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Introduction and motivation

Why a non-relativistic limit?

◮ Applications to real life systems in condensed matter

◮ Possible new tractable limit of parent conjecture

The usual route:

◮ NR symmetry group = Schrödinger symmetry group → the
symmetries of free Schrödinger equations

◮ Relevant to study of cold atoms.

◮ Gravity dual proposed with these symmetries in two higher
dimensions. (Son 2008; Balasubramanian, McGreevy 2008.)
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symmetry: Inönu-Wigner contractions

◮ No reason to believe that all NR systems would have the
symmetries of free Schrödinger equations.



Introduction and motivation ....

We are interested in a different limit. → Why?

◮ Systematic construction of NR algebra from the parent Conformal
symmetry: Inönu-Wigner contractions

◮ No reason to believe that all NR systems would have the
symmetries of free Schrödinger equations.

◮ Wish to find a holographic description in the standard one higher
dimension.
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Inonu-Wigner Contractions: A Simple Example

SO(3) maps the surface of the sphere (S2) embedded in R3 to itself.

◮ Equation for S3: x2
1 + x2

2 + x2
3 = R2.

◮ Infinitesimal generators: Xij = xi∂j − xj∂i

◮ Algebra: [Xij , Xrs ] = Xisδjr + Xjr δis − Xirδjs − Xjsδir
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Take the limit R → ∞.
Let us look at the north pole: x1,2 = 0 and x3 = R .
Redefine generators:

Y12 = lim
R→∞

X12 = x1∂2 − x2∂1 (1)
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Take the limit R → ∞.
Let us look at the north pole: x1,2 = 0 and x3 = R .
Redefine generators:

Y12 = lim
R→∞

X12 = x1∂2 − x2∂1 (1)

Pi = lim
R→∞

1

R
Xi ,3 = lim

R→∞

1

R
(xi∂3 − x3∂i) → −∂i (2)

Redefined algebra: [Y12, Pi ] = P1δ2i − P2δ1i , [P1, P2] = 0 (3)

This is the ISO(2) group.
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Inonu-Wigner Contractions: A Simple Example ...

Take the limit R → ∞.
Let us look at the north pole: x1,2 = 0 and x3 = R .
Redefine generators:

Y12 = lim
R→∞

X12 = x1∂2 − x2∂1 (1)

Pi = lim
R→∞

1

R
Xi ,3 = lim

R→∞

1

R
(xi∂3 − x3∂i) → −∂i (2)

Redefined algebra: [Y12, Pi ] = P1δ2i − P2δ1i , [P1, P2] = 0 (3)

This is the ISO(2) group. Expected! ⇒ At North Pole, with R → ∞,
S2 looks like R2.
We will use this technique to investigate the non-relativistic limit of the
conformal algebra.

A Bagchi (HRI) The Non-Relativistic Limit of AdS/CFT
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◮ Poincare generators (µ, ν = 0, 1 . . .d)

Jµν = −(xµ∂ν − xν∂µ), Bi = J0i (4)

Pµ = ∂µ, P0 = H

◮ Algebra:

[Jij , Jrs ] = so(d)
[Jij , Br ] = −(Biδjr − Bjδir )
[Jij , Pr ] = −(Piδjr − Pjδir ), [Jij , H ] = 0
[Pi , Pj ] = 0, [H , Pi ] = 0, [H , Bi ] = −Pi (5)
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Relativistic Conformal Algebra

◮ Poincare generators (µ, ν = 0, 1 . . .d)

Jµν = −(xµ∂ν − xν∂µ), Bi = J0i (4)

Pµ = ∂µ, P0 = H

◮ Algebra:

[Jij , Jrs ] = so(d)
[Jij , Br ] = −(Biδjr − Bjδir )
[Jij , Pr ] = −(Piδjr − Pjδir ), [Jij , H ] = 0
[Pi , Pj ] = 0, [H , Pi ] = 0, [H , Bi ] = −Pi (5)

[Bi , Bj ] = −Jij , [Bi , Pj ] = δijH (6)

A Bagchi (HRI) The Non-Relativistic Limit of AdS/CFT
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Relativistic Conformal Algebra ...

◮ Other generators: Dilatations(D) and SCT(Kµ):

D = −(x · ∂) Kµ = −(2xµ(x · ∂) − (x · x)∂µ) (7)

◮ Remaining algebra:

[K , Ki ] = 0, [K , Bi ] = Ki , [K , Pi ] = 2Bi

[Jij , Kr ] = −(Kiδjr − Kjδir ), [Jij , K ] = 0
[Jij , D] = 0, [Ki , Kj ] = 0, [H , Ki ] = −2Bi ,
[D, Ki ] = −Ki , [D, Bi ] = 0 [D, Pi ] = Pi

[D, H ] = H , [H , K ] = −2D, [D, K ] = −K . (8)
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Relativistic Conformal Algebra ...

◮ Other generators: Dilatations(D) and SCT(Kµ):

D = −(x · ∂) Kµ = −(2xµ(x · ∂) − (x · x)∂µ) (7)

◮ Remaining algebra:

[K , Ki ] = 0, [K , Bi ] = Ki , [K , Pi ] = 2Bi

[Jij , Kr ] = −(Kiδjr − Kjδir ), [Jij , K ] = 0
[Jij , D] = 0, [Ki , Kj ] = 0, [H , Ki ] = −2Bi ,
[D, Ki ] = −Ki , [D, Bi ] = 0 [D, Pi ] = Pi

[D, H ] = H , [H , K ] = −2D, [D, K ] = −K . (8)

[Ki , Bj ] = δijK , [Ki , Pj ] = 2Jij + 2δijD (9)

A Bagchi (HRI) The Non-Relativistic Limit of AdS/CFT
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Non-Relativistic Contraction: Finite GCA

Also looked at at different contexts by Gomis et al (2005) and Lukerski
et al (2005)

◮ Non-relativistic limit: Scale (with ǫ → 0):

t → ǫr t xi → ǫr+1xi (10)

Equivalent to vi ∼ ǫ (c = 1). Set r = 0 for simplicity.
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Non-Relativistic Contraction: Finite GCA

Also looked at at different contexts by Gomis et al (2005) and Lukerski
et al (2005)

◮ Non-relativistic limit: Scale (with ǫ → 0):

t → ǫr t xi → ǫr+1xi (10)

Equivalent to vi ∼ ǫ (c = 1). Set r = 0 for simplicity.

◮ Contracted Generators:
Galilean generators:

Jij = −(xi∂j − xj∂i), H = −∂t

Pi = ∂i , Bi = t∂i . (11)

Galilean conformal generators:

D = −(xi∂i + t∂t), Ki = t2∂i ,
K = K0 = −(2txi∂i + t2∂t). (12)

A Bagchi (HRI) The Non-Relativistic Limit of AdS/CFT
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Correlation Functions of GCA
From 2D Virasoro to GCA

Bulk Dual

Non-Relativistic Contraction: Finite GCA ..

Changes in Algebra: Galilean Conformal Algebra

◮ RHS of Red Equations: (6), (9) = 0.

◮ Rest of algebra ⇒ same.

A Bagchi (HRI) The Non-Relativistic Limit of AdS/CFT
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◮ Group of symmetries of the free Schrödinger equation.

◮ Generated by transformations that commute with the Schrödinger
wave operator S = i∂t + 1

2m
∂2

i .

◮ Can also be thought about as a non-relativistic limit of the original
relativistic algebra.

◮ For massive systems, consider rest energy > kinetic energy. Replace
∂0 → −im0 + ∂t ; m0 → m

ǫ2 ; xi → ǫxi .
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Schrödinger Algebra

◮ Group of symmetries of the free Schrödinger equation.

◮ Generated by transformations that commute with the Schrödinger
wave operator S = i∂t + 1

2m
∂2

i .

◮ Can also be thought about as a non-relativistic limit of the original
relativistic algebra.

◮ For massive systems, consider rest energy > kinetic energy. Replace
∂0 → −im0 + ∂t ; m0 → m

ǫ2 ; xi → ǫxi .

◮ Klein Gordon equation reduces to Schrodinger equation

(∂2
0 − ∂2

i + m2
0)φ = 0 → (i∂t +

1

2m
∂2

i )φ = 0. (13)

The parameter ǫ ∼ v
c

signifies taking the nonrelativistic limit

A Bagchi (HRI) The Non-Relativistic Limit of AdS/CFT
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Schrödinger Algebra ...

Algebra:

◮ Galilean sub-group: {Jij , Bi , Pi , H}

[Bi , Pj ] = mδij (14)

m → central extension, NR mass. Rest: same as in GCA.
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Schrödinger Algebra ...

Algebra:

◮ Galilean sub-group: {Jij , Bi , Pi , H}

[Bi , Pj ] = mδij (14)

m → central extension, NR mass. Rest: same as in GCA.

◮ Other generators: {D̃, K̃}

D̃ = −(2t∂t + xi∂i ) → scales space and time differently.
Action: (xi , t) → (λxi , λ

2t).

K̃ = −(txi∂i + t2∂t) → like temporal SCT.
Action: (xi , t) → ( xi

(1+µt) ,
t

(1+µt) ).
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Algebra:

◮ Galilean sub-group: {Jij , Bi , Pi , H}

[Bi , Pj ] = mδij (14)

m → central extension, NR mass. Rest: same as in GCA.

◮ Other generators: {D̃, K̃}

D̃ = −(2t∂t + xi∂i ) → scales space and time differently.
Action: (xi , t) → (λxi , λ

2t).

K̃ = −(txi∂i + t2∂t) → like temporal SCT.
Action: (xi , t) → ( xi

(1+µt) ,
t

(1+µt) ).

◮ Non-zero commutators:

[K̃ , Pi ] = Bi , [K̃ , Bi ] = 0, [D̃ , Bi ] = −Bi

[D̃, K̃ ] = −2K̃ , [K̃ , H ] = −D̃, [D̃, H ] = 2H . (15)

A Bagchi (HRI) The Non-Relativistic Limit of AdS/CFT



Galilean Conformal Algebra and Schrödinger Algebra
Infinite extension of GCA

Correlation Functions of GCA
From 2D Virasoro to GCA

Bulk Dual

GCA v/s SA

A Bagchi (HRI) The Non-Relativistic Limit of AdS/CFT



Galilean Conformal Algebra and Schrödinger Algebra
Infinite extension of GCA

Correlation Functions of GCA
From 2D Virasoro to GCA

Bulk Dual

GCA v/s SA

◮ GCA: Direct contraction from relativistic theory.
Same number of generators as the parent theory (15 in D=4).

A Bagchi (HRI) The Non-Relativistic Limit of AdS/CFT



Galilean Conformal Algebra and Schrödinger Algebra
Infinite extension of GCA

Correlation Functions of GCA
From 2D Virasoro to GCA

Bulk Dual

GCA v/s SA

◮ GCA: Direct contraction from relativistic theory.
Same number of generators as the parent theory (15 in D=4).

◮ SA: Additional invariance under S .
Less number of generators (12 in D=4). No spatial analogue of
SCT.

A Bagchi (HRI) The Non-Relativistic Limit of AdS/CFT



Galilean Conformal Algebra and Schrödinger Algebra
Infinite extension of GCA

Correlation Functions of GCA
From 2D Virasoro to GCA

Bulk Dual

GCA v/s SA

◮ GCA: Direct contraction from relativistic theory.
Same number of generators as the parent theory (15 in D=4).

◮ SA: Additional invariance under S .
Less number of generators (12 in D=4). No spatial analogue of
SCT.

◮ Share the (non-centrally extended) Galilean sub-group. Rest of the
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◮ SA: Additional invariance under S .
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SCT.

◮ Share the (non-centrally extended) Galilean sub-group. Rest of the
algebra is different.
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GCA v/s SA

◮ GCA: Direct contraction from relativistic theory.
Same number of generators as the parent theory (15 in D=4).

◮ SA: Additional invariance under S .
Less number of generators (12 in D=4). No spatial analogue of
SCT.

◮ Share the (non-centrally extended) Galilean sub-group. Rest of the
algebra is different.

◮ SA: Dilatation operator scales space and time differently.
GCA: Dilatation scales space and time in the same way.

◮ SA: Allows mass, central extn between momentum and boosts.
GCA: No mass (Jacobi id don’t allow it).
Symmetry group of massless/gapless NR system.
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Redefining Finite algebra

◮ Redefine generators of finite algebra:

L(−1) = H , L(0) = D, L(+1) = K ,

M
(−1)
i = Pi , M

(0)
i = Bi , M

(+1)
i = Ki . (16)
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Redefining Finite algebra

◮ Redefine generators of finite algebra:

L(−1) = H , L(0) = D, L(+1) = K ,

M
(−1)
i = Pi , M

(0)
i = Bi , M

(+1)
i = Ki . (16)

◮ The finite dimensional GCA (with m, n = 0,±1):

[L(m), L(n)] = (m − n)L(m+n),

[L(m), M
(n)
i ] = (m − n)M

(m+n)
i , [M

(m)
i , M

(n)
j ] = 0,

[Jij , L
(n)] = 0, [Jij , M

(m)
k ] = −(M

(m)
i δjk − M

(m)
j δik).

A Bagchi (HRI) The Non-Relativistic Limit of AdS/CFT
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Correlation Functions of GCA
From 2D Virasoro to GCA

Bulk Dual

Infinite GCA

◮ Define for arbitrary integer n, vector fields:

L(n) = −(n + 1)tnxi∂i − tn+1∂t , M
(n)
i = tn+1∂i

J(n)
a ≡ J

(n)
ij = −tn(xi∂j − xj∂i ) (17)

n = 0,±1. → vector fields that generate GCA
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Correlation Functions of GCA
From 2D Virasoro to GCA

Bulk Dual

Infinite GCA

◮ Define for arbitrary integer n, vector fields:

L(n) = −(n + 1)tnxi∂i − tn+1∂t , M
(n)
i = tn+1∂i

J(n)
a ≡ J

(n)
ij = −tn(xi∂j − xj∂i ) (17)

n = 0,±1. → vector fields that generate GCA

◮ We get a Virasoro Kac-Moody like algebra

[L(m), L(n)] = (m − n)L(m+n), [L(m), J(n)
a ] = −nJ(m+n)

a

[J(n)
a , J

(m)
b ] = fabcJ

(n+m)
c , [L(m), M

(n)
i ] = (m − n)M

(m+n)
i
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Correlation Functions of GCA
From 2D Virasoro to GCA

Bulk Dual

Infinite GCA

◮ Define for arbitrary integer n, vector fields:

L(n) = −(n + 1)tnxi∂i − tn+1∂t , M
(n)
i = tn+1∂i

J(n)
a ≡ J

(n)
ij = −tn(xi∂j − xj∂i ) (17)

n = 0,±1. → vector fields that generate GCA

◮ We get a Virasoro Kac-Moody like algebra

[L(m), L(n)] = (m − n)L(m+n), [L(m), J(n)
a ] = −nJ(m+n)

a

[J(n)
a , J

(m)
b ] = fabcJ

(n+m)
c , [L(m), M

(n)
i ] = (m − n)M

(m+n)
i

◮ Commuting generators M
(n)
i function like generators of a global

symmetry.

◮ Can consistently set these generators to zero and add usual
Virasoro-Kac-Moody central terms.
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Galilean Conformal Algebra and Schrödinger Algebra
Infinite extension of GCA

Correlation Functions of GCA
From 2D Virasoro to GCA

Bulk Dual

Physical Significance of the GCA

◮ The M
(n)
i act as generators of generalised time dependent but

spatially homogeneous accelerations

xi → xi + bi (t). (18)
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Physical Significance of the GCA

◮ The M
(n)
i act as generators of generalised time dependent but

spatially homogeneous accelerations

xi → xi + bi (t). (18)

◮ Similarly, the J
(n)
ij ≡ J

(n)
a are generators of arbitrary time dependent

rotations
xi → Rij(t)xj (19)
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Physical Significance of the GCA

◮ The M
(n)
i act as generators of generalised time dependent but

spatially homogeneous accelerations

xi → xi + bi (t). (18)

◮ Similarly, the J
(n)
ij ≡ J

(n)
a are generators of arbitrary time dependent

rotations
xi → Rij(t)xj (19)

◮ These two together generate what is sometimes called the Coriolis
group: the biggest group of ”isometries” of ”flat” Galilean
spacetime.
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Correlation Functions of GCA
From 2D Virasoro to GCA

Bulk Dual

Physical Significance of the GCA

◮ The M
(n)
i act as generators of generalised time dependent but

spatially homogeneous accelerations

xi → xi + bi (t). (18)

◮ Similarly, the J
(n)
ij ≡ J

(n)
a are generators of arbitrary time dependent

rotations
xi → Rij(t)xj (19)

◮ These two together generate what is sometimes called the Coriolis
group: the biggest group of ”isometries” of ”flat” Galilean
spacetime.

◮ L(n) seem to be generators of a conformal ”isometry” of Galilean
spacetime.

t → f (t), xi →
df

dt
xi (20)
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Galilean Conformal Algebra and Schrödinger Algebra
Infinite extension of GCA

Correlation Functions of GCA
From 2D Virasoro to GCA

Bulk Dual

Realisation of the GCA: NR Conformal Hydrodynamics

Similar algebra also looked by Bhattacharya et al (2008).

◮ NR limit of quantum field theories at finite temperature in the
hydrodynamic limit → recover Navier-Stokes eqns.

∂tvi(x , t) + vj∂jvi (x , t) = −∂ip(x , t) + ν0∂j∂jvi (x , t) (21)
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Realisation of the GCA: NR Conformal Hydrodynamics

Similar algebra also looked by Bhattacharya et al (2008).

◮ NR limit of quantum field theories at finite temperature in the
hydrodynamic limit → recover Navier-Stokes eqns.

∂tvi(x , t) + vj∂jvi (x , t) = −∂ip(x , t) + ν0∂j∂jvi (x , t) (21)

◮ Has all symmetries of finite GCA, except D which is broken (by the
viscous term) because of the choice of temperature.

◮ Has all M
(n)
i as symmetries!
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Realisation of the GCA: NR Conformal Hydrodynamics

Similar algebra also looked by Bhattacharya et al (2008).

◮ NR limit of quantum field theories at finite temperature in the
hydrodynamic limit → recover Navier-Stokes eqns.

∂tvi(x , t) + vj∂jvi (x , t) = −∂ip(x , t) + ν0∂j∂jvi (x , t) (21)

◮ Has all symmetries of finite GCA, except D which is broken (by the
viscous term) because of the choice of temperature.

◮ Has all M
(n)
i as symmetries!

◮ Navier-Stokes eqn should describe the hydrodynamic limit of all NR
field theories.
A part of the infinitely extended GCA exists as its symmetries!
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Galilean Conformal Algebra and Schrödinger Algebra
Infinite extension of GCA

Correlation Functions of GCA
From 2D Virasoro to GCA

Bulk Dual

Realisation of the GCA: NR Conformal Hydrodynamics ...

◮ Navier-Stokes equation with viscosity set to zero = Incompressible
Euler equations

∂tvi (x , t) + vj∂jvi (x , t) = −∂ip(x , t) (22)

Entire finite GCA is a symmetry (since D is now also a symmetry).

This shows that one can readily realise ”gapless” non-relativistic
systems in which space and time scale in the same way!
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Correlation Functions of GCA
From 2D Virasoro to GCA

Bulk Dual

Representations

◮ States would be labeled under L0 (dilatations) and M0 (boosts).

L0|∆, ξi 〉 = ∆|∆, ξi 〉, M i
0|∆, ξi 〉 = ξi |∆, ξi 〉 (23)

◮ Ln, M i
n lower the dilatation eigenvalue (∆) and L−n, M

i
−n raise it.

◮ Primary states: there must exist states with a lower bound on the ∆
eigenvalue, so that for them ∆ cannot be lowered further.

Ln|∆, ξi 〉p = 0, Mn|∆, ξi 〉p = 0 ∀n > 0 (24)

◮ Can construct representations by acting on the primary state by

raising operators.
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Infinite extension of GCA

Correlation Functions of GCA
From 2D Virasoro to GCA

Bulk Dual

Two and Three point functions of GCA

Look at correlation functions of quasi-primary operators.
(quasi-primary= primary wrt finite sub-algebra).
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Correlation Functions of GCA
From 2D Virasoro to GCA

Bulk Dual

Two and Three point functions of GCA

Look at correlation functions of quasi-primary operators.
(quasi-primary= primary wrt finite sub-algebra).

Demand:

◮ operators vanish under the action of L1, M
i
1

◮ operators are eigenvectors under L0, M
i
0

◮ the vacuum is invariant under translations
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Correlation Functions of GCA
From 2D Virasoro to GCA

Bulk Dual

Two and Three point functions of GCA

Look at correlation functions of quasi-primary operators.
(quasi-primary= primary wrt finite sub-algebra).

Demand:

◮ operators vanish under the action of L1, M
i
1

◮ operators are eigenvectors under L0, M
i
0

◮ the vacuum is invariant under translations

Two pt function: G (2) = C(12)δ∆1,∆2δξi
1,ξ

i
2
t2∆1

12 exp
(

2ξix
i
12

t12

)
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Bulk Dual

Two and Three point functions of GCA

Look at correlation functions of quasi-primary operators.
(quasi-primary= primary wrt finite sub-algebra).

Demand:

◮ operators vanish under the action of L1, M
i
1

◮ operators are eigenvectors under L0, M
i
0

◮ the vacuum is invariant under translations

Two pt function: G (2) = C(12)δ∆1,∆2δξi
1,ξ

i
2
t2∆1

12 exp
(

2ξix
i
12

t12

)

Three pt function:

G (3) = C (3)t∆132

13 t∆231

23 t∆123

12 exp
(

−
ξ132

i x i
13

t13
−

ξ231
i x i

23

t23
−

ξ123
i x i

12

t12

)

where ∆lmn = −(∆l + ∆m − ∆n) and similarly ξlmn
i .
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Correlation Functions of GCA
From 2D Virasoro to GCA

Bulk Dual

2 and 3-pt functions of Conformal and Schrödinger

Algebras
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Galilean Conformal Algebra and Schrödinger Algebra
Infinite extension of GCA

Correlation Functions of GCA
From 2D Virasoro to GCA

Bulk Dual

2 and 3-pt functions of Conformal and Schrödinger

Algebras

◮ Relativistic CFT:

G (2)(zi , zi) = δh1,h2δh1,h2
C12z

−2h
12 z−2h

12

G (3)(zi , zi) = C(123)z
−(h1+h2−h3)
12 z

−(h2+h3−h1)
23 z

−(h3+h1−h2)
13

×non-holomorphic
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Bulk Dual

2 and 3-pt functions of Conformal and Schrödinger

Algebras

◮ Relativistic CFT:

G (2)(zi , zi) = δh1,h2δh1,h2
C12z

−2h
12 z−2h

12

G (3)(zi , zi) = C(123)z
−(h1+h2−h3)
12 z

−(h2+h3−h1)
23 z

−(h3+h1−h2)
13

×non-holomorphic

◮ Schrödinger algebra:

G (2) = C(12)δh1,h2δm1,m2t
h1
12 exp{m1

x i
12

2

2t12
}

G (3) = C(123)δm1+m2,m3t
−h132

13 t−h231

23 t−h123

12

× exp

(

m1x
i
13

2

2t13
+

m2x
i
23

2

2t23

)

Ψ

(

[x i
13t23 − x i

23t13]
2

(t12t23t13)

)
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Galilean Conformal Algebra and Schrödinger Algebra
Infinite extension of GCA

Correlation Functions of GCA
From 2D Virasoro to GCA

Bulk Dual

Comparing Correlation Functions

◮ All share vanishing of 2 pt function if h1 6= h2.

A Bagchi (HRI) The Non-Relativistic Limit of AdS/CFT



Galilean Conformal Algebra and Schrödinger Algebra
Infinite extension of GCA

Correlation Functions of GCA
From 2D Virasoro to GCA

Bulk Dual

Comparing Correlation Functions

◮ All share vanishing of 2 pt function if h1 6= h2.

◮ Exponential behaviour is a consequence of non-relativistic nature.
(Galilean boost equation dictates the form)
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Comparing Correlation Functions

◮ All share vanishing of 2 pt function if h1 6= h2.

◮ Exponential behaviour is a consequence of non-relativistic nature.
(Galilean boost equation dictates the form)

◮ NR Three point functions have the familiar part of the conformal
three pt function being completely symmetric in the times
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Comparing Correlation Functions

◮ All share vanishing of 2 pt function if h1 6= h2.

◮ Exponential behaviour is a consequence of non-relativistic nature.
(Galilean boost equation dictates the form)

◮ NR Three point functions have the familiar part of the conformal
three pt function being completely symmetric in the times

◮ The GCA and SA three pt functions crucially differ:
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Comparing Correlation Functions

◮ All share vanishing of 2 pt function if h1 6= h2.

◮ Exponential behaviour is a consequence of non-relativistic nature.
(Galilean boost equation dictates the form)

◮ NR Three point functions have the familiar part of the conformal
three pt function being completely symmetric in the times

◮ The GCA and SA three pt functions crucially differ:

◮ SA: arbitrary upto a function. GCA: fixed upto a constant
factor.
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Bulk Dual

Comparing Correlation Functions

◮ All share vanishing of 2 pt function if h1 6= h2.

◮ Exponential behaviour is a consequence of non-relativistic nature.
(Galilean boost equation dictates the form)

◮ NR Three point functions have the familiar part of the conformal
three pt function being completely symmetric in the times

◮ The GCA and SA three pt functions crucially differ:

◮ SA: arbitrary upto a function. GCA: fixed upto a constant
factor.
Comes from the differing number of generators. GCA has 2
more generators → more constrained.

A Bagchi (HRI) The Non-Relativistic Limit of AdS/CFT
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Infinite extension of GCA

Correlation Functions of GCA
From 2D Virasoro to GCA

Bulk Dual

Comparing Correlation Functions

◮ All share vanishing of 2 pt function if h1 6= h2.

◮ Exponential behaviour is a consequence of non-relativistic nature.
(Galilean boost equation dictates the form)

◮ NR Three point functions have the familiar part of the conformal
three pt function being completely symmetric in the times

◮ The GCA and SA three pt functions crucially differ:

◮ SA: arbitrary upto a function. GCA: fixed upto a constant
factor.
Comes from the differing number of generators. GCA has 2
more generators → more constrained.

◮ SA further constrained by mass selection rules. Not present in
GCA: boosts act on co-ordinates unlike mass.
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Galilean Conformal Algebra and Schrödinger Algebra
Infinite extension of GCA

Correlation Functions of GCA
From 2D Virasoro to GCA

Bulk Dual

Mapping of the representations ...

◮ Representation of classical Virasoro algebra in 2d :

Ln = −zn+1∂z , L̄n = −z̄n+1∂z̄ (25)
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Correlation Functions of GCA
From 2D Virasoro to GCA

Bulk Dual

Mapping of the representations ...

◮ Representation of classical Virasoro algebra in 2d :

Ln = −zn+1∂z , L̄n = −z̄n+1∂z̄ (25)

◮ In space-time coord, z = t + x , z̄ = t − x .
Hence ∂z = 1

2 (∂t + ∂x) and ∂z̄ = 1
2 (∂t − ∂x).
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Infinite extension of GCA

Correlation Functions of GCA
From 2D Virasoro to GCA

Bulk Dual

Mapping of the representations ...

◮ Representation of classical Virasoro algebra in 2d :

Ln = −zn+1∂z , L̄n = −z̄n+1∂z̄ (25)

◮ In space-time coord, z = t + x , z̄ = t − x .
Hence ∂z = 1

2 (∂t + ∂x) and ∂z̄ = 1
2 (∂t − ∂x).

◮ Non-relativistic limit: x → ǫx , t → t.

Ln + L̄n = −tn+1∂t − (n + 1)tnx∂x + O(ǫ2) (26)

Ln − L̄n = −
1

ǫ
tn+1∂x + O(ǫ) (27)
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Correlation Functions of GCA
From 2D Virasoro to GCA

Bulk Dual

Mapping of the representations ...

◮ Representation of classical Virasoro algebra in 2d :

Ln = −zn+1∂z , L̄n = −z̄n+1∂z̄ (25)

◮ In space-time coord, z = t + x , z̄ = t − x .
Hence ∂z = 1

2 (∂t + ∂x) and ∂z̄ = 1
2 (∂t − ∂x).

◮ Non-relativistic limit: x → ǫx , t → t.

Ln + L̄n = −tn+1∂t − (n + 1)tnx∂x + O(ǫ2) (26)

Ln − L̄n = −
1

ǫ
tn+1∂x + O(ǫ) (27)

◮ As ǫ → 0, identification:

Ln + L̄n −→ L(n), ǫ(Ln − L̄n) −→ −M (n) (28)
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Galilean Conformal Algebra and Schrödinger Algebra
Infinite extension of GCA

Correlation Functions of GCA
From 2D Virasoro to GCA

Bulk Dual

Mapping of Quantum algebra

◮ 2d relativistic Virasoro Algebra:

[Lm,Ln] = (m − n)Lm+n +
c

12
m(m2 − 1)δm+n,0

[L̄m, L̄n] = (m − n)L̄m+n +
c̄

12
m(m2 − 1)δm+n,0 (29)
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Mapping of Quantum algebra

◮ 2d relativistic Virasoro Algebra:

[Lm,Ln] = (m − n)Lm+n +
c

12
m(m2 − 1)δm+n,0

[L̄m, L̄n] = (m − n)L̄m+n +
c̄

12
m(m2 − 1)δm+n,0 (29)

◮ The linear combinations before taking the limits:

[Lm + L̄m,Ln + L̄n] = (m − n)(Lm+n + L̄m+n) +
c + c̄

12
m(m

2
− 1)δm+n,0

[Lm + L̄m,Ln − L̄n] = (m − n)(Lm+n − L̄m+n) +
c − c̄

12
m(m

2
− 1)δm+n,0

[Lm − L̄m, Ln − L̄n] = (m − n)(Lm+n + L̄m+n) +
c + c̄

12
m(m

2
− 1)δm+n,0 (30)
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Infinite extension of GCA

Correlation Functions of GCA
From 2D Virasoro to GCA

Bulk Dual

Mapping of Quantum algebra ...

◮ After taking the limit

[L(m), L(n)] = (m − n)L(m+n) + C1m(m2 − 1)δm+n,0

[L(m), M (n)] = (m − n)M (m+n) + C2m(m2 − 1)δm+n,0

[M (m), M (n)] = 0.

◮ Infinite extended GCA!

Note that C1 = c+c̄
12 and C2

ǫ
= −c+c̄

12 .
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Infinite extension of GCA

Correlation Functions of GCA
From 2D Virasoro to GCA

Bulk Dual

Mapping of Quantum algebra ...

◮ After taking the limit

[L(m), L(n)] = (m − n)L(m+n) + C1m(m2 − 1)δm+n,0

[L(m), M (n)] = (m − n)M (m+n) + C2m(m2 − 1)δm+n,0

[M (m), M (n)] = 0.

◮ Infinite extended GCA!

Note that C1 = c+c̄
12 and C2

ǫ
= −c+c̄

12 .

◮ Infinite GCA which was first written by observation has now been
derived as a simple limit of the algebra of 2d CFTs.

A Bagchi (HRI) The Non-Relativistic Limit of AdS/CFT



Galilean Conformal Algebra and Schrödinger Algebra
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Correlation Functions of GCA
From 2D Virasoro to GCA

Bulk Dual

GCA: The large spin sector of 2D Virasoro

◮ More subtlety in the above limit. Can be understood by looking at
correlation functions.

◮ Would not get the important exponential pieces of correlation fns if
one took the simple NR limit.

◮ Also need to take h + h̄ = ∆ and h − h̄ = ξ
ǫ
.

◮ Two point correlator of 2d relativistic CFT in this limit:

G
(2)
R (zi , z̄i ) = δh1,h2δh̄1,h̄2

C12(t12 − x12)
−2h(t12 + x12)

−2h̄

= δh1,h2δh̄1,h̄2
C12(t12 − x12)

−2(h−h̄)(t2
12 − x2

12)
−2h̄

= δh1,h2δh̄1,h̄2
C12 t∆

12 (1 −
x12

t12
)2s (1 −

x2
12

t2
12

)−2h̄
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Correlation Functions of GCA
From 2D Virasoro to GCA

Bulk Dual

GCA: The large spin sector of 2D Virasoro ...

◮ Now, we want to take the limit of large spin along with the
non-relativistic limit on the co-ordinates. Keeping in mind the
identity limN→∞(1 + x

N
)N = ex , we find

G
(2)
R → C12 δ∆1,∆2 δξ1,ξ2 t∆

12 exp(
2ξx12

t12
) = G

(2)
GCA (31)
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Bulk Dual of the GCA

◮ AdSd+2 in Poincare coordinates:

ds2 = R2 dt2 − dz2 − dx2
i

z2
(32)

◮ Bulk dual to a system with GCA should arise from some scaling
limit of above metric.
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Bulk Dual of the GCA

◮ AdSd+2 in Poincare coordinates:

ds2 = R2 dt2 − dz2 − dx2
i

z2
(32)

◮ Bulk dual to a system with GCA should arise from some scaling
limit of above metric.

◮ The SL(2, R) suggests an AdS2 part: in the t and z.
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Bulk Dual of the GCA

◮ AdSd+2 in Poincare coordinates:

ds2 = R2 dt2 − dz2 − dx2
i

z2
(32)

◮ Bulk dual to a system with GCA should arise from some scaling
limit of above metric.

◮ The SL(2, R) suggests an AdS2 part: in the t and z.

◮ Boundary metric degenerates in the non-relativistic limit with the d

spatial directions scaling as xi ∝ ǫ while t ∝ ǫ0.

A Bagchi (HRI) The Non-Relativistic Limit of AdS/CFT



Galilean Conformal Algebra and Schrödinger Algebra
Infinite extension of GCA

Correlation Functions of GCA
From 2D Virasoro to GCA

Bulk Dual

Bulk Dual of the GCA

◮ AdSd+2 in Poincare coordinates:

ds2 = R2 dt2 − dz2 − dx2
i

z2
(32)

◮ Bulk dual to a system with GCA should arise from some scaling
limit of above metric.

◮ The SL(2, R) suggests an AdS2 part: in the t and z.

◮ Boundary metric degenerates in the non-relativistic limit with the d

spatial directions scaling as xi ∝ ǫ while t ∝ ǫ0.

◮ Expect this feature to be shared by the bulk metric. Geometry on
constant radial sections expected to have such a scaling.
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Bulk Dual of the GCA ...

◮ Need to fix scaling of z.
Radial direction: a measure of the energy scales in the boundary
theory (via AdS/CFT). Expect it to also scale like time (as ǫ0).
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Bulk Dual of the GCA ...

◮ Need to fix scaling of z.
Radial direction: a measure of the energy scales in the boundary
theory (via AdS/CFT). Expect it to also scale like time (as ǫ0).

◮ ⇒ In the bulk the time and radial directions of the metric both

survive the scaling.
⇒ AdS2 sitting inside the original AdSd+2.
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Bulk Dual of the GCA ...

◮ Need to fix scaling of z.
Radial direction: a measure of the energy scales in the boundary
theory (via AdS/CFT). Expect it to also scale like time (as ǫ0).

◮ ⇒ In the bulk the time and radial directions of the metric both

survive the scaling.
⇒ AdS2 sitting inside the original AdSd+2.

◮ So expect the dual spacetime to have the structure AdS2 × Rd with
degenerate metric on the Rd .
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Newton-Cartan Theory

◮ Degenerate nature of the metric might seem to imply that the
gravitational dynamics is singular.
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Newton-Cartan Theory

◮ Degenerate nature of the metric might seem to imply that the
gravitational dynamics is singular.

◮ However, similar situation in asymptotically flat space in recovering
Newtonian gravity from Einstein gravity in the non-relativistic limit.
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Newton-Cartan Theory

◮ Degenerate nature of the metric might seem to imply that the
gravitational dynamics is singular.

◮ However, similar situation in asymptotically flat space in recovering
Newtonian gravity from Einstein gravity in the non-relativistic limit.

◮ The answer: there is a well-defined geometric theory of Newtonian
gravitation - Newton-Cartan theory.
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Newton-Cartan Theory ...

◮ The ingredients: A space time endowed with absolute time function
t, a non-dynamical spatial (Euclidean) metric, a dynamical
non-metric connection Γi

00 ∝ ∂iΦ.

◮ Einstein’s equations reduce to R00 ∝ ρ which is Poisson’s equation
for Φ.
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Newton-Cartan Theory ...

◮ The ingredients: A space time endowed with absolute time function
t, a non-dynamical spatial (Euclidean) metric, a dynamical
non-metric connection Γi

00 ∝ ∂iΦ.

◮ Einstein’s equations reduce to R00 ∝ ρ which is Poisson’s equation
for Φ.

◮ One can write all this in a more covariant form: A d dimensional
fibre Rd over a base R which is parametrised by the time t.

◮ Nothing singular about this classical geometric description, only
unusual.
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Proposed Modifications for AdS

◮ Proceed here in a similar manner.

◮ Except that instead of base R we have AdS2 and fibres are still
Euclidean Rd .
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Proposed Modifications for AdS

◮ Proceed here in a similar manner.

◮ Except that instead of base R we have AdS2 and fibres are still
Euclidean Rd .

◮ Separate metrics gαβ on AdS2 and δij on the spatial Rd .

◮ Dynamical affine connections Γi
αβ .

◮ The non-relativistic scaling limit of Einstein’s equations leave one
with

Rαβ = Λgαβ (33)
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Proposed Modifications for AdS

◮ Proceed here in a similar manner.

◮ Except that instead of base R we have AdS2 and fibres are still
Euclidean Rd .

◮ Separate metrics gαβ on AdS2 and δij on the spatial Rd .

◮ Dynamical affine connections Γi
αβ .

◮ The non-relativistic scaling limit of Einstein’s equations leave one
with

Rαβ = Λgαβ (33)

◮ Thus the bulk boundary relation is some kind of an AdS2/CFT1

duality.

◮ The correlators on the boundary theory also point to the same
thing. “Conformal” pieces in t. But non-trivial pieces from the
fibre-bundle structure.
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GCA from Bulk Killing Vectors

◮ AdSd+2 in radially infalling coordinates for null geodesics
(t ′ = t + z, z ′ = z) (tranforming from Poincare co-ordinates)

ds2 =
R2

z ′2
(−dt ′(2dz ′ − dt ′) − dx2

i ). (34)

◮ Take the generators of the AdSd+2 isometries and perform the
contraction by taking t ′, z ′ → ǫr , x ′

i → ǫr+1xi .
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GCA from Bulk Killing Vectors

◮ AdSd+2 in radially infalling coordinates for null geodesics
(t ′ = t + z, z ′ = z) (tranforming from Poincare co-ordinates)

ds2 =
R2

z ′2
(−dt ′(2dz ′ − dt ′) − dx2

i ). (34)

◮ Take the generators of the AdSd+2 isometries and perform the
contraction by taking t ′, z ′ → ǫr , x ′

i → ǫr+1xi .

◮ Contracted Killing vectors given by

Pi = −∂i , Bi = −(t ′ − z ′)∂i , Ki = −(t ′2 − 2t ′z ′)∂i

H = ∂t′ , D = t ′∂t′ + z ′∂z′ + xi∂i ,
K = t ′2∂t′ + 2(t ′ − z ′)(z ′∂z′ + xi∂i). (35)
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GCA from Bulk Killing Vectors ...

◮ More compactly (for m, n = 0,±1, l = 0).

L(n) = t ′n+1∂t′ + (n + 1)(t ′n − nzt ′n−1)(xi∂i + z ′∂z′)

M
(m)
i = −(t ′m+1 − (m + 1)zt ′m)∂i

J
(l)
ij = −t ′n(xi∂j − xj∂i ) (36)

A Bagchi (HRI) The Non-Relativistic Limit of AdS/CFT



Galilean Conformal Algebra and Schrödinger Algebra
Infinite extension of GCA

Correlation Functions of GCA
From 2D Virasoro to GCA

Bulk Dual

GCA from Bulk Killing Vectors ...

◮ More compactly (for m, n = 0,±1, l = 0).

L(n) = t ′n+1∂t′ + (n + 1)(t ′n − nzt ′n−1)(xi∂i + z ′∂z′)

M
(m)
i = −(t ′m+1 − (m + 1)zt ′m)∂i

J
(l)
ij = −t ′n(xi∂j − xj∂i ) (36)

◮ Reduces at the boundary (z = 0) to the generators of the
contracted conformal algebra. And satisfies the same algebra.
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GCA from Bulk Killing Vectors ...

◮ More compactly (for m, n = 0,±1, l = 0).

L(n) = t ′n+1∂t′ + (n + 1)(t ′n − nzt ′n−1)(xi∂i + z ′∂z′)

M
(m)
i = −(t ′m+1 − (m + 1)zt ′m)∂i

J
(l)
ij = −t ′n(xi∂j − xj∂i ) (36)

◮ Reduces at the boundary (z = 0) to the generators of the
contracted conformal algebra. And satisfies the same algebra.

◮ In fact, these bulk vector fields (for arbitrary m, n, l) reduce to that
of the extended Kac-Moody algebra at the boundary.
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Interpretation of Bulk Vector Fields

◮ The M
(n)
i and J

(n)
a act only on the Rd . Rotation and translation of

the spatial slices which depend on t, z.
Isometries of the spatial metric. Act trivially on the AdS2.
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Interpretation of Bulk Vector Fields

◮ The M
(n)
i and J

(n)
a act only on the Rd . Rotation and translation of

the spatial slices which depend on t, z.
Isometries of the spatial metric. Act trivially on the AdS2.

◮ The Virasoro generators act as the generators of asymptotic
symmetries of the AdS2.

◮ Under its action (with infinitesimal parameter an)

z → z̃ = z[1 + an(n + 1)(tn − nztn−1)]
t → t̃ = t[1 + ant

n]
xi → x̃i = xi [1 + an(n + 1)(tn − nztn−1)]. (37)
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Interpretation of Bulk Vector Fields ...

◮ Action on the Newton-Cartan structure:
1. Consider action on Poincare metric on AdS5 (EF co-ords).
2. Take the scaling limit.

A Bagchi (HRI) The Non-Relativistic Limit of AdS/CFT



Galilean Conformal Algebra and Schrödinger Algebra
Infinite extension of GCA

Correlation Functions of GCA
From 2D Virasoro to GCA

Bulk Dual

Interpretation of Bulk Vector Fields ...

◮ Action on the Newton-Cartan structure:
1. Consider action on Poincare metric on AdS5 (EF co-ords).
2. Take the scaling limit.

◮ We find

ds2 =
1

z2
(−2dtdz + dt2 + dx2

i )

→
1

z2
(−2dtdz + dt2 + dx2

i ) + 2n(n2 − 1)ant
n−2dt2

−2
ann(n + 1)

z2
xidxi [(t − (n − 1)z)dt − tdz].
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Interpretation of Bulk Vector Fields ...

◮ Action on the Newton-Cartan structure:
1. Consider action on Poincare metric on AdS5 (EF co-ords).
2. Take the scaling limit.

◮ We find

ds2 =
1

z2
(−2dtdz + dt2 + dx2

i )

→
1

z2
(−2dtdz + dt2 + dx2

i ) + 2n(n2 − 1)ant
n−2dt2

−2
ann(n + 1)

z2
xidxi [(t − (n − 1)z)dt − tdz].

◮ On taking the scaling limit:

ds2 =
1

z2
(−2dtdz+dt2) →

1

z2
(−2dtdz+dt2+2n(n2−1)anz

2tn−2dt2).
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Interpretation of Bulk Vector Fields ....

◮ SL(2, R) subgroup L(0), L(±1) are exact isometries.
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Interpretation of Bulk Vector Fields ....

◮ SL(2, R) subgroup L(0), L(±1) are exact isometries.

◮ The other L(n) are not exact isometries. However, they are
asymptotic isometries in the sense of Brown and Henneaux.

Near the boundary z = 0 the diffeomorphisms generated by these
vector fields leave the metric unchanged upto a factor which has a
falloff like z2.
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Interpretation of Bulk Vector Fields ....

◮ SL(2, R) subgroup L(0), L(±1) are exact isometries.

◮ The other L(n) are not exact isometries. However, they are
asymptotic isometries in the sense of Brown and Henneaux.

Near the boundary z = 0 the diffeomorphisms generated by these
vector fields leave the metric unchanged upto a factor which has a
falloff like z2.

◮ Action of the L(n) on the spatial metric on the slices of constant t, z
is again an isometry.
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Interpretation of Bulk Vector Fields ....

◮ SL(2, R) subgroup L(0), L(±1) are exact isometries.

◮ The other L(n) are not exact isometries. However, they are
asymptotic isometries in the sense of Brown and Henneaux.

Near the boundary z = 0 the diffeomorphisms generated by these
vector fields leave the metric unchanged upto a factor which has a
falloff like z2.

◮ Action of the L(n) on the spatial metric on the slices of constant t, z
is again an isometry.

◮ L(n), J
(n)
a , M

(N)
i together generate (asymptotic) isometries of the

spatial and AdS2 metrics γ ij and gab.

◮ Therefore it seems natural to consider the action of these generators
on the Newton-Cartan like geometry.
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Summary

◮ GCA is obtained by a parametric group contraction of the
relativistic conformal algebra.

◮ It can be given an infinite lift for any spacetime dimensions.

◮ Finite algebra realised as invariant symmetry algebra of the Euler
equations.

◮ Novel structures for the 2 and 3 pt functions

◮ For d=2, a mapping exists from the Virasoro to the GCA.

◮ Bulk dual is in standard one higher dimension and is a
Newton-Cartan like AdS2 × Rd .

◮ GCA is obtained by contracting bulk killing vectors and can be
interpretted as the asympototic isometry of the NC structure.
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Future Directions

◮ Interpreting and using the infinite symmetry in conformal theories
with d > 2.

◮ Infinite symmetry = integrability ?

◮ Understanding the bulk better: bulk-bdy dictionary, N-C structure.

◮ Embeddings in string theory.

◮ Other cond mat systems with GCA. (e.g. aging systems, quantum
hall systems.)

◮ A host of other questions!
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Thank You!!
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