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A brief overview of lattice QCD

QCD: quark fields ψc,s,f (x) and gluon fields Aµ,i(x)

Aµ(x) =
∑

i Aµ,iλi, ψ̄(x)eıg
R y

x Aµ(x) dxµ
ψ(y)

Wilson 1974: discretize the theory on a space-time Euclidean lattice

and use as fundamental gauge variables the finite group elements

Uµ(x) = eıg
R x+µ̂a

x Aµ(x) dxµ
where a is the lattice spacing.



Quantum mechanical expectation values: 〈O〉 = Z−1×
∫ ∏

x,µ dUµ(x)
∏

x(dψ̄(x) dψ(x))O(ψ, ψ̄, U)e−Sg(U)−ψ̄D(U)ψ

Sg(U) discretizes
∫

d4x 1
4FµνF µν

ψ̄D(U)ψ discretizes
∫

d4x ψ̄(x)[
∑

µ γµ(∂µ + ıgAµ) + m]ψ(x)

Integrate over ψ̄, ψ explicitly: 〈O〉 = Z−1×
∫ ∏

x,µ dUµ(x)〈O〉Ue−Sg(U)Det[D(U)]

Approximate the integral over U by stochastic simulation.



From 〈O〉 derive experimentally measurable quantities, e.g.

consider

O = ψ̄(0)Γψ(0)
∑

#x ψ̄(%x, t)Γψ(%x, t)

ψψΓψ ψΓψ ψψΓ Γψ

〈O〉U 〈O〉

〈O〉 ≡ G(t) =
∑

n |〈0|ψ̄Γψ|n, %p = 0〉|2e−mnt



Example with Γ = γ5 → pseudoscalar spectrum:
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(from a work with R. Babich, F. Berruto, N. Garron, Ch. Hoelbling,

J. Howard, L. Lellouch, N. Shoresh)



Formidable calculations: a lattice of size 503 × 100 gives origin to a

quark field with 503 × 100× 12 = 150M degrees of freedom and

to a discretized Dirac operator given by a 150M× 150M (sparse)

matrix.

DetD(U) cannot be stochastically sampled (not directly), rather

reformulate:
∫ ∏

dU〈O〉UE−Sg(U)Det[D(U)] =∫ ∏
dU

∏
dπU

∏
dφe−SG(U)−π2

U−φ∗D(U)−1φ

the whole set U, πU , φ is then sampled by a stochastic simulation

which uses a Hamiltonian evolution of U, πU through group space

as an intermediate step (hybrid Monte Carlo calculation); this

requires multiple solutions of D(U)χ = φ.



Additional complication: a naive discretization of the Dirac equation
∑

µ γµ(∂µ + ıgAµ) →
∑

µ
Uµ(x)ψ(x+µ̂a)−U†

µ(x−µ̂a)ψ(x−µ̂a)
2a

introduces 15 extra fermion modes.

Solve by: - removing the extra modes with counterterms (Wilson

fermions, breaks chiral invariance)

- splitting the fermion Dirac components through the lattice

(staggered fermions, reduces the number of fermionic modes from

16 to 4, keeps one non-singlet U(1) chiral symmetry)

- introducing a fifth dimension or equivalently trading the sparse

Wilson Dirac matrix DW (U) for a much more challenging operator

DO(U) = I + DW (U)[DW (U)†DW (U)]−1/2 (domain wall or

overlap fermions, no extra modes and chiral symmetry is preserved

at the cost of much more demanding calculations.)



Forefront calculations in the U.S.

http://www.usqcd.org/



With an effort that started in 1999 the U.S. lattice community, led by

Bob Sugar and the USQCD Executive Committee (R. Brower,

M. Creutz, N. Christ, P. Mackenzie, J. Negele, C. R., D. Richards,

S. Sharpe), has organized itself in a national USQCD collaboration.

With DOE SciDAC support the collaboration has produced a suite of

software tools which help writing code for efficient lattice QCD

simulations, with DOE HEP and NP support it has deployed

dedicated computers for LQCD calculations, and it has been able to

secure large allocations of supercomputer time at the DOE facilities

managed by DOE ASCR.

The dedicated resources are allocated by the collaboration’s

Scientific Program Committee and are used for large scale projects,

which generate sets of gauge field configurations available to the

whole collaboration, as well as for medium and small scale projects.



Examples of available or planned configurations by the MILC

collaboration (with staggered fermions):

a(fm) ml/ms size L(fm)

0.09 0.10 403 × 96 3.6

0.09 0.05 563 × 96 5.0

0.06 0.05 843 × 144 5.0

0.06 1/27 1003 × 144 6.0

0.045 0.05 1123 × 192 5.0

0.045 1/27 1243 × 192 5.6



In 2007 the USQCD Executive Committee, with major contributions

also from T. Applequist, C. Bernard, S. Catterall, C. DeTar,

G. Fleming, J. Hetrick, F. Karsch, R. Mawhinney, C. Morningstar,

R. Narayanan, H. Neuberger, K. Orginos, M. Savage, M. Schmaltz,

M. Unsal and P. Vranas, has produced four White papers illustrating

near term goals for lattice QCD calculations (see

http://www.usqcd.org/collaboration.html#2007Whitepapers).

The following areas have been identified:

- Fundamental constants and hadronic matrix elements for

electroweak interactions.

- QCD thermodynamics.

- Hadron spectrum, structure and interactions.

- Strong dynamics for physics beyond the standard model.



Illustrative results (data from the Fermilab Lattice, HPQCD and

MILC collaborations, compilation due to P. Lepage):
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Determinations of αs (αL obtained by the HPQCD collaboration):
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Strange quark contribution to the nucleon form factors

Research in progress, in collaboration with R. Babich, R. Brower,

M. Clark, G. Fleming, and J. Osborn

sΓs

NN



Partial results based on 386 gauge field configurations, with two

flavors of dynamical quarks (Wilson discretization), on anisotropic

243 × 64 lattices (as = 0.108(7)fm, at = 0.036(2)fm),

generated by the LHPC collaboration.

We must calculate 〈N |ψ̄sΓψs|N〉 =

limt→∞

P
!x,!y eı(!p·!x+!q·!y)〈ψψψ(#x,t) ψ̄sΓψs(#y,0) ψ̄ψ̄ψ̄(#0,−t)〉

P
!x〈ψψψ(#x,t) ψ̄ψ̄ψ̄(#0,−t)〉 − 〈ψ̄sΓψs〉



For each gauge field configuration we calculate separately the

propagators Pcs,c′s′(U ; x, y) which solve

[D(U)P (U)]cs(x) = δ(x, y)δc,c′δs,s′

for the light and strange quarks. We combine the light quark

propagators into nucleon propagators (with implicit sums over color

and spin indices)
∑

#x eı#p·#xεc1,c2,c3εc′1,c′2,c′3
Ψ∗

s1,s2,s3
Ψs′1,s′2,s′3

Pc1s1,c′1s′1
(U ; %x, t,%0,−t)

Pc2s2,c′2s′2
(U ; %x, t,%0,−t)Pc3s3,c′3s′3

(U ; %x, t,%0,−t)

and the strange quark propagators into∑
#y eı#q·#yTr[P (U ; %y, 0, %y, 0)Γ]

and average the product of the two over the gauge field

configurations.



Note that this would require the calculation of 243 = 13, 824

strange quark propagators per configuration (prohibitive). Various

techniques can be used to reduce the computational cost. We

calculate the strange quark propagators with 64 sources staggered

through the lattice, separated by 16at in time and 6
√

3as in space.

We have verified that the non-diagonal contributions largely cancel

because of the fall off of the propagators and gauge averaging. The

number of propagators which we calculate per configuration is 864.

Other computational improvements are under study.

(Different computational approaches are followed by other groups,

cfr. S.J. Dong, K.-F. Liu, and A. G. Williams, 1998, R. Lewis,

W. Wilcox and R. M. Woloshyn, 2003.)



Current results for the zero-momentum scalar density∑
#x ψ̄sψs(%x, 0), showing also the effect of decorrelating scalar

density and nucleon propagators.
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The contributions to ψ̄sψs from spatial points far away from the

nucleon source add noise but very little signal. The error can be

reduced by windowing (although this introduces some momentum

contamination).
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Current results for the zero-momentum axial-vector current∑
#x ψ̄sγ5γiψs(%x, 0), showing also the effect of windowing.
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Conclusions

- Lattice calculations provide very accurate results for a variety of

QCD observables which cannot be otherwise evaluated.

- The calculation of many observables presents formidable

computational challenges.

- With increasing computational power and progress in algorithms

the accuracy and scope of lattice calculations continue to increase.


