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The “textbook approach” to neutrino oscillations

Diagonalization of the mass terms of the charged leptons and neutrinos gives

L ⊃ − g√
2

(ēαLγ
µUαjνjL) W−

µ + diag. mass terms + h.c.

(flavour eigenstates: α = e, µ, τ , mass eigenstates: j = 1,2,3)

Assume, at time t = 0 and location ~x = 0, a flavour eigenstate

|ν(0,0)〉 = |να〉 =
∑

i

U∗
αj |νj〉

is produced. At time t and position ~x , it has evolved into

|ν(t , ~x)〉 =
∑

i

U∗
αje

−iEj t+i~pj~x |νi〉

Oscillation probability:

P(να → νβ) =
∣∣∣ 〈
νβ |ν(t , ~x)

〉 ∣∣∣2
=

∑
j,k

U∗
αjUβjUαk U∗

βk e−i(Ej−Ek )t+i(~pj−~pk )~x
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Questions to think about

What happens to energy-momentum conservation in neutrino
oscillations?
Under what conditions is coherence between different neutrino mass
eigenstates lost?
Is the standard oscillation formula universal, or are there situations where
it needs to be modified?
Why does the standard oscillation formula work so well, even though its
derivation is plagued by inconsistencies?
Are the neutrino and its interaction partners in an entangled state? If so,
what are the phenomenological consequences of entanglement?
Are flavor eigenstates well-defined and useful objects in QFT?
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Neutrino wave packets

Treat neutrino as superposition of mass eigenstate wave packets:

|ναS(t)〉 =

∫
d3p

∑
j

U∗
αj fjS(~p) e−iEj (~p)(t−tS)|νj , ~p〉

Advantage:

Heisenberg uncertainties and localization effects properly taken into account.

Disadvatage:

Assumptions on (or calculation of) shape functions fjS(~p) needed.
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Oscillation formula for neutrino wave packets

Detector projects |ναS(t)〉 onto a state |νβD〉 with shape function fkD(~p).

Oscillation probability (for Gaussian wave packets):

Pee =
∑
j,k

U∗
αjUβjUαk U∗

βk exp
[
− 2πi

L
Losc

jk
−

(
L

Lcoh
jk

)2

− 2π2ξ2
(

1
2σpLosc

jk

)2]

C. Giunti, C. W. Kim, U. W. Lee, Phys. Rev. D44 (1991) 3635; C. Giunti, C. W. Kim, Phys. Lett. B274 (1992) 87
K. Kiers, S. Nussinov, N. Weiss, Phys. Rev. D53 (1996) 537, hep-ph/9506271

C. Giunti, C. W. Kim, Phys. Rev. D58 (1998) 017301, hep-ph/9711363, C. Giunti, Found. Phys. Lett. 17 (2004) 103, hep-ph/0302026

with

Losc
jk = 4πE/∆m2

jk Oscillation length
Lcoh

jk = 2
√

2E2/σp|∆m2
jk | Coherence length
E Energy that a massless neutrino would have
ξ quantifies the deviation of Ei from E

σp Effective wave packet width
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The localization term

For ξ ∼ 1, the term

exp
[
− 2π2ξ2

(
1

2σpLosc
jk

)2]
suppresses oscillations if wave packets are larger than the oscillation length.
In that case, the phase difference between mass eigenstates varies
appreciably during the detection process.

For ξ � 1 (equal energy limit, Ei ' Ej ), this condition disappears (oscillations
only in L, not in T → phase relation between mass eigenstates remains the
same during the whole detection process).
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The decoherence term
The term

exp
[
−

(
L

Lcoh
jk

)2]
suppresses oscillations at long (astrophysical) baselines.

Interesting duality of interpretations
Interpretation 1: (a single neutrino)
Different mass eigenstates separate in space and time due to their
different group velocities → loss of coherence
Interpretation 2: (ensemble of neutrinos)
At large baseline, oscillation maxima are so close in energy that the finite
experimental resolution smears them out.

Reason:
A continuous flux of identical wave packets cannot be distinguished from an
ensemble of plane waves with the same momentum distribution.
(Neutrino density matrices for the two ensembles are identical)

K. Kiers, S. Nussinov, N. Weiss, Phys. Rev. D53 (1996) 537, hep-ph/9506271
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The Feynman diagram of neutrino oscillations

Idea: Neutrino as intermediate line in macroscopic Feynman diagram;
external particles described as wave packets or bound state wave functions

ν

Pi(q)

Pf (k)

Di(q
′)

Df (k′)

Advantages:
Heisenberg uncertainties and localization effects properly taken into
account.
Neutrino properties (Ej , ~pj of individual mass eigenstates, shape of wave
function, . . . ) automatically determined by the formalism.
Automatically yields properly normalized oscillation probabilities and
event rates
Includes dynamic modifications of mixing parameters due to different
kinematics for different mass eigenstates (usually tiny, but may be
important in sterile neutrino scenarios)
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Oscillation probability from a Feynman diagram

Evaluation is tedious, but straightforward if external wave functions are
Gaussian: (δm2

i = m2
i −m2

0)

Pαβ(L) ∝
∑
j,k

U∗
αjUαk U∗

βk Uβj exp
[
− 2πi

L
Losc

jk
−

(
L

Lcoh
jk

)2

− π2

2
ξ2

(
1

σpLosc
jk

)2

−
(δm2

i + δm2
j )

2

32σ2
mE2 −

(δm2
i − δm2

j )
2

32σ2
mE2

]
,

Four terms:
Oscillation
Decoherence (wave packet separation ↔ detector resolution effects)
Localization (wave packet smaller than oscillation length or no oscillations
in time)
Approximate conservation of average energies/momenta
Another localization effect: Suppression of oscillations if experimental
resolutions allow determination of neutrino mass B. Kayser Phys. Rev. D24 (1981) 110
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A concrete example: Mössbauer neutrinos

Classical Mössbauer effect: Recoilfree emission and absorption of γ-rays
from nuclei bound in a crystal lattice.

A similar effect should exist for neutrino emission/absorption in bound state β
decay and induced electron capture processes.

W. M. Visscher, Phys. Rev. 116 (1959) 1581; W. P. Kells, J. P. Schiffer, Phys. Rev. C28 (1983) 2162
R. S. Raghavan, hep-ph/0511191; R. S. Raghavan, hep-ph/0601079

Proposed experiment:

Production: 3H → 3He+ + ν̄e + e−(bound)

Detection: 3He+ + e−(bound) + ν̄e → 3H

3H and 3He embedded in metal crystals (metal hydrides).

Physics opportunities:
Neutrino oscillations on a laboratory scale: E = 18.6 keV,Losc

atm ∼ 20 m.
Gravitational interactions of neutrinos
Study of solid state effects with unprecedented precision
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Mössbauer neutrinos (contd.)

Mössbauer neutrinos have very special properties: R. S. Raghavan, W. Potzel

Neutrino receives full decay energy: Q = 18.6 keV
Natural line width: γ ∼ 1.17× 10−24 eV
Atucal line width: γ & 10−11 eV

I Inhomogeneous broadening (Impurities, lattice defects)
Each atom emits at slightly different, but constant, energy
→ ensemble of plane wave with different energies

I Homogeneous broadening (Spin interactions)
Energy levels of atoms fluctuate, but in the same way for all atoms
→ ensemble of wave packets with identical shapes

Remember:
A continuous flux of identical wave packets cannot be distinguished from an
ensemble of plane waves with the same momentum distribution.
(Neutrino density matrices for the two ensembles are identical)

K. Kiers, S. Nussinov, N. Weiss, Phys. Rev. D53 (1996) 537, hep-ph/9506271
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Transition amplitude for Mössbauer neutrinos

Assume atoms bound in harmonic oscillator potentials,
e.g. for 3H in the source:

ψH,S(~x , t) =

[
mHωH,S

π

] 3
4

exp
[
− 1

2
mHωH,S|~x − ~xS|2

]
· e−iEH,S t
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Transition amplitude for Mössbauer neutrinos (contd.)

iA =

Z
d3x1 dt1

Z
d3x2 dt2

„
mHωH,S

π

« 3
4

exp
»
− 1

2
mHωH,S |~x1 − ~xS |2

–
e−iEH,S t1

·
„

mHeωHe,S

π

« 3
4

exp
»
− 1

2
mHeωHe,S |~x1 − ~xS |2

–
e+iEHe,S t1

·
„

mHeωHe,D

π

« 3
4

exp
»
− 1

2
mHeωHe,D|~x2 − ~xD|2

–
e−iEHe,D t2

·
„

mHωH,D

π

« 3
4

exp
»
− 1

2
mHωH,D|~x2 − ~xD|2

–
e+iEH,D t2

·
X

j

MµMν∗|Uej |2
Z

d4p
(2π)4 e−ip0(t2−t1)+i~p(~x2−~x1)

· ūe,Sγµ(1− γ5)
i(/p + mj)

p2
0 − ~p2 −m2

j + iε
(1 + γ5)γνue,D.

dt1 dt2-integrals → energy-conserving δ functions → p0-integral trivial
d3x1 d3x2-integrals are Gaussian
d3p-integral: Use Grimus-Stockinger theorem (limit of propagator for
large L = |~xD − ~xS|). W. Grimus, P. Stockinger, Phys. Rev. D54 (1996) 3414, hep-ph/9603430
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From the amplitude to the transition rate

Amplitude:

iA =
−i
2L
N δ(ES − ED) exp

[
−

E2
S −m2

j

2σ2
p

]∑
j

MµMν∗|Uej |2 ei
q

E2
S−m2

j L

· ūe,Sγµ
1−γ5

2 (/pj + mj)
1+γ5

2 γνue,D,

σ−2
p = (mHωH,S + mHeωHe,S)−1 + (mHωH,D + mHeωHe,D)−1

ES = EHe,S − EH,S (Peak energy of neutrino emission line)

Transition rate: Integrate |A|2 over densities of initial and final states

Γ ∝
∫ ∞

0
dEH,S dEHe,S dEHe,D dEH,D

· δ(ES − ED)ρH,S(EH,S) ρHe,D(EHe,D) ρHe,S(EHe,S) ρH,D(EH,D)

·
∑
j,k

|Uej |2|Uek |2 exp
[
−

2E2
S −m2

j −m2
k

2σ2
p

]
︸ ︷︷ ︸
Analogue of Lamb-Mössbauer factor
(Probability of recoil-free transition)

ei
(q

E2
S−m2

j −
√

E2
S−m2

k

)
L︸ ︷︷ ︸

Oscillation phase
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Inhomogeneous line broadening

Energy levels of 3H and 3He in the source and detector are smeared e.g. due
to crystal impurities, lattice defects, etc.
R. S. Raghavan, hep-ph/0601079, W. Potzel, Phys. Scripta T127 (2006) 85, B. Balko, I. W. Kay, J. Nicoll, J. D. Silk, G. Herling, Hyperfine Int. 107 (1997) 283

Good approximation for distribution of energy levels:

ρA,B(EA,B) =
γA,B/2π

(EA,B − EA,B,0)2 + γ2
A,B/4

Mössbauer neutrino transition rate for two neutrino flavours (m2 > m1):

Γ ∝ exp
[
−

E2
S,0 −m2

2

σ2
p

]
exp

[
− |∆m2|

2σ2
p

]
(γS + γD)/2π

(ES,0 − ED,0)2 + (γS+γD)2

4

·
{

1− 2s2c2
[
1− 1

2
(e−L/Lcoh

S + e−L/Lcoh
D )cos

(
π

L
Losc

)]}
Oscillation term
Lamb-Mössbauer factor
Breit-Wigner resonance term
Coherence terms with Lcoh

S,D = 4Ē2/∆m2γS,D (� Losc in reality)
Note: No localization term ∼ exp[−2π2ξ2(1/2σpLosc

jk )2] since Ei ' Ej .
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Homogeneous line broadening

Fluctuating electromagnetic fields in solid state crystal
I Fluctuating energy levels of 3H and 3He.

Classical Mössbauer effect: Homogeneous and inhomogeneous
broadening both lead to Lorentzian line shapes

I Experimentally indistinguishable
I We expect a result similar to that for the case of inhomogeneous broadening

(Rember Kiers, Nussinov, Weiss!)

Ansatz: Introduce modulation factors of the form

fA,B(t) = exp
[
− i

∫ t

0
dt ′

[
EA,B(t ′)− EA,B,0

]
t ′
]

in the 3H and 3He wave functions (A = H,He, B = S,D).

J. Odeurs, Phys. Rev. B52 (1995) 6166
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Transition amplitude for homogeneous line broadening

iA =

Z
d3x1 dt1

Z
d3x2 dt2

„
mHωH,S

π

« 3
4

exp
»
− 1

2
mHωH,S |~x1 − ~xS |2

–
e−iEH,S t1

·
„

mHeωHe,S

π

« 3
4

exp
»
− 1

2
mHeωHe,S |~x1 − ~xS |2

–
e+iEHe,S t1

·
„

mHeωHe,D

π

« 3
4

exp
»
− 1

2
mHeωHe,D|~x2 − ~xD|2

–
e−iEHe,D t2

·
„

mHωH,D

π

« 3
4

exp
»
− 1

2
mHωH,D|~x2 − ~xD|2

–
e+iEH,D t2

·
X

j

Mµ
SM

ν∗
D |Uej |2

Z
d4p

(2π)4 exp
ˆ
− ip0(t2 − t1) + i~p(~x2 − ~x1)

˜
· ūe,Sγµ(1− γ5)

i(/p + mj)

p2
0 − ~p2 −m2

j + iε
(1 + γ5)γνue,D

d3x1 d3x2-integrals are Gaussian
d3p-integral: Use Grimus-Stockinger theorem.
Transition rate Γ ∝ 〈AA∗〉 (average of AA∗ over all possible 3H and 3He states)
can be computed if fluctuations are Markovian (system has no memory)
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Transition amplitude for homogeneous line broadening

iA =

Z
d3x1 dt1

Z
d3x2 dt2

„
mHωH,S

π

« 3
4

exp
»
− 1

2
mHωH,S |~x1 − ~xS |2

–
fH,S(t1) e−iEH,S t1

·
„

mHeωHe,S

π

« 3
4

exp
»
− 1

2
mHeωHe,S |~x1 − ~xS |2

–
f ∗He,S(t1) e+iEHe,S t1

·
„

mHeωHe,D

π

« 3
4

exp
»
− 1

2
mHeωHe,D|~x2 − ~xD|2

–
fHe,D(t2) e−iEHe,D t2

·
„

mHωH,D

π

« 3
4

exp
»
− 1

2
mHωH,D|~x2 − ~xD|2

–
f ∗H,D(t2) e+iEH,D t2

·
X

j

Mµ
SM

ν∗
D |Uej |2

Z
d4p

(2π)4 exp
ˆ
− ip0(t2 − t1) + i~p(~x2 − ~x1)

˜
· ūe,Sγµ(1− γ5)

i(/p + mj)

p2
0 − ~p2 −m2

j + iε
(1 + γ5)γνue,D
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Transition amplitude for homogeneous line broadening
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π
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4

exp
»
− 1

2
mHωH,S |~x1 − ~xS |2

–
fH,S(t1) e−iEH,S t1

·
„

mHeωHe,S

π
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4
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2
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–
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„

mHeωHe,D

π

« 3
4

exp
»
− 1

2
mHeωHe,D|~x2 − ~xD|2

–
fHe,D(t2) e−iEHe,D t2

·
„

mHωH,D

π

« 3
4

exp
»
− 1

2
mHωH,D|~x2 − ~xD|2

–
f ∗H,D(t2) e+iEH,D t2

·
X

j

Mµ
SM

ν∗
D |Uej |2

Z
d4p

(2π)4 exp
ˆ
− ip0(t2 − t1) + i~p(~x2 − ~x1)

˜
· ūe,Sγµ(1− γ5)
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p2
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Transition rate for homogeneous line broadening

Result:

Γ ∝ exp
[
−

E2
S,0 −m2

2

σ2
p

]
exp

[
− |∆m2|

2σ2
p

]
(γS + γD)/2π

(ES,0 − ED,0)2 + (γS+γD)2

4

·
{

1− 2s2c2
[
1− 1

2
(e−L/Lcoh

S + e−L/Lcoh
D )cos

(
π

L
Losc

)]}
. . . identical to the result for inhomogeneous line broadening.

This illustrates that ...
A continuous flux of identical wave packets cannot be distinguished from an
ensemble of plane waves with the same momentum distribution.
(Neutrino density matrices for the two ensembles are identical)

K. Kiers, S. Nussinov, N. Weiss, Phys. Rev. D53 (1996) 537, hep-ph/9506271
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Plane waves vs. wave packets

We know: Plane wave calculations yield the correct oscillation formula . . .
. . . even though they are plagued by inconsistencies

Plane waves are infinitely delocalized, but concept of
“baseline” requires localization
Relation L ∼ T (required in the derivation of the oscillation probability
unless Ei ∼ Ej ) cannot be justified.
Perfect knowledge of Ej and pj means we know mj
→ no oscillations B. Kayser Phys. Rev. D24 (1981) 110

. . .
So, why do plane wave approaches work so well?!?
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Reason 1: Statistical ensembles of neutrinos

A continuous flux of identical wave packets cannot be distinguished from an
ensemble of plane waves with the same momentum distribution.
(Neutrino density matrices for the two ensembles are identical)

K. Kiers, S. Nussinov, N. Weiss, Phys. Rev. D53 (1996) 537, hep-ph/9506271

For a time-independent flux of neutrinos:
Wave packet picture equivalent to plane wave picture
Production and detection can still be localized, i.e. density matrix ρ(x) is
probed at fixed x = L.
Density matrix is diagonal in E
→ only states with same energy (Ei = Ej) can interfere
→ no T -dependence, relation L ∼ T not required.
No perfect knowledge of Ej and pj for each individual neutrino
→ oscillations still possible
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Illustration
L. Stodolsky, hep-ph/9802387

If time-of-flight information is not available, only energy eigenstates interfere.
Consider neutrino density matrix

ρ ≡
∑

many neutrinos

|ψn〉〈ψn|

von Neumann equation:

ρ̇ = −i[H, ρ]

Stationary (time-independent) neutrino flux: ρ̇ = 0
→ ρ and H commute; ρ can be written as ensemble of energy eigenstates

ρ =

∫
dE c(E) |E〉〈E | (?)

If ρ̇ 6= 0, but time information is discarded (
∫

dt ρ), energy-off-diagonal
elements (containg factors ei(Ei−Ej )t ) will be averaged to zero.
→ same situation as for stationary flux, (?) holds.
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Reason 2: Factorizing out wave packet effects

Consider Gaussian wave packet:

ψα(~x , t) ∝
∑

j

U∗
αje

−iEj0t+i~pj0~x exp
[
(~x − ~vj t)2

4σ2
x

]

→ Plane wave, multiplied with shape factor

At a given spacetime point, phase difference depends only on average
energies Ej0 and momenta pj0.
→ Oscillation length cannot depend on wave packet shape and width.

(Only wave packet components located at the same spacetime point can interfere.)

The wave packet approach shows that the assumptions made in the plane
wave picture are justified and consistent.
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Entanglement in neutrino oscillations

Consider two-body decay π → µ+ νµ.

Question: Are νµ and µ kinematically entangled?
Should the final state wave function be written as∑

j

U∗
µj |µj(Pj ,X )〉 |νj(pj , x)〉 ?

YES!
Without observation, all
possible final states are
produced simultaneously.
Entanglement used
successfully in b physics

NO!
Energy-momentum uncertainty
implies that every p can come
with many different P (wave
packets!).
Only Feynman diagrams with
identical external legs can
interfere.

Cohen Glashow Ligeti; Akhmedov Smirnov; Kayser Kopp Robertson Vogel
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The entangled point of view

Describe particles as plane waves with precisely known 4-momenta:

π(pπ) → µ(Pj) + νj(pj)

where pi 6= pj , Pi 6= Pj due to E–p conservation.

Energy and momentum uncertainties in the production/detection
processes imply that there is a spectrum of pπ, pi , Pi .
Uncertainties allow interference between states with different pi , Pi .
The contribution of µ(Pj) to the phase of the entangled state is
the same for all Pj : Akhmedov Smirnov 1008.2077[

E(Pi)− E(Pj)
]
T −

[
Pi − Pj

]
L

=
[
E0 + δEi − E0 − δEj

]
T −

[
E0 + δEi

E0

P0
− E0 − δEj

E0

P0

]
L

=
[
δEi − δEj

](
T − L/v

)
' 0

→ the charged lepton does not oscillate.
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The wavepacket point of view

ν

Pi(q)

Pf (k)

Di(q
′)

Df (k′)

External particles (parent pion, nucleus in the detector, . . . ) are observed
→ their state at t → ±∞ is fixed by the observation
Each neutrino mass eigenstate may interact with different momentum
components of the external particles’ wave packets.
(in a sense, there is entanglement between the neutrino and components of the
wave packet. This is automatically taken care of by the E–p conserving
δ-functions at the Feynman vertices.)
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Neutrino flavor eigenstates

Flavor fields defined as να = Uαjνj .

The problem: Flavor fα does not commute with the Hamiltonian. (for Ei 6= Ej )

[
F ,H

]
∼

[ ∑
α=e,µ,τ

fα|να〉〈να|,
∑

k=1,2,3

Ek |νk 〉〈νk |
]

=
∑

α=e,µ,τ

fα

[ ∑
i,j=1,2,3

U∗
αiUαj |νi〉〈νj |,

∑
k=1,2,3

Ek |νk 〉〈νk |
]

=
∑

α=e,µ,τ

fα
∑

i,j=1,2,3

U∗
αiUαj

(
Ej |νi〉〈νj | − Ei |νj〉〈νi |

)

Therefore, flavor eigenstates are not meaningful tools for calculating transition
amplitudes.
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Answers

What happens to energy-momentum conservation in neutrino
oscillations?

I In the wave packet approach, average momenta need not be conserved. For
each momentum component of the wave packets, E–p conservation holds.

I No energy-momentum non-conservation beyond what is allowed by the
Heisenberg uncertainties.

I If coherent superposition of neutrino mass eigenstates is forbidden by E–p
conservation (hypothetical experiment with excellent E and p resolutions),
oscillations vanish (ensured by localization terms).

Under what conditions is coherence between different neutrino mass
eigenstates lost?

I For L � Lcoh, wave packets separate → loss of coherence
(equivalently: Poor energy resolution smears out oscillations)

I No coherence if experiment allows determination of neutrino mass
Is the standard oscillation formula universal, or are there situations where
it needs to be modified?

I No situation with observable deviations has been found.
I Mössbauer neutrinos oscillate in the standard way.
I Entanglement does not lead to new phenomena.
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Answers (contd.)
Why does the standard oscillation formula work so well, even though its
derivation is plagued by inconsistencies?

I Wave packet effects can be factorized out.
I Statistical ensemble of wave packets equivalent to statistical ensemble of

plane waves. No inconsistencies in this case.

Are the neutrino and its interaction partners in an entangled state? If so,
what are the phenomenological consequences of entanglement?

I Entanglement is a valid, but unnecessary concept.
I No phenomenological consequences of entanglement.

Are flavor eigenstates well-defined and useful objects in QFT?
I Flavor eigenstates can be defined, but are useless for matrix element

calculations because they do not commute with H.
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Thank you!
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