-function [34, 47] is not
surprising, since the two-gluon operator in (11) is proportional to the Yang-Mills Lagrangian.
The evolution equation can be integrated in closed form and leads to

Ct(m
2
t , µ

2
f) =

β
(
αs(µ2

f)
)
/α2

s(µ
2
f)

β
(
αs(µ2

t )
)
/α2

s(µ
2
t )

Ct(m
2
t , µ

2
t ) , (20)

where µt ∼ mt is the matching scale at which the top quark is integrated out.

8

The Wilson coefficient CS arising when hard, virtual quantum corrections to the effective
two-gluon vertex (11) are integrated out obeys an evolution equation reflecting the renor-
malization properties of the effective two-gluon SCET operator on the right-hand side of the
matching relation (15). It reads [26]

d

d lnµ
CS(−m2

H − iε, µ2) =

[
ΓA

cusp(αs) ln
−m2

H − iε

µ2
+ γS(αs)

]
CS(−m2

H − iε, µ2) , (21)

where ΓA
cusp is the cusp anomalous dimension of Wilson lines with light-like segments in the

adjoint representation of SU(Nc). It controls the leading Sudakov double logarithms contained
in CS and is known to three-loop order [48]. The single-logarithmic evolution is controlled
by the anomalous dimension γS, which can be extracted from the infrared divergences of the
on-shell gluon form factor [26]. Using results from [49] it can be derived to three-loop order.
We collect the relevant expressions for the expansion coefficients of the anomalous dimensions
in Appendix A. The general solution to (21) is [51]

CS(−m2
H−iε, µ2

f)=exp

[
2S(µ2

h, µ
2
f) − aΓ(µ2

h, µ
2
f) ln

−m2
H − iε

µ2
h

− aγS(µ2
h, µ

2
f)

]
CS(−m2

H−iε, µ2
h),

(22)
where µh is the hard matching scale. We have introduced the definitions

S(ν2, µ2) = −
αs(µ2)∫

αs(ν2)

dα
ΓA

cusp(α)

β(α)

α∫

αs(ν2)

dα′

β(α′)
,

aΓ(ν2, µ2) = −
αs(µ2)∫

αs(ν2)

dα
ΓA

cusp(α)

β(α)
,

(23)

and similarly for the function aγS . The perturbative expansions of these functions obtained
at NNLO in RG-improved perturbation theory can be found in the Appendix of [27].

The naive choice µ2
h ∼ m2

H of the hard matching scale gives rise to large π2 terms in the
matching condition (16), which arise since L2 = ln2[(−m2

H − iε)/µ2
h] ∼ −π2 and render the

perturbative expansion of the hard function H in (14) unstable. We have shown in [18] that
these π2-enhanced terms are to a large extent responsible for the poor perturbative behavior of
fixed-order predictions for the Higgs-boson production cross sections at hadron colliders. We
can exploit the fact that the solution (22) is formally independent of the hard matching scale
to avoid the large π2 terms in the matching condition by a proper choice of the matching scale.
To this end we set µ2

h ∼ −m2
H − iε, so that ln[(−m2

H − iε)/µ2
h] remains a small parameter.

The π2-enhanced terms are then resummed to all orders in perturbation theory and appear
in the functions S and aΓ in the exponent in (22). With this choice, relation (22) involves the
running coupling αs(µ2) evaluated at negative argument. The definition β(αs) = dαs/d lnµ
of the QCD β-function implies that

∫ αs(−µ2)

αs(µ2)

dα

β(α)
= −

iπ

2
, (24)

9

dS(ω2, µ2)
d lnµ

= −
�
2Γcusp(αs) ln

ω2

µ2
+ 2γW (αs)

�
S(ω2, µ2)

− 4Γcusp(αs)
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H
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2
H
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Sudakov (cusp) logarithms



RG evolution equations

✦ Closed analytic solutions (Laplace transform):

with:

and:

The result (28) agrees with a corresponding expressions derived in [17].
Putting everything together, we arrive at our final formula for the RG-improved expression

for the hard-scattering coefficient in (7). It can be written in the form

C(z, mt, mH , µf) =
[
Ct(m

2
t , µ

2
t )

]2 ∣∣CS(−m2
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,

(30)

where
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α2

s(µ
2
s)

α2
s(µ

2
f)

[
β
(
αs(µ2

s)
)
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s(µ
2
s)

β
(
αs(µ2

t )
)
/α2

s(µ
2
t )
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(
−m2
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h

)−2aΓ(µ2
h,µ2

s)
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×
∣∣exp

[
4S(µ2

h, µ
2
s) − 2aγS(µ2

h, µ
2
s) + 4aγB(µ2

s, µ
2
f)

]∣∣ .

(31)

Apart from the factor containing the β-function, which is related to the evolution of the
two-gluon operator in (11), and the ratio of running couplings, which compensates the scale
dependence of the Born-level cross section σ0 in (1), this result is of the same form as the
corresponding expression arising in Drell-Yan production and given in equations (50) and
(51) of [28]. Some comments on the effect of the resummation of π2-enhanced terms in the
Drell-Yan case will be made in Section 6.1.

It is instructive to consider the special limit in which all matching scales are set equal to a
common scale µf ∼ mH , while µ2

h = −µ2
f − iε is still chosen in the time-like region. We then

obtain [18]

ln U(mH , µf ,−iµf , µf , µf) =
ΓA

0

2β2
0

{
4π

αs(m2
H)

[
2a arctan(a) − ln(1 + a2)

]

+

(
ΓA

1

ΓA
0

−
β1

β0
−

γS
0 β0

ΓA
0

)
ln(1 + a2)

+
β1

4β0

[
4 arctan2(a) − ln2(1 + a2)

]
+ O(αs)

}
,

(32)

where a ≡ a(m2
H). Note that the result is µf -independent at this order. The expression for

the evolution function simplifies considerably if we treat a(m2
H) ≈ 0.2 as a parameter of order

αs. Using the fact that γS
0 = 0, we then find

ln U(mH , µf ,−iµf , µf , µf) =
π2

2
ΓA

cusp[αs(m
2
H)] + O(α3

s) . (33)

This result makes explicit that the π2-enhanced corrections are terms of the form (CAπαs)n

in perturbation theory and exponentiate at leading order. Numerically, setting µf = mH =
120 GeV we obtain ln U = {0.558, 0.560, 0.561} at LO, NLO, and NNLO from the exact
expression for the evolution function derived from (31), indicating that the leading-order terms
give by far the dominant effect after RG improvement. The analytical expressions (32) and (33)
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Apart from the factor containing the β-function, which is related to the evolution of the
two-gluon operator in (11), and the ratio of running couplings, which compensates the scale
dependence of the Born-level cross section σ0 in (1), this result is of the same form as the
corresponding expression arising in Drell-Yan production and given in equations (50) and
(51) of [28]. Some comments on the effect of the resummation of π2-enhanced terms in the
Drell-Yan case will be made in Section 6.1.

It is instructive to consider the special limit in which all matching scales are set equal to a
common scale µf ∼ mH , while µ2

h = −µ2
f − iε is still chosen in the time-like region. We then

obtain [18]

ln U(mH , µf ,−iµf , µf , µf) =
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0
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0
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(32)

where a ≡ a(m2
H). Note that the result is µf -independent at this order. The expression for

the evolution function simplifies considerably if we treat a(m2
H) ≈ 0.2 as a parameter of order

αs. Using the fact that γS
0 = 0, we then find

ln U(mH , µf ,−iµf , µf , µf) =
π2

2
ΓA

cusp[αs(m
2
H)] + O(α3

s) . (33)

This result makes explicit that the π2-enhanced corrections are terms of the form (CAπαs)n

in perturbation theory and exponentiate at leading order. Numerically, setting µf = mH =
120 GeV we obtain ln U = {0.558, 0.560, 0.561} at LO, NLO, and NNLO from the exact
expression for the evolution function derived from (31), indicating that the leading-order terms
give by far the dominant effect after RG improvement. The analytical expressions (32) and (33)
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µt ≈ mt , µ2
h
≈ −m2

H
, µs set dynamically

Becher, MN 2006



Advantages over standard approach

✦ Traditionally, resummation is performed in 
Mellin-moment space

✦ While equivalent at any fixed order in αs, our 
approach offers several advantages:

✦ Large corrections ~(CAπαs)n from analytic 
continuation of gluon form factor resummed

✦ No integrals over Landau pole of running coupling 
αs(µ2), hence no regularization prescription 

✦ No need for numerical Mellin inversion
✦ Trivial matching onto fixed-order results

e.g.: Catani, de Florian, Grazzini, Nason 2003



Cross section predictions
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Figure 6: The fixed-order (left) and RG-improved (right) cross-section predictions including
perturbative uncertainty bands due to scale variations for the Tevatron (upper) and LHC
(lower plots). In contrast to Figure 5, different PDF sets are used according to the order of
the calculation.

after RG improvement are fully contained in the lower-order ones and the K-factor is close
to 1, in particular for the LHC.1 In fixed-order calculations it is customary to use PDFs ex-
tracted from a fit using predictions of the same order. Doing so absorbs universal higher-order
corrections into the PDFs. Since resummed calculations contain contributions of arbitrarily
high orders, the optimal PDF choice is less clear. If the same large higher-order corrections
affect both the observable one tries to predict and the cross sections used to extract the PDFs,
it would be quite problematic to perform a resummation in one case and not the other. For
our case, the relevant input quantity is the gluon PDF at low x, which is mostly determined
by measurements of scaling violations in the DIS structure function, ∂F2(x, Q2)/∂Q2. The
higher-order corrections associated with the analytic continuation of the time-like gluon form
factor, which we resum, do not affect the DIS cross section, and so are not universal and

1For MRST2004 PDFs [52], the K-factors after resummation are somewhat larger, K ≈ 1.3 for the LHC,
see [18].
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8.4% increase over 
fixed order NNLO

13% increase over 
fixed order NNLO



Predictions including EW corrections
 Ahrens, Becher, MN, Yang 2010
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Figure 1: Cross sections at the Tevatron for
√
s = 1.96 TeV and the LHC for

√
s = 7, 10,

14 TeV. Bands indicate scale uncertainties. Light, medium and dark bands represent LO
(NLL), NLO (NNLL) and NNLO (N3LL) in RG-improved perturbation theory, respectively.

for download1.
In [28], the authors have also updated their predictions for Higgs production via gluon

fusion combining soft gluon resummation and two-loop electroweak corrections. Our results
differ in several important aspects from theirs:

• We work at N3LL accuracy rather than NNLL.

• We resum the enhanced contributions arising from the analytic continuation of the gluon
form factor. This has been demonstrated to greatly improve the perturbative conver-
gence.

• We work directly in momentum space rather than in Mellin moment space, which avoids
the Landau pole ambiguity.

1http://projects.hepforge.org/rghiggs/
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Predictions including EW corrections

✦ State-of-the-art results (most complete to date), 
using MSTW2008NNLO PDFs:

√
s (TeV)

σ
(p

b
)

1413121110987

60

50

40

30

20

10

0

Figure 2: Cross sections as functions of the center-of-mass energy at the LHC for Higgs masses
being 120 GeV (solid), 160 GeV (dashed) and 200 GeV (dotted).

mH [GeV] Tevatron LHC (7 TeV) LHC (10 TeV) LHC (14 TeV)

115 1.200+0.030+0.068
−0.006−0.068 18.23+0.54+0.52

−0.13−0.63 34.0+1.0+1.1
−0.2−1.3 58.9+1.7+2.1

−0.4−2.5

120 1.060+0.026+0.064
−0.005−0.063 16.76+0.48+0.47

−0.12−0.56 31.5+0.9+1.0
−0.2−1.2 54.8+1.5+1.9

−0.3−2.3

125 0.940+0.022+0.061
−0.004−0.059 15.46+0.44+0.43

−0.11−0.51 29.2+0.8+0.9
−0.2−1.1 51.2+1.4+1.7

−0.3−2.1

130 0.837+0.019+0.058
−0.004−0.055 14.29+0.40+0.39

−0.10−0.46 27.2+0.8+0.8
−0.2−1.0 47.9+1.3+1.6

−0.3−1.9

135 0.747+0.016+0.055
−0.004−0.052 13.25+0.37+0.36

−0.10−0.42 25.4+0.7+0.7
−0.2−0.9 44.9+1.2+1.5

−0.3−1.8

140 0.669+0.014+0.052
−0.003−0.049 12.31+0.34+0.33

−0.08−0.38 23.7+0.7+0.7
−0.2−0.8 42.2+1.1+1.3

−0.2−1.6

145 0.600+0.012+0.049
−0.003−0.046 11.47+0.31+0.30

−0.08−0.35 22.3+0.6+0.6
−0.1−0.8 39.8+1.1+1.2

−0.2−1.5

150 0.541+0.010+0.047
−0.002−0.043 10.71+0.29+0.28

−0.07−0.32 20.9+0.6+0.6
−0.1−0.7 37.6+1.0+1.2

−0.2−1.4

155 0.488+0.009+0.044
−0.002−0.041 10.02+0.26+0.26

−0.07−0.30 19.7+0.5+0.5
−0.1−0.6 35.6+0.9+1.1

−0.2−1.3

160 0.438+0.008+0.042
−0.002−0.038 9.32+0.24+0.24

−0.06−0.28 18.4+0.5+0.5
−0.1−0.6 33.4+0.9+1.0

−0.2−1.2

165 0.385+0.006+0.039
−0.002−0.035 8.50+0.22+0.22

−0.06−0.25 16.9+0.4+0.4
−0.1−0.5 30.8+0.8+0.9

−0.2−1.1

170 0.345+0.005+0.036
−0.002−0.033 7.88+0.20+0.20

−0.05−0.23 15.8+0.4+0.4
−0.1−0.5 28.9+0.7+0.8

−0.2−1.0

175 0.312+0.005+0.034
−0.001−0.031 7.36+0.18+0.19

−0.05−0.22 14.8+0.4+0.4
−0.1−0.5 27.3+0.7+0.8

−0.2−0.9

180 0.282+0.004+0.032
−0.001−0.029 6.90+0.17+0.18

−0.05−0.21 14.0+0.3+0.4
−0.1−0.4 25.8+0.6+0.7

−0.2−0.9

185 0.254+0.003+0.030
−0.001−0.027 6.41+0.16+0.17

−0.04−0.19 13.0+0.3+0.3
−0.1−0.4 24.2+0.6+0.7

−0.1−0.8

190 0.229+0.003+0.028
−0.001−0.025 5.99+0.14+0.16

−0.04−0.18 12.3+0.3+0.3
−0.1−0.4 22.9+0.5+0.6

−0.1−0.8

195 0.209+0.003+0.027
−0.001−0.024 5.63+0.13+0.15

−0.03−0.17 11.6+0.3+0.3
−0.1−0.3 21.7+0.5+0.6

−0.1−0.7

200 0.191+0.002+0.025
−0.001−0.022 5.32+0.12+0.15

−0.03−0.16 11.0+0.3+0.3
−0.1−0.3 20.7+0.5+0.5

−0.1−0.7

Table 2: Cross sections (in pb) for different Higgs masses at the Tevatron and the LHC, using
CTEQ6.6 PDFs.

5

mH=120 GeV

160 GeV

200 GeV

scale uncertainty PDF & αs uncertainty

mH [GeV] Tevatron LHC (7 TeV) LHC (10 TeV) LHC (14 TeV)

115 1.215+0.031+0.141
−0.007−0.135 18.19+0.53+1.46

−0.14−1.39 33.7+1.0+2.6
−0.2−2.5 57.9+1.6+4.4

−0.3−4.2

120 1.073+0.026+0.126
−0.006−0.121 16.73+0.48+1.34

−0.13−1.28 31.2+0.9+2.4
−0.2−2.3 54.0+1.5+4.1

−0.3−3.9

125 0.950+0.022+0.113
−0.005−0.108 15.43+0.44+1.23

−0.12−1.18 29.0+0.8+2.2
−0.2−2.1 50.4+1.4+3.8

−0.3−3.6

130 0.844+0.019+0.102
−0.004−0.098 14.27+0.40+1.14

−0.11−1.09 27.0+0.7+2.1
−0.2−2.0 47.2+1.3+3.5

−0.3−3.4

135 0.753+0.016+0.093
−0.004−0.088 13.23+0.36+1.06

−0.10−1.01 25.2+0.7+1.9
−0.2−1.8 44.3+1.2+3.3

−0.3−3.2

140 0.672+0.014+0.084
−0.003−0.080 12.29+0.33+0.98

−0.09−0.94 23.5+0.6+1.8
−0.2−1.7 41.6+1.1+3.1

−0.3−3.0

145 0.602+0.012+0.076
−0.003−0.072 11.44+0.31+0.91

−0.08−0.88 22.1+0.6+1.7
−0.1−1.6 39.2+1.0+2.9

−0.2−2.8

150 0.541+0.010+0.070
−0.002−0.066 10.67+0.28+0.85

−0.08−0.82 20.7+0.5+1.6
−0.1−1.5 37.0+1.0+2.7

−0.2−2.6

155 0.486+0.009+0.064
−0.002−0.060 9.95+0.26+0.80

−0.07−0.77 19.4+0.5+1.5
−0.1−1.4 34.9+0.9+2.6

−0.2−2.5

160 0.433+0.008+0.058
−0.002−0.054 9.21+0.24+0.74

−0.07−0.71 18.1+0.5+1.4
−0.1−1.3 32.7+0.8+2.4

−0.2−2.3

165 0.385+0.006+0.052
−0.002−0.049 8.50+0.22+0.68

−0.06−0.66 16.8+0.4+1.3
−0.1−1.2 30.5+0.8+2.2

−0.2−2.1

170 0.345+0.005+0.047
−0.002−0.044 7.89+0.20+0.63

−0.06−0.61 15.7+0.4+1.2
−0.1−1.1 28.6+0.7+2.1

−0.2−2.0

175 0.310+0.005+0.043
−0.001−0.040 7.36+0.18+0.59

−0.05−0.57 14.7+0.4+1.1
−0.1−1.1 27.0+0.7+1.9

−0.2−1.9

180 0.280+0.004+0.040
−0.001−0.037 6.88+0.17+0.56

−0.05−0.54 13.8+0.3+1.0
−0.1−1.0 25.5+0.6+1.8

−0.2−1.8

185 0.252+0.003+0.036
−0.001−0.033 6.42+0.15+0.52

−0.04−0.50 13.0+0.3+1.0
−0.1−0.9 24.0+0.6+1.7

−0.1−1.7

190 0.228+0.003+0.033
−0.001−0.031 6.02+0.14+0.49

−0.04−0.47 12.2+0.3+0.9
−0.1−0.9 22.7+0.5+1.6

−0.1−1.6

195 0.207+0.002+0.031
−0.001−0.028 5.67+0.13+0.46

−0.04−0.45 11.6+0.3+0.9
−0.1−0.8 21.6+0.5+1.6

−0.1−1.5

200 0.189+0.002+0.028
−0.001−0.026 5.35+0.12+0.44

−0.03−0.42 11.0+0.3+0.8
−0.1−0.8 20.6+0.5+1.5

−0.1−1.4

Table 1: Cross sections (in pb) for different Higgs masses at the Tevatron and the LHC, using
MSTW2008NNLO PDFs. The first error accounts for scale variations, while the second one
reflects the combined uncertainty from the PDFs and αs.

mZ = 91.1876 GeV , GF (mZ) = 1.16208 · 10−5 GeV−2 ,

and by default use the MSTW2008NNLO PDFs [25] with αs(mZ) = 0.11707. The other elec-
troweak parameters are the same as in [14]. For comparison, we also show numbers obtained
using the CT10 and NNPDF2.0 PDFs [26,27] , with the corresponding values of αs(mZ). We
note, however, that these are NLO PDFs and therefore less well suited for our calculation.

Our main results are summarized in Table 1, where our best predictions for the cross
section at the Tevatron with

√
s = 1.96 TeV and the LHC with

√
s = 7, 10, 14 TeV using

MSTW2008NNLO PDFs are shown. In Figure 1, we show the cross sections as functions of
mH , with bands representing the scale uncertainties. We have also depicted the LO and NLO
RG-improved cross sections in Figure 1, to show the good perturbative convergence of our
result. In Figure 2, we plot the central values of the cross sections at the LHC for mH = 120,
160 and 200 GeV as functions of

√
s. For comparison, in Table 2 and 3 we also show the cross

sections using CT10 and NNPDF2.0 PDFs. They agree with the results in Table 1 within
errors. To make it simple to update our results in the future, we include a Fortran program
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Predictions including EW corrections

✦ State-of-the-art results (most complete to date) 
using CT10 PDFs:

scale uncertainty
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Figure 2: Cross sections as functions of the center-of-mass energy at the LHC for Higgs masses
being 120 GeV (solid), 160 GeV (dashed) and 200 GeV (dotted).

mH [GeV] Tevatron LHC (7 TeV) LHC (10 TeV) LHC (14 TeV)

115 1.200+0.030+0.068
−0.006−0.068 18.23+0.54+0.52

−0.13−0.63 34.0+1.0+1.1
−0.2−1.3 58.9+1.7+2.1

−0.4−2.5

120 1.060+0.026+0.064
−0.005−0.063 16.76+0.48+0.47

−0.12−0.56 31.5+0.9+1.0
−0.2−1.2 54.8+1.5+1.9

−0.3−2.3

125 0.940+0.022+0.061
−0.004−0.059 15.46+0.44+0.43

−0.11−0.51 29.2+0.8+0.9
−0.2−1.1 51.2+1.4+1.7

−0.3−2.1

130 0.837+0.019+0.058
−0.004−0.055 14.29+0.40+0.39

−0.10−0.46 27.2+0.8+0.8
−0.2−1.0 47.9+1.3+1.6

−0.3−1.9

135 0.747+0.016+0.055
−0.004−0.052 13.25+0.37+0.36

−0.10−0.42 25.4+0.7+0.7
−0.2−0.9 44.9+1.2+1.5

−0.3−1.8

140 0.669+0.014+0.052
−0.003−0.049 12.31+0.34+0.33

−0.08−0.38 23.7+0.7+0.7
−0.2−0.8 42.2+1.1+1.3

−0.2−1.6

145 0.600+0.012+0.049
−0.003−0.046 11.47+0.31+0.30

−0.08−0.35 22.3+0.6+0.6
−0.1−0.8 39.8+1.1+1.2

−0.2−1.5

150 0.541+0.010+0.047
−0.002−0.043 10.71+0.29+0.28

−0.07−0.32 20.9+0.6+0.6
−0.1−0.7 37.6+1.0+1.2

−0.2−1.4

155 0.488+0.009+0.044
−0.002−0.041 10.02+0.26+0.26

−0.07−0.30 19.7+0.5+0.5
−0.1−0.6 35.6+0.9+1.1

−0.2−1.3

160 0.438+0.008+0.042
−0.002−0.038 9.32+0.24+0.24

−0.06−0.28 18.4+0.5+0.5
−0.1−0.6 33.4+0.9+1.0

−0.2−1.2

165 0.385+0.006+0.039
−0.002−0.035 8.50+0.22+0.22

−0.06−0.25 16.9+0.4+0.4
−0.1−0.5 30.8+0.8+0.9

−0.2−1.1

170 0.345+0.005+0.036
−0.002−0.033 7.88+0.20+0.20

−0.05−0.23 15.8+0.4+0.4
−0.1−0.5 28.9+0.7+0.8

−0.2−1.0

175 0.312+0.005+0.034
−0.001−0.031 7.36+0.18+0.19

−0.05−0.22 14.8+0.4+0.4
−0.1−0.5 27.3+0.7+0.8

−0.2−0.9

180 0.282+0.004+0.032
−0.001−0.029 6.90+0.17+0.18

−0.05−0.21 14.0+0.3+0.4
−0.1−0.4 25.8+0.6+0.7

−0.2−0.9

185 0.254+0.003+0.030
−0.001−0.027 6.41+0.16+0.17

−0.04−0.19 13.0+0.3+0.3
−0.1−0.4 24.2+0.6+0.7

−0.1−0.8

190 0.229+0.003+0.028
−0.001−0.025 5.99+0.14+0.16

−0.04−0.18 12.3+0.3+0.3
−0.1−0.4 22.9+0.5+0.6

−0.1−0.8

195 0.209+0.003+0.027
−0.001−0.024 5.63+0.13+0.15

−0.03−0.17 11.6+0.3+0.3
−0.1−0.3 21.7+0.5+0.6

−0.1−0.7

200 0.191+0.002+0.025
−0.001−0.022 5.32+0.12+0.15

−0.03−0.16 11.0+0.3+0.3
−0.1−0.3 20.7+0.5+0.5

−0.1−0.7

Table 2: Cross sections (in pb) for different Higgs masses at the Tevatron and the LHC, using
CTEQ6.6 PDFs.

5

mH=120 GeV

160 GeV

200 GeV

mH [GeV] Tevatron LHC (7 TeV) LHC (10 TeV) LHC (14 TeV)

115 1.215+0.031+0.105
−0.007−0.095 18.34+0.54+0.95

−0.14−1.00 34.1+1.0+1.8
−0.2−1.9 58.8+1.7+3.1

−0.4−3.5

120 1.073+0.026+0.096
−0.005−0.087 16.86+0.49+0.87

−0.13−0.91 31.5+0.9+1.6
−0.2−1.8 54.7+1.6+2.9

−0.3−3.2

125 0.950+0.022+0.088
−0.005−0.079 15.54+0.45+0.80

−0.12−0.83 29.3+0.8+1.5
−0.2−1.6 51.1+1.4+2.6

−0.3−3.0

130 0.845+0.019+0.081
−0.004−0.072 14.36+0.41+0.74

−0.11−0.76 27.2+0.8+1.4
−0.2−1.5 47.8+1.3+2.5

−0.3−2.7

135 0.753+0.016+0.075
−0.004−0.067 13.31+0.37+0.68

−0.10−0.70 25.4+0.7+1.3
−0.2−1.4 44.8+1.2+2.3

−0.3−2.5

140 0.673+0.014+0.069
−0.003−0.061 12.35+0.34+0.63

−0.09−0.65 23.7+0.7+1.2
−0.2−1.3 42.1+1.1+2.1

−0.3−2.3

145 0.604+0.012+0.064
−0.003−0.057 11.50+0.31+0.59

−0.08−0.60 22.2+0.6+1.1
−0.2−1.2 39.7+1.1+2.0

−0.2−2.2

150 0.542+0.010+0.059
−0.002−0.052 10.71+0.29+0.55

−0.08−0.56 20.9+0.6+1.0
−0.1−1.1 37.4+1.0+1.9

−0.2−2.0

155 0.487+0.009+0.055
−0.002−0.049 9.99+0.26+0.51

−0.07−0.52 19.6+0.5+1.0
−0.1−1.0 35.2+0.9+1.7

−0.2−1.9

160 0.435+0.008+0.050
−0.002−0.045 9.24+0.24+0.48

−0.07−0.48 18.2+0.5+0.9
−0.1−0.9 33.0+0.9+1.6

−0.2−1.7

165 0.387+0.007+0.046
−0.002−0.041 8.52+0.22+0.44

−0.06−0.44 16.9+0.4+0.8
−0.1−0.9 30.7+0.8+1.5

−0.2−1.6

170 0.347+0.006+0.043
−0.002−0.038 7.91+0.20+0.41

−0.05−0.41 15.8+0.4+0.8
−0.1−0.8 28.8+0.7+1.4

−0.2−1.5

175 0.313+0.005+0.039
−0.001−0.035 7.38+0.19+0.38

−0.05−0.38 14.8+0.4+0.7
−0.1−0.7 27.2+0.7+1.3

−0.2−1.4

180 0.282+0.004+0.037
−0.001−0.032 6.89+0.17+0.36

−0.05−0.36 13.9+0.3+0.7
−0.1−0.7 25.7+0.6+1.2

−0.2−1.3

185 0.254+0.004+0.034
−0.001−0.030 6.43+0.16+0.34

−0.04−0.33 13.1+0.3+0.6
−0.1−0.7 24.2+0.6+1.1

−0.1−1.2

190 0.230+0.003+0.032
−0.001−0.028 6.02+0.15+0.32

−0.04−0.31 12.3+0.3+0.6
−0.1−0.6 22.9+0.6+1.1

−0.1−1.2

195 0.210+0.003+0.030
−0.001−0.026 5.67+0.14+0.30

−0.04−0.30 11.6+0.3+0.6
−0.1−0.6 21.8+0.5+1.0

−0.1−1.1

200 0.191+0.002+0.028
−0.001−0.024 5.35+0.13+0.29

−0.03−0.28 11.1+0.3+0.5
−0.1−0.5 20.8+0.5+1.0

−0.1−1.0

Table 2: Cross sections (in pb) for different Higgs masses at the Tevatron and the LHC, using
CT10 PDFs with αs(mZ) = 0.118.

Therefore, we believe that our results are the most precise predictions for the total Higgs pro-
duction cross sections to date. With the higher-order perturbative corrections under control,
the main uncertainties now arise from the experimental determinations of the PDFs and αs.
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Predictions including EW corrections

✦ State-of-the-art results (most complete to date) 
using NNPDF2.0 PDFs:
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Figure 2: Cross sections as functions of the center-of-mass energy at the LHC for Higgs masses
being 120 GeV (solid), 160 GeV (dashed) and 200 GeV (dotted).

mH [GeV] Tevatron LHC (7 TeV) LHC (10 TeV) LHC (14 TeV)

115 1.200+0.030+0.068
−0.006−0.068 18.23+0.54+0.52

−0.13−0.63 34.0+1.0+1.1
−0.2−1.3 58.9+1.7+2.1

−0.4−2.5

120 1.060+0.026+0.064
−0.005−0.063 16.76+0.48+0.47

−0.12−0.56 31.5+0.9+1.0
−0.2−1.2 54.8+1.5+1.9

−0.3−2.3

125 0.940+0.022+0.061
−0.004−0.059 15.46+0.44+0.43

−0.11−0.51 29.2+0.8+0.9
−0.2−1.1 51.2+1.4+1.7

−0.3−2.1

130 0.837+0.019+0.058
−0.004−0.055 14.29+0.40+0.39

−0.10−0.46 27.2+0.8+0.8
−0.2−1.0 47.9+1.3+1.6

−0.3−1.9

135 0.747+0.016+0.055
−0.004−0.052 13.25+0.37+0.36

−0.10−0.42 25.4+0.7+0.7
−0.2−0.9 44.9+1.2+1.5

−0.3−1.8

140 0.669+0.014+0.052
−0.003−0.049 12.31+0.34+0.33

−0.08−0.38 23.7+0.7+0.7
−0.2−0.8 42.2+1.1+1.3

−0.2−1.6

145 0.600+0.012+0.049
−0.003−0.046 11.47+0.31+0.30

−0.08−0.35 22.3+0.6+0.6
−0.1−0.8 39.8+1.1+1.2

−0.2−1.5

150 0.541+0.010+0.047
−0.002−0.043 10.71+0.29+0.28

−0.07−0.32 20.9+0.6+0.6
−0.1−0.7 37.6+1.0+1.2

−0.2−1.4

155 0.488+0.009+0.044
−0.002−0.041 10.02+0.26+0.26

−0.07−0.30 19.7+0.5+0.5
−0.1−0.6 35.6+0.9+1.1

−0.2−1.3

160 0.438+0.008+0.042
−0.002−0.038 9.32+0.24+0.24

−0.06−0.28 18.4+0.5+0.5
−0.1−0.6 33.4+0.9+1.0

−0.2−1.2

165 0.385+0.006+0.039
−0.002−0.035 8.50+0.22+0.22

−0.06−0.25 16.9+0.4+0.4
−0.1−0.5 30.8+0.8+0.9

−0.2−1.1

170 0.345+0.005+0.036
−0.002−0.033 7.88+0.20+0.20

−0.05−0.23 15.8+0.4+0.4
−0.1−0.5 28.9+0.7+0.8

−0.2−1.0

175 0.312+0.005+0.034
−0.001−0.031 7.36+0.18+0.19

−0.05−0.22 14.8+0.4+0.4
−0.1−0.5 27.3+0.7+0.8

−0.2−0.9

180 0.282+0.004+0.032
−0.001−0.029 6.90+0.17+0.18

−0.05−0.21 14.0+0.3+0.4
−0.1−0.4 25.8+0.6+0.7

−0.2−0.9

185 0.254+0.003+0.030
−0.001−0.027 6.41+0.16+0.17

−0.04−0.19 13.0+0.3+0.3
−0.1−0.4 24.2+0.6+0.7

−0.1−0.8

190 0.229+0.003+0.028
−0.001−0.025 5.99+0.14+0.16

−0.04−0.18 12.3+0.3+0.3
−0.1−0.4 22.9+0.5+0.6

−0.1−0.8

195 0.209+0.003+0.027
−0.001−0.024 5.63+0.13+0.15

−0.03−0.17 11.6+0.3+0.3
−0.1−0.3 21.7+0.5+0.6

−0.1−0.7

200 0.191+0.002+0.025
−0.001−0.022 5.32+0.12+0.15

−0.03−0.16 11.0+0.3+0.3
−0.1−0.3 20.7+0.5+0.5

−0.1−0.7

Table 2: Cross sections (in pb) for different Higgs masses at the Tevatron and the LHC, using
CTEQ6.6 PDFs.

5

mH=120 GeV

160 GeV

200 GeV

mH [GeV] Tevatron LHC (7 TeV) LHC (10 TeV) LHC (14 TeV)

115 1.341+0.037+0.143
−0.018−0.143 19.35+0.60+1.36

−0.29−1.36 35.4+1.1+2.4
−0.5−2.4 60.3+1.8+3.9

−0.7−3.9

120 1.184+0.032+0.129
−0.016−0.129 17.82+0.54+1.25

−0.29−1.25 32.8+1.0+2.2
−0.5−2.2 56.3+1.7+3.7

−0.7−3.7

125 1.049+0.027+0.116
−0.014−0.116 16.45+0.50+1.15

−0.28−1.15 30.5+0.9+2.0
−0.5−2.0 52.6+1.5+3.4

−0.8−3.4

130 0.932+0.023+0.105
−0.013−0.105 15.23+0.45+1.07

−0.28−1.07 28.5+0.8+1.9
−0.5−1.9 49.3+1.4+3.2

−0.8−3.2

135 0.831+0.020+0.096
−0.011−0.096 14.13+0.41+0.99

−0.27−0.99 26.6+0.8+1.8
−0.5−1.8 46.3+1.3+3.0

−0.8−3.0

140 0.742+0.017+0.087
−0.010−0.087 13.14+0.38+0.93

−0.26−0.93 24.9+0.7+1.7
−0.5−1.7 43.6+1.2+2.8

−0.8−2.8

145 0.665+0.015+0.080
−0.009−0.080 12.24+0.35+0.86

−0.25−0.86 23.3+0.7+1.5
−0.5−1.5 41.1+1.1+2.6

−0.8−2.6

150 0.597+0.013+0.073
−0.008−0.073 11.42+0.32+0.81

−0.24−0.81 21.9+0.6+1.5
−0.4−1.5 38.8+1.1+2.5

−0.7−2.5

155 0.536+0.011+0.067
−0.007−0.067 10.66+0.30+0.76

−0.23−0.76 20.6+0.6+1.4
−0.4−1.4 36.6+1.0+2.3

−0.7−2.3

160 0.478+0.010+0.061
−0.006−0.061 9.88+0.27+0.70

−0.22−0.70 19.2+0.5+1.3
−0.4−1.3 34.3+0.9+2.2

−0.7−2.2

165 0.425+0.008+0.055
−0.005−0.055 9.11+0.25+0.65

−0.21−0.65 17.8+0.5+1.2
−0.4−1.2 32.0+0.9+2.0

−0.7−2.0

170 0.380+0.007+0.050
−0.005−0.050 8.46+0.24+0.61

−0.19−0.61 16.6+0.5+1.1
−0.4−1.1 30.0+0.8+1.9

−0.6−1.9

175 0.342+0.006+0.046
−0.004−0.046 7.90+0.22+0.57

−0.18−0.57 15.6+0.4+1.0
−0.4−1.0 28.4+0.8+1.8

−0.6−1.8

180 0.308+0.005+0.042
−0.003−0.042 7.38+0.20+0.53

−0.17−0.53 14.7+0.4+1.0
−0.3−1.0 26.8+0.7+1.7

−0.6−1.7

185 0.277+0.005+0.039
−0.003−0.039 6.90+0.19+0.50

−0.16−0.50 13.8+0.4+0.9
−0.3−0.9 25.3+0.7+1.6

−0.6−1.6

190 0.250+0.004+0.036
−0.002−0.036 6.46+0.18+0.47

−0.15−0.47 13.0+0.4+0.9
−0.3−0.9 23.9+0.7+1.5

−0.5−1.5

195 0.227+0.004+0.033
−0.002−0.033 6.08+0.17+0.44

−0.14−0.44 12.3+0.4+0.8
−0.3−0.8 22.8+0.6+1.4

−0.5−1.4

200 0.207+0.003+0.031
−0.002−0.031 5.74+0.17+0.42

−0.13−0.42 11.7+0.3+0.8
−0.3−0.8 21.7+0.6+1.4

−0.5−1.4

Table 3: Cross sections (in pb) for different Higgs masses at the Tevatron and the LHC, using
NNPDF2.0 PDFs with αs(mZ) = 0.119.
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EFT-based predictions for top-pair production 
at Tevatron and LHC:                                     

First NNLL+NLO results for distributions
Ahrens, Ferroglia, MN, Pecjak, Yang 2009, 2010 & 2011



State of the art

✦ Fixed-order NLO calculations:
✦ total cross section

✦ differential

✦ AFBt                        
✦ Fixed-order NNLO calculations:

✦ none exist! (but several pieces available)
✦ “leading terms” (enhanced near threshold) 

for total cross section
✦ “leading terms” for distributions

Nason, Dawson, Ellis 1988
Beenakker et al. 1989

Nason, Dawson, Ellis 1989
Mangano, Nason, Ridolfi 1992 
Frixione, Mangano, Nason, Ridolfi 1995

Beneke, Falgari, Schwinn 2009 
Czakon, Mitov, Sterman 2009
Ahrens, Ferroglia, MN, Pecjak, Yang 2010

Ahrens, Ferroglia, MN, Pecjak, Yang 2009

Kühn, Rodrigo 1998



State of the art

✦ Threshold resummation at NLL:
✦ total cross section

✦ distributions
✦ AFBt

✦ Resummation at NNLL+NLO matching:
✦ total cross section
✦ distributions

Bonciani, Catani, Mangano, Nason 1998 
Berger, Contopanagos 1995 
Kidonakis, Laenen, Moch, Vogt 2001

Beneke, Falgari, Schwinn 2009 
Czakon, Mitov, Sterman 2009

Kidonakis, Vogt 2003; Banfi, Laenen 2005 

Ahrens, Ferroglia, MN, Pecjak, Yang 2010

Almeida, Sterman, Vogelsang 2008 



Different kinematics

✦ Pair-invariant mass (PIM) kinematics:

✦ observe both top quarks
✦ define threshold limit as

✦ One-particle inclusive (1PI) kinematics:

✦ observe only one top quark
✦ define threshold limit as

✦  Which kinematics to use is a matter of choice 
of the observables (none is intrinsically better 
than the other!)

Valentin Ahrens, Andrea Ferroglia, MN, Ben Pecjak, Li Lin Yang: 0912.3375 (PLB), 
1003.5827 (JHEP)

Valentin Ahrens, Andrea Ferroglia, MN, Ben Pecjak, Li Lin Yang: 1103.0550

s4 = p2t̄+X −m2
t → 0

z = M2
tt̄/ŝ → 1



Top-pair production at NLO+NNLL

✦ Soft functions from time-like Wilson-line 
correlation function:

I12 I13 I14

I23 I24 I33

I34 I44

Figure 1: Diagrams contributing to the soft functions at NLO. The thick lines represent Wilson
lines in the time-like directions v3 and v4, the thin lines Wilson lines in the light-like directions
n and n̄, and the cut curly lines represent the cut gluon propagator (66).

At NLO, the soft functions receive contributions from the diagrams depicted in Figure 1. The
calculation is similar to that in [81]. To evaluate the diagrams we associate an eikonal factor
vµi /k · vi multiplied by a color generator Ti for each attachment of a gluon to a particle with
velocity vi (we define v1 = n and v2 = n̄), and contract with the cut gluon propagator in
position space, which in Feynman gauge reads

Dµν
+ (x) = −gµν

∫
ddk

(2π)d
e−ik·x (2π) δ(k2) θ(k0) . (66)

We can then write the bare soft function in position space as

W
(1)
bare(ε, x0, µ) =

∑

i,j

wij Iij(ε, x0, µ) , (67)

where the matrices wij are related to products of color generators and will be given in (72)
and (73) below. The integrals Iij are defined as

Iij(ε, x0, µ) = −
(4πµ2)ε

π2−ε
vi · vj

∫
ddk

e−ik0x0

vi · k vj · k
(2π) δ(k2) θ(k0) , (68)

15



Top-pair production at NLO+NNLL

✦ Anomalous-dimension matrices in s-channel 
singlet-octet basis for                   channels:

4.1 Anomalous-dimension matrices

The first step is to derive the explicit form of the anomalous-dimension matrix (5) in a given
color basis for the partonic amplitudes (see, e.g., [5, 39]). We adopt the s-channel singlet-
octet basis, in which the tt̄ pair is either in a color-singlet or color-octet state. For the
quark-antiquark annihilation process ql(p1) + q̄k(p2) → ti(p3) + t̄j(p4), we thus choose the
independent color structures as

|c1〉 = δij δkl , |c2〉 = (ta)ij (ta)kl . (51)

For the gluon fusion process ga(p1) + gb(p2) → ti(p3) + t̄j(p4), we use the basis

|c1〉 = δab δij , |c2〉 = ifabc (tc)ij , |c3〉 = dabc (tc)ij . (52)

Here a, b, i, j, k, l are color indices. We find that the anomalous-dimension matrix for the qq̄
channel can be written in the form

Γqq̄ =

[

CF γcusp(αs) ln
−s

µ2
+ CF γcusp(β34, αs) + 2γq(αs) + 2γQ(αs)

]

1

+
N

2

[

γcusp(αs) ln
(−s13)(−s24)

(−s) m2
t

− γcusp(β34, αs)

]

(

0 0

0 1

)

+ γcusp(αs) ln
(−s13)(−s24)

(−s14)(−s23)

[(

0 CF

2N

1 − 1
N

)

+
αs

4π
g(β34)

(

0 CF

2

−N 0

)]

+ O(α3
s) ,

(53)

where s ≡ s12 is the square of the partonic center-of-mass energy. The term proportional to
g(β34) stems from the three-parton contributions

−
[

f2

(

β34, ln
−s13

−s14

)

+ f2

(

β34, ln
−s24

−s23

)

]

(

0 CF

2

−N 0

)

. (54)

With the help of the second relation in (35) this can be recast into the product of g(β34) times
a conformal cross ratio [14] of four momentum invariants. Similarly, for the gg channel we
obtain

Γgg =

[

N γcusp(αs) ln
−s

µ2
+ CF γcusp(β34, αs) + 2γg(αs) + 2γQ(αs)

]

1

+
N

2

[

γcusp(αs) ln
(−s13)(−s24)

(−s) m2
t

− γcusp(β34, αs)

]







0 0 0

0 1 0

0 0 1






(55)

+ γcusp(αs) ln
(−s13)(−s24)

(−s14)(−s23)













0 1
2 0

1 −N
4

N2−4
4N

0 N
4 −N

4






+

αs

4π
g(β34)







0 N
2 0

−N 0 0

0 0 0












+ O(α3

s) .
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Top-pair production at NLO+NNLL

✦ Can use these results to predict leading singular 
terms near partonic threshold

✦ Obtain NNLO coefficients of distributions

 and (partially) of δ(1-z)
✦ Yields presently best estimate of NNLO terms
✦ Note: includes some subleading terms ~ ln(z) 

beyond distributions

z = M2/ŝ→ 1

terms that become singular in the β → 0 limit are accounted for in our approach. The reverse
statement is not true. A resummation based on the β → 0 expansion does not account for
the bulk of the terms that become singular in the z → 1 limit, and our analysis suggests that
subleading terms in β are by no means generically small.

6.4.2 Other approaches and kinematics

Since in this paper we are interested in the invariant mass distribution of the tt̄ pair, we have
adopted the so-called pair-invariant mass (PIM) kinematics, which is defined by

N1(P1) + N2(P2) → tt̄(p3 + p4) + X(k) . (112)

When calculating the transverse-momentum and rapidity distributions of the top quark, with
the momentum of the anti-top quark integrated over, one instead considers the one-particle
inclusive (1PI) kinematics, which can be written as

N1(P1) + N2(P2) → t(p3) + X ′[t̄](p′4) , (113)

where here the final state X ′ contains the t̄ quark accompanied by additional emissions (see
e.g. [42, 43]). In both cases, the threshold limit corresponds to the limit in which these extra
emissions are soft, implying k0 → 0 and p′24 → m2

t , respectively. In the PIM case, this implies
M2 → ŝ, where M2 = (p3 + p4)2 and ŝ = (p1 + p2)2 can be calculated without reference to
the unobserved momentum k. In the 1PI case, it implies s4/ŝ = (1 − 2E3/

√
ŝ) → 0, where

s4 = ŝ + t1 + u1 can be calculated from (3) without reference to the unobserved momentum
p′4, and E3 denotes the energy of the top quark in the partonic center-of-mass frame.

Although the PIM and 1PI kinematics are applicable in different differential distributions,
they can both be integrated over to obtain the total cross section. In the sense that they
are both applicable in the limit where the extra emissions are soft, threshold resummation
for the total cross section based on PIM or 1PI kinematics amounts to resumming the same
leading contributions, but differs by subleading corrections. Several authors have found signif-
icant numerical differences between the results obtained using the two kinematic schemes (see
e.g. [42–44]). Therefore, it is interesting to work out the 1PI kinematics also in our approach.

Before moving onto 1PI kinematics, it is however necessary to point out an important
difference between our results and previous ones obtained using PIM kinematics. In the tradi-
tional approach, the leading singular terms in (1− z) are written in terms of the distributions
Pn(z) = [lnn(1− z)/(1− z)]+, while in our approach they are more naturally written in terms
of the distributions

P ′
n(z) =

[
1

1 − z
lnn

(
M2(1 − z)2

µ2z

)]

+

. (114)

The additional factor of z in the logarithms is a subleading effect, but it is relevant in practice.
This has been studied in detail for the simpler cases of Drell-Yan [64] and Higgs production [66],
but analogous remarks hold also in the present case. Of crucial importance in this context is the
fact that our resummation method works directly in momentum space [62], and as a result the
matching onto analytical fixed-order expressions is particularly transparent. We have observed

43

In order to derive fixed-order formulas from (92), we first set µh = µs = µf = µ. In that
case the evolution matrix U is equal to unity, and η = 2aΓ(µf , µs) → 0. The formula for the
hard-scattering kernels then becomes

C(z, M, mt, cos θ, µ) = c̃(∂η, M, mt, cos θ, µ)

(
M

µ

)2η e−2γEη

Γ(2η)

z−η

(1 − z)1−2η

∣∣∣∣∣
η=0

, (93)

where

c̃(L, M, mt, cos θ, µ) = Tr
[
H(M, mt, cos θ, µ) s̃(L, M, mt, cos θ, µ)

]
. (94)

By using (74) and (90) in combination with the analytic expressions for the hard and soft
functions at NLO, it is possible to determine all terms proportional to ln µ in the two-loop
hard function H(2)(M, mt, cos θ, µ), as well as all terms proportional to L in the two-loop soft
function s̃(2)(L, M, mt, cos θ, µ). This information allows us to derive an approximate expres-
sion for c̃ at NNLO. By inserting that formula for c̃ into (93), we obtain the corresponding
NNLO expression for the hard-scattering kernel C. The results are conventionally written in
terms of the plus distributions

Pn(z) =

[
lnn(1 − z)

1 − z

]

+

. (95)

However, the right-hand side of (93) is more conveniently expressed in terms of the distribu-
tions

P ′
n(z) =

[
1

1 − z
lnn

(
M2(1 − z)2

µ2z

)]

+

. (96)

It is possible to show that taking the derivatives with respect to η and the limit η → 0 in (93)
is equivalent to making the following set of replacements in c̃(L, M, mt, cos θ, µ):

1 → δ(1 − z) ,

L → 2P ′
0(z) + δ(1 − z) ln

(
M2

µ2

)
,

L2 → 4P ′
1(z) + δ(1 − z) ln2

(
M2

µ2

)
,

L3 → 6P ′
2(z) − 4π2P ′

0(z) + δ(1 − z)

[
ln3

(
M2

µ2

)
+ 4ζ3

]
,

L4 → 8P ′
3(z) − 16π2P ′

1(z) + 128ζ3P
′
0(z) + δ(1 − z)

[
ln4

(
M2

µ2

)
+ 16ζ3 ln

(
M2

µ2

)]
. (97)

In order to translate the P ′
n into the conventional Pn distributions, we employ the general rela-
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Dominance of threshold terms

✦ Fixed-order results for invariant mass 
distribution at Tevatron and LHC:

✦ Leading singular terms near partonic threshold 
                        give dominant contributions even 
at low and moderate M values
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Figure 2: Fixed-order predictions for the invariant mass spectrum at LO (light bands) and
NLO (dark bands) for the Tevatron (left) and LHC (right). We use MSTW2008NLO PDFs [87]
with αs(MZ) = 0.120. The width of the bands reflects the uncertainty of the spectrum under
variations of the matching and factorization scales. The dashed lines refer to the leading terms
in the threshold expansion.

dark NLO bands and the dashed lines is due to the small contributions from the subleading
terms dσNLO,subleading in (102). The fact that, even at these relatively low values of M , the
leading terms provide a very good approximation to the full NLO result provides a strong
motivation to study within our formalism higher-order corrections to integrated quantities
such as the total cross section and forward-backward asymmetry, which receive their dominant
contributions from low values of the invariant mass.

We will always do the matching onto fixed-order results as in (102) and (103), when the goal
is to provide quantitative phenomenological predictions. Such a matching is straightforward
for integrated quantities such as the total cross section and forward-backward asymmetry,
since the NLO results in fixed order are available in analytic form. For the invariant mass
distribution, on the other hand, the fixed-order NLO results are available in the form of Monte
Carlo programs such as MCFM [88]. This makes it difficult to get accurate values of the top-
quark pair invariant mass spectrum at high M , where the differential cross section is small,
and makes it impractical to calculate the spectrum with the scale choice µf = M used in
the next section, since doing so would require to run the program separately at each point
in µf . (Monte Carlo programs generate the invariant mass spectrum by first producing a set
of events for a given µf , and then grouping them into bins in M). When we study certain
aspects of the invariant mass distribution in Section 6.1, we will take the NLO correction in the
threshold approximation, so that (102) and (103) are evaluated with dσNLO → dσNLO, leading.
This is still a good approximation to the full NLO result, and allows us to study the qualitative
behavior of the invariant mass spectrum with µf = M over a large range of M , as well as
PDF uncertainties, in a simple way. For this purpose, we also define an NNLO approximation
which includes only the singular terms at threshold in the NLO correction:

dσNNLO, leading = dσNLO, leading + dσ(2), approx . (104)
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Invariant mass distributions (PIM)

✦ Fixed-order vs. resummed PT (matched to NLO):
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Figure 8: Left: Fixed-order predictions for the invariant mass spectrum at LO (light), NLO
(darker), and approximate NNLO (dark bands) for the Tevatron (top) and LHC (bottom).
Right: Corresponding predictions at NLL (light) and NLO+NNLL (darker bands) in re-
summed perturbation theory. The width of the bands reflects the uncertainty of the spectrum
under variations of the matching and factorization scales, as explained in the text.

added the uncertainties associated with variations of µh, µs, and µf in quadrature. We have
also included uncertainties associated with the PDFs, by using the set of MSTW2008NNLO
PDFs from [87] at 90% confidence level. The perturbative scale uncertainties are smaller or
comparable than those from the PDFs only once the NNLL or approximate NNLO corrections
are taken into account. For the practical reasons explained earlier, we have not matched the
higher-order results with the fixed-order NLO results. However, the threshold approximation
works rather well. For reference, at the Tevatron the exact NLO results are (38.6+5.1

−5.2) fb/GeV
for M = 400 GeV and (24.8+4.5

−4.8) · 10−3 fb/GeV for M = 1000 GeV, while at the LHC they are
(654+98

−89) fb/GeV for M = 400 GeV and (6.84+1.40
−1.11) fb/GeV for M = 1000 GeV. The deviations

from the leading NLO terms shown in the second line in both parts of the table are smaller
than 7% for the Tevatron and 5% for the LHC.

6.2 Invariant mass distribution: Phenomenological results

After these systematic studies, we now present our final results for the tt̄ invariant mass
distributions at the Tevatron and LHC. Here and below, we will use different sets of PDFs,
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Comparison with CDF data

✦ Overlay (not a fit!) for mt=173.1 GeV:
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Figure 12: Comparison of the RG-improved predictions for the invariant mass spectrum with
CDF data [9]. The value mt = 173.1GeV has been used. No fit to the data has been performed.

6.3 Total cross section: Phenomenological results

The total cross section is obtained in our approach by integrating numerically the doubly
differential cross section in the ranges −1 < cos θ < 1 and 2mt < M <

√
s. In this case it

is a simple matter to match onto NLO in fixed-order perturbation theory, using the analytic
results of [16]. To do this, however, we can no longer correlate the factorization scale µf

with M , as we did when studying the invariant mass spectrum. Instead, we should resort to
representative average values of M , which characterize the spectrum in the region yielding
sizable contributions to the total cross section. One possibility is to take the location of the
peak in the dσ/dM distributions, which is Mpeak ≈ 375 GeV for the Tevatron and Mpeak ≈
385 GeV for the LHC (see Figure 8). Another possibility is to take the average value 〈M〉 of the
distributions, for which we find 〈M〉 ≈ 445 GeV for the Tevatron and 〈M〉 ≈ 485 GeV for the
LHC. [Check numbers!] As previously, we take the fixed value µf = 400GeV as our default
choice. On the other hand, we are still free to choose the hard and soft scales as we have done
so far and match with the fixed-order result as shown in (102). We display in Table 3 the
central values and scale uncertainties for the total cross section obtained using this procedure.
The results in resummed perturbation theory use µh = M and µs chosen according to (105) by
default, and the uncertainties are obtained by varying these scales and the factorization scale
µf up and down by a factor of two and adding the different uncertainties in quadrature. The
perturbative uncertainties in the fixed-order results are obtained by varying the factorization
scale up and down by a factor of two from its default value. In addition to the perturbative
uncertainties, we also list the PDF uncertainties obtained by evaluating the cross section with
the appropriate set of MSTW2008 PDFs at 90% confidence level. As shown in Table 2, the
LO cross sections are evaluated using LO PDF sets, the NLL and NLO cross sections using
NLO PDF sets, and the NNLL and approximate NNLO cross sections using NNLO PDF sets.
These different classes of predictions are separated by horizontal lines.
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Top-quark pT distributions (1PI)

✦ Fixed-order vs. resummed PT (matched to NLO):
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Figure 11: Left: Fixed-order predictions for the pT distribution at LO (light), NLO (darker),
and approximate NNLO (dark bands) at the Tevatron. Right: Corresponding predictions at
NLL (light) and NLO+NNLL (darker bands) in resummed perturbation theory. The width
of the bands reflects the uncertainty of the distributions under variations of the matching and
factorization scales, as explained in the text.
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Figure 12: Comparison between our NLO+NNLL predictions, NLO results and recent mea-
surements from the D0 collaboration [79]. The error bands refers to perturbative uncertainties
related to scale variations. Furthermore we have enlarged the region of bigger pT for better
comparison.
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factorization scales, as explained in the text.
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Top-quark rapidity distributions (1PI)

✦ Fixed-order vs. resummed PT (matched to NLO):
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Figure 10: Left: Fixed-order predictions for the rapidity distribution at LO (light), NLO
(darker), and approximate NNLO (dark bands) for the Tevatron (top) and LHC (bottom).
Right: Corresponding predictions at NLL (light) and NLO+NNLL (darker bands) in re-
summed perturbation theory. The width of the bands reflects the uncertainty of the dis-
tributions under variations of the matching and factorization scales, as explained in the text.
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Figure 10: Top quarks (antitop quarks) are preferably emitted in the direction of the incoming
quark (antiquark). Anti top quarks are preferably emitted at small rapidity, while top quarks
are more abundantly emitted in the forward or backward directions.

By evaluating both the numerator and the denominator of Eq. (110) up to O(α3
s) in fixed-

order perturbation theory, and considering only the leading terms in (1 − z), one finds

At
FB

∣∣∣
FO

LO

= 3.3+0.8
−0.6 % , (113)

where the superscript and subscript in the r. h. s. of Eq. (113) reflect the uncertainty obtained
by varying the scale in the range M/2 < µ < 2M at each point in the integrands in Eq. (110).
If the scale is allowed to vary in the range mt/2 < µ < 2mt, one obtains a slightly larger
result:

At
FB

∣∣∣
FO

LO

= 4.8+2.0
−1.1 % . (114)

By employing the approximate NNLO formulas for the invariant mass distribution it is now
possible to evaluate both the numerator and the denominator of the asymmetry up to O(α4

s)
(while as usual neglecting subleading terms in (1 − z)); in this case the asymmetry becomes

At
FB

∣∣∣
FO

NLO

= 5.1+0.7
−0.6 % (M/2 ≤ µ ≤ 2M) ,

At
FB

∣∣∣
FO

NLO

= 6.2+0.5
−0.7 % (mt/2 ≤ µ ≤ 2mt) . (115)

The use of the resummed differential distributions dσ/dM in the calculation of Eq. (110)
leads to

At
FB

∣∣∣
RES

NLL

= 5.7+3.2
−3.1 % ,

At
FB

∣∣∣
RES

NNLL

= 5.8+0.8
−0.8 % . (116)

With this notation we indicate that both the numerator and the denominator of the asymmetry
in the first (second) line in Eq. (116) were evaluated by employing the NLL (NNLL) resummed
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Forward-backward asymmetry

✦ At Tevatron, top-quarks are emitted preferably 
in direction of incoming quark:

✦ Define inclusive asymmetry:

✦ Most recent exptl. results (ICHEP 2010):

a charge-symmetric averaged cross section as follows

d2∆σ

dMd cos θ
≡ 1

2

[
d2σN1N2→tt̄X

dMd cos θ
− d2σN1N2→t̄tX

dMd cos θ

]
,

d2σ̄

dMd cos θ
≡ 1

2

[
d2σN1N2→tt̄X

dMd cos θ
+

d2σN1N2→t̄tX

dMd cos θ

]
. (106)

The notation in Eqs. (106) makes clear that in the process labeled by the superscript N1N2 →
tt̄X (N1N2 → t̄tX) the angle θ indicates the scattering angle of the top quark (antitop quark)
in the partonic center of mass frame. The double differential asymmetry is then defined as
the ratio of the quantities introduced in Eqs. (106):

Ac(M, cos θ) ≡ d∆σ

dσ̄
. (107)

We are mainly interested in the total asymmetry which can be obtained by integrating the
differential cross sections appearing in Eqs. (106) with respect to M and θ:

Atot
c =

∫ 1

0 d cos θ
∫ s

4m2
t
dM d2∆σ

dMd cos θ∫ 1

0 d cos θ
∫ s

4m2
t
dM d2σ̄

dMd cos θ

. (108)

Since as a consequence of the charge conjugation symmetry in QCD

d2σN1N2→t̄tX

dMd cos θ

∣∣∣∣
cos θ=f

=
d2σN1N2→tt̄X

dMd cos θ

∣∣∣∣
cos θ=−f

, (109)

(where f indicates a generic numerical value), the charge asymmetry can be interpreted as a
forward-backward asymmetry for top quarks. In particular,

Atot
c = At

FB ≡

∫ s
4m2

t
dM

(∫ 1
0 d cos θ d2σN1N2→tt̄X

dMd cos θ −
∫ 0
−1 d cos θ d2σN1N2→tt̄X

dMd cos θ

)

∫ s

4m2
t
dM

(∫ 1

0 d cos θ d2σN1N2→tt̄X

dMd cos θ +
∫ 0

−1 d cos θ d2σN1N2→tt̄X

dMd cos θ

) . (110)

At leading order in QCD (O(α2
s)), the charge-asymmetric cross section introduced in the

first of Eqs. (106) is zero; this quantity receives non-vanishing contributions starting from
O(α3

s). In particular, non vanishing contributions to the charge-asymmetric cross section arise
if, in the interference of one-loop and tree-level diagrams, the top-quark fermionic line and the
light-quark fermionic line are connected by three gluons. The same observation applies also
to the interference of two tree-level diagrams with three particles in the final state. In Fig. 9
we show the interference of the planar box with the tree-level diagram and the corresponding
interference of real emission diagrams. The other contribution to the asymmetry at O(α3

s) in
the quark-annihilation channel originates from the interference of the crossed box and tree-level
diagram (or from the corresponding real emission case). This can be visualized by imagining
to cross the two gluons on the left side of the heavy quark triangle in Fig. 9. The color factors
multiplying the structure in Fig. 9 or its crossed counterpart are respectively

Cplanar =
1

16N2

(
f 2

abc + d2
abc

)
, Ccrossed =

1

16N2

(
d2

abc − f 2
abc

)
, (111)
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AFB
t |CDF = (15.8±7.2stat±1.7sys)%   (ttbar frame)



Figure 9: Examples of interferences contributing to the charge-asymmetric cross section. The
two-particle cut corresponds to the interference of a one-loop box with the tree-level diagram,
while the three-particle cut corresponds to the interference of tree-level diagrams with a tt̄g
final state.

where f 2
abc = (N2 − 1)N and d2

abc = (N2 − 1)(N2 − 4)/N . When the color factors are stripped
off, the interference in Fig. 9 and its crossed counterpart satisfy the relation

dσN1N2→tt̄X
planar = −dσN1N2→t̄tX

crossed . (112)

The relation in Eq. (112) holds both for the three-particle cuts and for the two-particle cuts.
Therefore, the charge asymmetric cross section is proportional to d2

abc. The interference of
the one-loop box diagrams with the tree level diagram gives a positive contribution to the
asymmetry, which is partially canceled by the asymmetry originating from the interference of
initial- and final-state radiation diagrams. An additional small contribution to the asymmetry
at O(α3

s) originates from the flavor excitation channel gq(q̄) → tt̄X at tree level. The gluon-
fusion channel does not contribute to the charge-asymmetric cross section.

The study of the charge-asymmetric cross section at O(α3
s) shows that top quarks (antitop

quarks) are preferably emitted of the direction of the incoming quark (antiquark); conse-
quently, in pp̄ collisions top quarks are preferably emitted in the direction of the incoming
proton [19, 20]. At the LHC, the QCD-induced charge asymmetry is zero since in this case
there are two identical protons in the initial state. However, it is possible to show that top
antiquarks are predominantly produced at smaller rapidities than top quarks; this fact can be
exploited in order to define measurable asymmetries also at the LHC [76]. The situation is
schematically shown in Fig. (10).

The top-quark pair-production forward-backward asymmetry can be measured both in the
laboratory frame and in the tt̄ rest frames. Near the partonic threshold the tt̄ rest frame and the
incoming partons rest frame coincide; it is therefore interesting to employ the formulas derived
in the previous sections to calculate the forward-backward asymmetry in the parton rest
frame. The resummation of partonic threshold effects at NLL order in the forward-backward
asymmetry was first considered in [44]. By employing the expressions for the invariant mass
distribution derived above, it is possible to improve the available calculations of the charge
asymmetry in the threshold limit, both in fixed order perturbation theory and when employing
resummation techniques.

[Please check the numbers, are they still up to date?]
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Forward-backward asymmetry

✦ Non-zero contributions arise first at one-loop 
order, from interference terms such as:

✦ Predictions:
0.2 < µf/TeV < 0.8 mt/2 < µf < 2mt

∆σFB [pb] At
FB [%] ∆σFB [pb] At

FB [%]

NLL 0.29+0.16
−0.16 5.8+3.3

−3.2 0.31+0.16
−0.17 5.9+3.4

−3.3

NLO, leading 0.19+0.09
−0.06 5.2+0.4

−0.4 0.31+0.16
−0.10 5.7+0.5

−0.4

NLO 0.25+0.12
−0.07 6.7+0.6

−0.4 0.40+0.21
−0.13 7.4+0.7

−0.6

NLO+NNLL 0.40+0.06
−0.06 6.6+0.6

−0.5 0.45+0.08
−0.07 7.3+1.1

−0.7

NNLO, approx (scheme A) 0.37+0.10
−0.08 6.4+0.9

−0.7 0.48+0.11
−0.10 7.5+1.3

−0.9

NNLO, approx (scheme B) 0.34+0.08
−0.07 5.8+0.8

−0.6 0.45+0.09
−0.09 6.8+1.1

−0.8

Table 6: The asymmetric cross section and forward-backward asymmetry at the Tevatron,
evaluated at different orders in perturbation theory in the partonic center-of-mass frame. The
errors refer to perturbative uncertainties related to scale variations, as explained in the text.

these up and down by a factor of two and adding the different uncertainties in quadrature.
The uncertainties in the fixed-order results are obtained by varying µf up and down by a
factor of two. The counting used in the table refers to the order at which the differential cross
section itself is needed, relative to α2

s; this differs slightly from the counting in fixed order
used in [21], which would count, for instance, our NLO as LO. To obtain the result in fixed
order at NLO, we have used the formulas in Appendix A of [21]. At both µf = 400GeV and
µf = mt, the NLO threshold terms recover about 80% of the full result in fixed order, which
is roughly in line with our findings for the NLO corrections to the cross section. The table
also includes our results for the forward-backward asymmetry. In calculating the asymmetry,
we first evaluate the numerator and denominator of the ratio At

FB = ∆σFB/σ to a given order
in RG-improved or fixed-order perturbation theory, and then further expand the ratio itself.
When performing the calculation in this way, the errors in the asymmetry at NLO are actually
smaller than those at NLO+NNLL order, even though the scale variations in the numerator
and denominator of the ratio are much larger. We note, however, that if we chose instead to
not further expand the ratio, the NLO result would be decreased by about 20%, while the
NLO+NNLL result changes only by about 5% and should therefore be considered the more
reliable prediction. In [21], an overall factor of 1.09 due to electroweak corrections is included
for the asymmetry. However, a smaller correction was recently obtained in [92], and it is also
scale-dependent. Therefore we have chosen not to include these corrections in our results.

Our results are in good agreement with the previous findings reported in [53, 93]. We
have not performed the calculation in the pp̄ frame, but expect that the boost to this frame
decreases the asymmetry by roughly 30%, as found in [93]. On the other hand, the CDF
collaboration at the Tevatron recently reported the value At

FB(exp) = (19.3 ± 6.9) % for the
asymmetry in the pp̄ frame [12]. The measured asymmetry exceeds the predicted one by about
two standard deviations. In light of our results, we conclude that higher-order QCD effects
are not sufficient to explain the large experimental value. Possible explanations of this fact in
the framework of several new physics scenarios were recently investigated in [93–98].
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Total cross section

✦ Usually, resummation is done around absolute 
threshold at s=4mt

2  (non-relativistic top quarks)
✦ Mixed Coulomb and soft gluon singularities 

arise for                                , which have been 
resummed at NNLL 

✦ In our approach, soft gluon                                   
effects are resummed also                                 
far above absolute threshold!

✦ Important, since top quarks                              
are relativistic, βt ~ 0.4-0.9

β =
�

1− 4m2
t /ŝ→ 0

Moch, Uwer 2008;  Beneke et al. 2009



Total cross section

✦ Transform from M2 to relative 3-velocity of 
top quarks in     rest frame:

✦ Top quarks are relativistic, βt ~ 0.4-0.9

NLL

NLO + NNLL

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

14

dσ
/d

β
t
[p

b
]

βt

√
s = 1.96 TeV

NLL

NLO + NNLL

0 0.2 0.4 0.6 0.8 1
0

100

200

300

400

dσ
/d

β
t
[p

b
]

βt

√
s = 7 TeV

Figure 11: Distributions dσ/dβt at the Tevatron (left) and LHC (right).

two plots show K factors, which are defined as the ratio of the cross section to the default
lowest-order prediction dσLO,def/dM . Contrary to Figure 7, we now use the same normaliza-
tion in both fixed-order and resummed perturbation theory, so that the two spectra can more
readily be compared to each other. The lower plots show the corresponding spectra directly.
We observe similar behavior as in the low-mass region. The bands obtained in fixed-order
perturbation theory become narrower in higher orders and overlap. The bands obtained in
resummed perturbation theory are narrower than the corresponding ones at fixed order. The
leading-order resummed prediction is already close to the final result.

The information contained in Figures 8–10 can be represented differently in terms of the
very useful distribution dσ/dβt, with βt defined as in (4). A simple change of variables yields

dσ

dβt
=

2mtβt

(1 − β2
t )

3
2

dσ

dM
. (106)

The resulting spectra for the Tevatron and LHC, obtained using RG-improved perturbation
theory, are shown in Figure 11. As before, the distributions are normalized such that the area
under the curves corresponds to the total cross section. Recall that the physical meaning of
the variable βt is that of the 3-velocity of the top quarks in the tt̄ rest frame. The distributions
show that the dominant contributions to the cross section arise from the region of relativistic
top quarks, with velocities of order 0.4–0.8 at the Tevatron and 0.5–0.9 at the LHC. We will
come back to the significance of this observation in the next section.

In Figure 12, we compare our RG-improved prediction for the invariant mass spectrum
to a measurement of the CDF collaboration obtained using the “lepton + jets” decay mode
of the top quark [9]. We observe an overall good agreement between our prediction and the
measurement, especially for higher values of M . Apparently, there is no evidence of non-
standard resonances in the spectrum. The only small deviation from our prediction concerns
the peak region of the distribution, shown in more details in the right plot. This deviation
has also been observed in [9], where a Monte Carlo study of the SM expectation has been
performed.

35

to the appearance of several kinematic variables. The current frontier is NLL calculations for
the differential distributions [44, 52] and the forward-backward asymmetry [53]. Extending
these results to NNLL order has been made possible by our recent calculation of the two-loop
anomalous-dimension matrices [54, 55]. We have presented an approximate NNLO formula
for the tt̄ invariant mass distribution in [56]. The goal of the present paper is to derive
a renormalization-group (RG) improved expression for the doubly differential cross section
at NNLL order, in which all threshold-enhanced terms are resummed. We will match this
expression with the exact fixed-order NLO results and study the top-pair invariant mass
distribution, the forward-backward asymmetry, and the total cross section at NLO+NNLL
order. The predictions obtained in this way are the most precise available at present.

The paper is organized as follows. In Section 2 we review the kinematics and the structure
of factorization in the threshold region. We then derive the factorization formula for the
hard-scattering kernels into products of hard and soft matrices using soft-collinear effective
theory (SCET) in Section 3. In Section 4 we present the calculation of the hard and soft
matrices at NLO, and describe several checks on our results. Section 5 deals with the RG
properties of the hard and soft functions. We derive a formula for the resummed cross section
in momentum space using RG methods and describe its evaluation at NNLL order. We
also review the derivation of the approximate NNLO formula, which has been presented first
in [56]. In Section 6 we perform numerical studies of the invariant mass distribution, the total
cross section, and the forward-backward asymmetry, utilizing both RG-improved perturbation
theory at NNLL order and the NNLO approximate formula. We conclude in Section 7.

2 Kinematics and factorization at threshold

We consider the process

N1(P1) + N2(P2) → t(p3) + t̄(p4) + X(pX) , (1)

where X is an inclusive hadronic final state. At Born level this proceeds through the qq̄
annihilation and gluon-fusion channels

q(p1) + q̄(p2) → t(p3) + t̄(p4) ,

g(p1) + g(p2) → t(p3) + t̄(p4) , (2)

where p1 = x1P1 and p2 = x2P2. We define the kinematic invariants

s = (P1 + P2)
2 , ŝ = (p1 + p2)

2 , t1 = (p1 − p3)
2 − m2

t , u1 = (p2 − p3)
2 − m2

t , (3)

and momentum conservation at Born level implies ŝ + t1 + u1 = 0.
In this section we consider the structure of the differential cross section near the partonic

threshold. While the fully differential cross section depends on three kinematic variables, in
this paper we are mainly interested in the doubly differential cross section expressed in terms
of the invariant mass M of the tt̄ pair and the scattering angle θ between "p1 and "p3 in the
partonic center-of-mass frame. To describe this distribution we introduce the variables

z =
M2

ŝ
, τ =

M2

s
, βt =

√

1 −
4m2

t

M2
. (4)

2

tt̄

Tevatron LHC
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Figure 4. The O(αs) corrections to dσ/dβ at the
LHC. Here µf = mt.
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Total cross section (PIM & 1PI)

✦ Detailed predictions for total cross sections:

✦ Singular terms dominate NLO corrections
✦ Resummation stabilizes scale dependence

scale uncertainty PDF uncertainty

Cross section (pb)

Tevatron LHC (7TeV) LHC (10TeV) LHC (14TeV)

σLO 4.49+1.71
−1.15

+0.24
−0.19 84+29

−20
+4
−5 217+70

−49
+10
−11 495+148

−107
+19
−24

σNLL 5.07+0.37
−0.36

+0.28
−0.18 112+18

−14
+5
−5 276+47

−37
+10
−11 598+108

−94
+19
−19

σNLO, leading 5.49+0.78
−0.78

+0.31
−0.20 134+16

−17
+7
−7 341+34

−38
+14
−14 761+64

−75
+25
−26

σNLO 5.79+0.79
−0.80

+0.33
−0.22 133+21

−19
+7
−7 341+50

−46
+14
−15 761+105

−101
+26
−27

σNLO+NNLL 6.30+0.19
−0.19

+0.31
−0.23 149+7

−7
+8
−8 373+17

−15
+16
−16 821+40

−42
+24
−31

σNNLO, approx (scheme A) 6.14+0.49
−0.53

+0.31
−0.23 146+13

−12
+8
−8 369+34

−30
+16
−16 821+71

−65
+27
−29

σNNLO, approx (scheme B) 6.05+0.43
−0.50

+0.31
−0.23 139+9

−9
+7
−7 349+23

−23
+15
−15 773+47

−50
+25
−27

Table 3: Results for the total cross section in pb, using the default choice µf = 400GeV.
The first set of errors refers to perturbative uncertainties associated with scale variations, the
second to PDF uncertainties. The most advanced prediction is the NLO+NNLL expansion
highlighted in gray.

Tevatron LHC (7TeV) LHC (10TeV) LHC (14TeV)

σLO 6.66+2.95
−1.87

+0.34
−0.27 122+49

−32
+6
−7 305+112

−76
+14
−16 681+228

−159
+26
−34

σNLL 5.20+0.40
−0.36

+0.29
−0.19 103+17

−14
+5
−5 253+44

−36
+10
−10 543+101

−88
+18
−19

σNLO, leading 6.42+0.42
−0.76

+0.35
−0.23 152+7

−15
+8
−8 381+12

−32
+16
−17 835+18

−60
+29
−30

σNLO 6.72+0.36
−0.76

+0.37
−0.24 159+20

−21
+8
−9 402+49

−51
+17
−18 889+107

−106
+31
−32

σNLO+NNLL 6.48+0.17
−0.21

+0.32
−0.25 146+7

−7
+8
−8 368+20

−14
+19
−15 813+50

−36
+30
−35

σNNLO, approx (scheme A) 6.72+0.45
−0.47

+0.33
−0.24 162+19

−14
+9
−9 411+49

−35
+17
−20 911+111

−77
+35
−32

σNNLO, approx (scheme B) 6.55+0.32
−0.41

+0.33
−0.24 149+10

−9
+8
−8 377+28

−23
+16
−18 832+65

−50
+31
−29

Table 4: Same as Table 3, but with the “educated” scale choice µf = mt.

A few comments are in order concerning the results shown in the table. At NLO the
cross sections σNLO, leading evaluated using only the leading singular terms from the threshold
expansion reproduce between 95% (for the Tevatron) to almost 100% (for the LHC) of the
exact fixed-order result at the default values of the factorization scale. The subleading terms
in (1 − z), obtained by integrating dσNLO, subleading, contribute the remaining few percent. In
other words, the singular terms capture about 85% of the NLO correction at the Tevatron and
practically 100% of it at the LHC. We cannot say whether the threshold expansion works so
well also at higher orders in perturbation theory, although this does not seem unreasonable.
Our best prediction is obtained by matching the fixed-order result with the resummed result
at NLO+NNLL accuracy and is highlight in gray. The effect of resummation is roughly a
10–15% enhancement over the fixed-order NLO result. A more important effect is that the
resummation stabilizes the scale dependence significantly. Concerning the approximate NNLO
schemes, the results from scheme A are noticeably higher than those from scheme B, but these
differences are well inside the quoted errors. Since the two schemes differ only by terms
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Tevatron LHC (7TeV) LHC (8TeV) LHC (14TeV)

σNLO leading, 1PISCET
5.92+0.74

−0.80
+0.33
−0.22 149+13

−16
+8
−8 214+16

−22
+10
−10 853+35

−65
+29
−30

σNLO leading, PIMSCET
5.50+0.78

−0.78
+0.31
−0.20 134+16

−17
+7
−7 192+21

−23
+9
−9 761+64

−75
+25
−26

σNLO, qq̄ + gg 5.89+0.77
−0.81 142+14

−17 203+21
−23 801+67

−77

σNLO 5.79+0.79
−0.80

+0.33
−0.22 133+21

−19
+7
−7 192+30

−27
+9
−9 761+105

−96
+26
−27

σNLO+NNLL, 1PISCET
6.53+0.14

−0.17
+0.32
−0.23 157+7

−11
+8
−8 223+9

−15
+10
−11 845+27

−67
+27
−29

σNLO+NNLL, PIMSCET
6.29+0.19

−0.20
+0.31
−0.23 149+7

−6
+8
−8 212+10

−9
+10
−10 820+40

−44
+28
−29

σNNLO approx, 1PISCET
6.30+0.30

−0.39
+0.32
−0.23 153+2

−3
+8
−8 219+2

−3
+10
−11 847+6

−0
+28
−30

σNNLO approx, PIMSCET
6.12+0.43

−0.47
+0.31
−0.23 145+8

−7
+8
−8 207+11

−9
+10
−10 811+38

−25
+27
−29

Table 4: Results for the total cross section in pb, using the default choice µf = 400GeV. The
first set of errors refers to perturbative uncertainties associated with scale variations, and the
second to PDF uncertainties.

Tevatron LHC (7TeV) LHC (8TeV) LHC (14TeV)

σNLO leading, 1PISCET
6.79+0.20

−0.70
+0.38
−0.24 163+0

−11
+9
−9 232+0

−14
+11
−12 887+0

−66
+30
−32

σNLO leading, PIMSCET
6.42+0.42

−0.76
+0.35
−0.23 152+7

−15
+8
−8 217+8

−20
+10
−11 836+18

−60
+29
−30

σNLO, qq̄ + gg 6.80+0.27
−0.73 160+5

−15 228+6
−20 879+21

−62

σNLO 6.72+0.36
−0.76

+0.37
−0.24 159+20

−21
+8
−9 227+28

−30
+11
−12 889+107

−106
+31
−32

σNLO+NNLL, 1PISCET
6.55+0.16

−0.14
+0.32
−0.24 150+7

−7
+8
−8 214+10

−10
+10
−11 824+41

−44
+28
−30

σNLO+NNLL, PIMSCET
6.46+0.18

−0.19
+0.32
−0.24 147+7

−6
+8
−8 210+10

−8
+10
−11 811+45

−42
+29
−30

σNNLO approx, 1PISCET
6.63+0.00

−0.27
+0.33
−0.24 155+3

−2
+8
−9 222+5

−3
+11
−11 851+25

−5
+29
−31

σNNLO approx, PIMSCET
6.62+0.05

−0.40
+0.33
−0.24 155+8

−8
+8
−9 221+12

−12
+11
−12 860+46

−43
+30
−33

Table 5: Same as Table 4, but with the scale choice µf = mt.

fixed, and then add the three uncertainties together in quadrature to obtain the perturbative
uncertainties shown in the tables. The resummed results in the PIMSCET scheme are obtained
with the choices of µh and µs used in [55]. We have included PDF uncertainties obtained by
evaluating the cross section with the set of MSTW2008 PDFs at 90% confidence level.

In all cases, the results in the 1PISCET and PIMSCET schemes within a given perturbative
approximation are compatible with one another, once the uncertainties estimated from scale
variations are taken into account. The 1PISCET results tend to come out higher and the
PIMSCET results lower, but the differences are not dramatic. At NLO, the central values of
the exact results always fall between the predictions obtained by retaining only the leading
singular pieces in the two types of kinematics. The µf dependence is also taken into account
relatively well by the two types of kinematics, although at higher collider energies the qg and
q̄g channels give an important contribution to the exact NLO result at lower values of µf ,
which is not taken into account by the leading-singular pieces of the threshold expansions.
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Total cross section (PIM & 1PI)

✦ Comparison with traditional calculations:

✦ SCET results include leading power 
corrections automatically, and thus show much 
better consistency!

✦ Legitimate to average results from different 
schemes (deviations well within errors)

Cross section (pb)

Tevatron LHC (7TeV) LHC (10TeV) LHC (14TeV)

σLO 4.49+1.71
−1.15

+0.24
−0.19 84+29

−20
+4
−5 217+70

−49
+10
−11 495+148

−107
+19
−24

σNLL 5.07+0.37
−0.36

+0.28
−0.18 112+18

−14
+5
−5 276+47

−37
+10
−11 598+108

−94
+19
−19

σNLO, leading 5.49+0.78
−0.78

+0.31
−0.20 134+16

−17
+7
−7 341+34

−38
+14
−14 761+64

−75
+25
−26

σNLO 5.79+0.79
−0.80

+0.33
−0.22 133+21

−19
+7
−7 341+50

−46
+14
−15 761+105

−101
+26
−27

σNLO+NNLL 6.30+0.19
−0.19

+0.31
−0.23 149+7

−7
+8
−8 373+17

−15
+16
−16 821+40

−42
+24
−31

σNNLO, approx (scheme A) 6.14+0.49
−0.53

+0.31
−0.23 146+13

−12
+8
−8 369+34

−30
+16
−16 821+71

−65
+27
−29

σNNLO, approx (scheme B) 6.05+0.43
−0.50

+0.31
−0.23 139+9

−9
+7
−7 349+23

−23
+15
−15 773+47

−50
+25
−27

Table 3: Results for the total cross section in pb, using the default choice µf = 400GeV.
The first set of errors refers to perturbative uncertainties associated with scale variations, the
second to PDF uncertainties. The most advanced prediction is the NLO+NNLL expansion
highlighted in gray.

Tevatron LHC (7TeV) LHC (10TeV) LHC (14TeV)

σLO 6.66+2.95
−1.87

+0.34
−0.27 122+49

−32
+6
−7 305+112

−76
+14
−16 681+228

−159
+26
−34

σNLL 5.20+0.40
−0.36

+0.29
−0.19 103+17

−14
+5
−5 253+44

−36
+10
−10 543+101

−88
+18
−19

σNLO, leading 6.42+0.42
−0.76

+0.35
−0.23 152+7

−15
+8
−8 381+12

−32
+16
−17 835+18

−60
+29
−30

σNLO 6.72+0.36
−0.76

+0.37
−0.24 159+20

−21
+8
−9 402+49

−51
+17
−18 889+107

−106
+31
−32

σNLO+NNLL 6.48+0.17
−0.21

+0.32
−0.25 146+7

−7
+8
−8 368+20

−14
+19
−15 813+50

−36
+30
−35

σNNLO, approx (scheme A) 6.72+0.45
−0.47

+0.33
−0.24 162+19

−14
+9
−9 411+49

−35
+17
−20 911+111

−77
+35
−32

σNNLO, approx (scheme B) 6.55+0.32
−0.41

+0.33
−0.24 149+10

−9
+8
−8 377+28

−23
+16
−18 832+65

−50
+31
−29

Table 4: Same as Table 3, but with the “educated” scale choice µf = mt.

A few comments are in order concerning the results shown in the table. At NLO the
cross sections σNLO, leading evaluated using only the leading singular terms from the threshold
expansion reproduce between 95% (for the Tevatron) to almost 100% (for the LHC) of the
exact fixed-order result at the default values of the factorization scale. The subleading terms
in (1 − z), obtained by integrating dσNLO, subleading, contribute the remaining few percent. In
other words, the singular terms capture about 85% of the NLO correction at the Tevatron and
practically 100% of it at the LHC. We cannot say whether the threshold expansion works so
well also at higher orders in perturbation theory, although this does not seem unreasonable.
Our best prediction is obtained by matching the fixed-order result with the resummed result
at NLO+NNLL accuracy and is highlight in gray. The effect of resummation is roughly a
10–15% enhancement over the fixed-order NLO result. A more important effect is that the
resummation stabilizes the scale dependence significantly. Concerning the approximate NNLO
schemes, the results from scheme A are noticeably higher than those from scheme B, but these
differences are well inside the quoted errors. Since the two schemes differ only by terms
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Tevatron LHC (7TeV) LHC (14TeV)

σNLO leading, 1PI (1PISCET) 7.23+0.45
−0.86 (6.79

+0.20
−0.70) 183+6

−18 (163
+0
−11) 1024+0

−67 (887
+0
−66)

σNLO leading, PIM (PIMSCET) 6.20+0.28
−0.69 (6.42

+0.42
−0.76) 143+1

−12 (152
+7
−15) 771+0

−42 (836
+18
−60)

σNNLO approx, 1PI (1PISCET) 7.06+0.00
−0.29 (6.63

+0.00
−0.27) 180+3

−8 (155
+3
−2) 1009+40

−54 (851
+25
−5 )

σNNLO approx, PIM (PIMSCET) 6.46+0.18
−0.45 (6.62

+0.05
−0.40) 148+14

−11 (155
+8
−8) 823+78

−67 (860
+46
−43)

Table 6: The total cross section in pb in the 1PI and PIM schemes, where the subleading terms
produced through the SCET expansion are not included. The uncertainties are estimated
from scale variation in the range mt/2 < µf < 2mt. The results in the 1PISCET and PIMSCET

schemes (also shown in Table 5) are listed in parentheses for comparison.

173.1 GeV, the numbers in these schemes are shown in Table 6. Comparing with Table 5, we
notice that the numbers in the PIMSCET and PIM schemes are in much better agreement than
those in the 1PISCET and 1PI schemes. Actually, the PIMSCET, 1PISCET, and PIM results are
compatible with each other within the uncertainties estimated through scale variations, while
the 1PI results are much higher, especially at the LHC. Since all of our numerical studies
have indicated that predictions in 1PI kinematics at LHC energies are susceptible to large
power corrections, we are rather hesitant to give much weight to those particular results. We
consider the results in PIM kinematics more reliable, and if different kinematics is to be used
as a criterion for estimating uncertainties, we believe the situation is more accurately reflected
in Tables 4 and 5 than in Table 6.

The approximate NNLO numbers in Table 6 are very close to those of [69] for the Tevatron,
but at the LHC they are roughly 10% higher than those in [69]. While we are unable to pinpoint
the source of this discrepancy for the reasons explained above, we can compare the leading
singular terms in our 1PI expansion at NLO with those obtained in [59]. As explained in
Section 4, these were obtained using a different scheme to evaluate the equivalent analytic
results at threshold, so the difference between two numbers gives a rough measure of the
power-suppressed ambiguities inherent to the formulas at threshold. In Figure 14 we compare
the results of [59] with those obtained in our 1PI scheme, in the 1PISCET scheme, and with the
exact results. As seen from the figure, the leading terms in the 1PISCET scheme provide the
best approximation to the full results, and differences due to the choice of scheme get larger as
the collider energy increases. The numbers in our 1PI scheme are higher than those from [59],
which may account for the discrepancy with [69]. For reference, the leading singular terms at
NLO with µf = mt in the scheme of [59] yield cross sections of 7.42 pb at the Tevatron, 174 pb
at the LHC with

√
s = 7 TeV, and 968 pb at the LHC with

√
s = 14 TeV. In [69], it was stated

that in the gg channel the leading singular terms in 1PI kinematics account for over 98% of
the NLO correction at both the Tevatron and the LHC. For this NLO correction, the exact
results at µf = mt are 0.42 pb at the Tevatron and 280 pb at the LHC with

√
s = 14 TeV,

compared to 0.44 pb and 360 pb for the leading singular pieces in the 1PI scheme of [59]. The
number at the LHC is quite a bit higher than the exact result, and we therefore are not able
to confirm the statement made in [69], although we cannot rule out that they were obtained
in yet another (unspecified) scheme for evaluating the formulas at threshold.
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Total cross sections

✦ Mass dependence (pole scheme):

✦ Extract pole masses in range between 165 and 
170 GeV, in fair agreement with world average 
mt=(173.1±1.3) GeV (which is ill defined!)

✦ Extraction of short-distance masses in progress

NLO ! NNLL1 PI
NLO ! NNLLPIM
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Figure 13: Left: Dependence of the total cross section on top-quark mass defined in the pole-
mass scheme. The 1PISCET and PIMSCET NLO+NNLL bands reflect the linearly combined
scale and PDF uncertainties. The blue band shows the dependence of a D0 measurement of
the total cross section on mt [81]. Right: The same for the LHC but with a comparison to
recent CMS [11] and ATLAS [12] measurements.

The NLO+NNLL and approximate NNLO formulas include these NLO corrections through
the matching, and the fact that these higher-order approximations have a rather small scale
dependence even without the NNLO corrections from the qg channel can be taken as an
indication that such corrections are small, but this is a point which should nonetheless be
kept in mind when applying approximate formulas to the LHC with

√
s = 14 TeV.

Another noticeable pattern has to do not with the difference between the 1PISCET and
PIMSCET schemes, but rather between the NLO+NNLL and approximate NNLO results: the
NLO+NNLL results are higher for µf = 400 GeV, but lower for µf = mt. We can learn more
about the scale variations in the NLO+NNLL and approximate NNLO results in the 1PISCET

scheme by examining Figure 9. Compared to both the NLO+NNLL approximations and the
approximate NNLO numbers in the PIMSCET scheme, the approximate NNLO results in the
1PISCET scheme have very small scale uncertainties around a given µf , particularly at the
LHC. When µf is considered in the entire range mt/2 < µf < 800 GeV, on the other hand,
the approximate NNLO results are in good agreement with the resummed results in that same
range. This is not an unreasonable means of comparison, since at a given µf the resummed
results probe scales ranging from µdef

s ∼ 75 GeV to µh ∼ 400 GeV, so in estimating errors in
fixed-order one should arguably focus on a similar range instead of just usingmt/2 < µf < 2mt,
as is often done in the literature.

As emphasized in Section 3.4, due to our method for determining the soft scale µs, the
NLO+NNLL predictions contain slightly different information than the approximate NNLO
formulas. In particular, the NNLO expansion of the resummed formulas differ in the structure
of the Pn distributions. For instance, the approximate NNLO results contain P3 distribu-
tions, but the equivalent terms in the direct NNLO expansion of the resummed formula are
of the form P2 ln(µs/µf). These contribute at the same order in the counting of RG-improved
perturbation theory, but there are obviously numerical differences between the two forms of
the expansion. This issue is discussed in more detail in the Appendix. Since the analysis
in Figure 8 was done at NLO and at that order one encounters at most P1 distributions,
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Conclusions

✦ Effective field theory provides efficient tools for 
addressing difficult collider-physics problems 

✦ Systematic “derivation” of factorization theorems  
and simple, transparent resummation techniques

✦ Detailed applications exist for Drell-Yan, Higgs,  
and top-quark pair production; first result for 
jets at hadron colliders emerging recently

✦ Longer-term goal is to understand resummation 
at NNLL+NLO order for jet processes, such as 
pp→n jets+V (with n≤3, V=γ,Z,W)


