Low-Scale Gaugino Mediation and its LHC Signatures

Witold Skiba with A. De Simone, J. Fan, M. Schmaltz

arxiv: 0808.2052 [hep-ph]

Outline

- "Typical" MSSM spectra
- Gaugino mediation at high and low scales
- A model
- LHC signatures

In most SUSY breaking scenarios, the squarks are as heavy or heavier than the gluinos and the sleptons as heavy or heavier than the charginos/neutralinos.

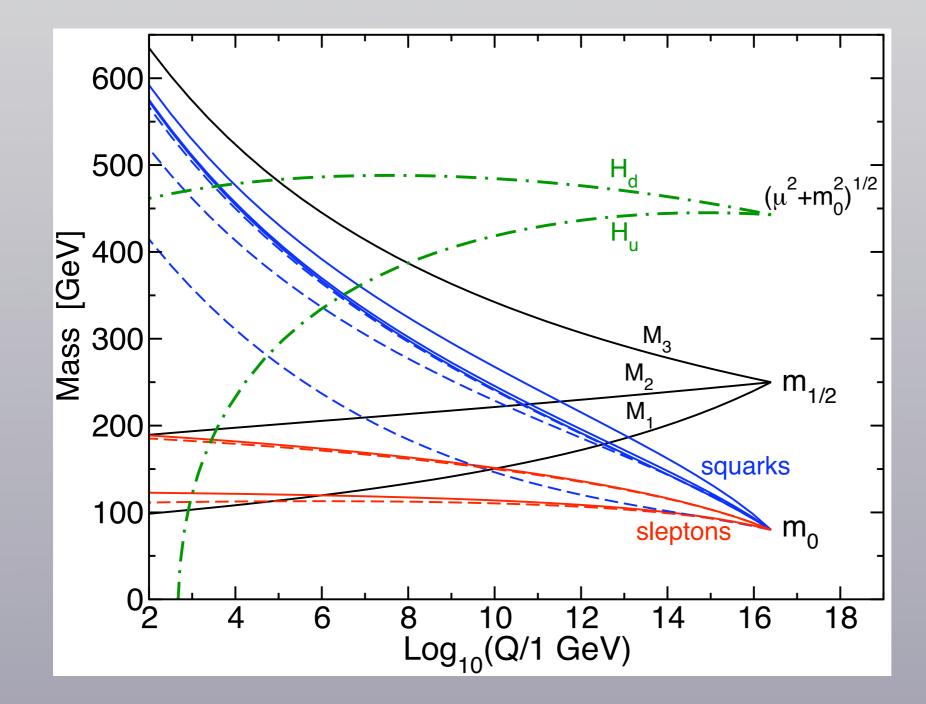

In gauge mediation,
$${
m m}_{ ilde{g}_i} \propto rac{lpha_i}{4\pi}rac{F}{M} ~~{
m m}_{ ilde{f}_i}^2 \propto \left(rac{lpha_i}{4\pi}rac{F}{M}
ight)^2$$

In any high-scale mediation the same thing happens due to the RG running

$$\frac{d}{d(\log\mu)}m_{\tilde{f}_i}^2 \propto -\frac{\alpha_i}{4\pi}m_{\tilde{g}_i}^2$$

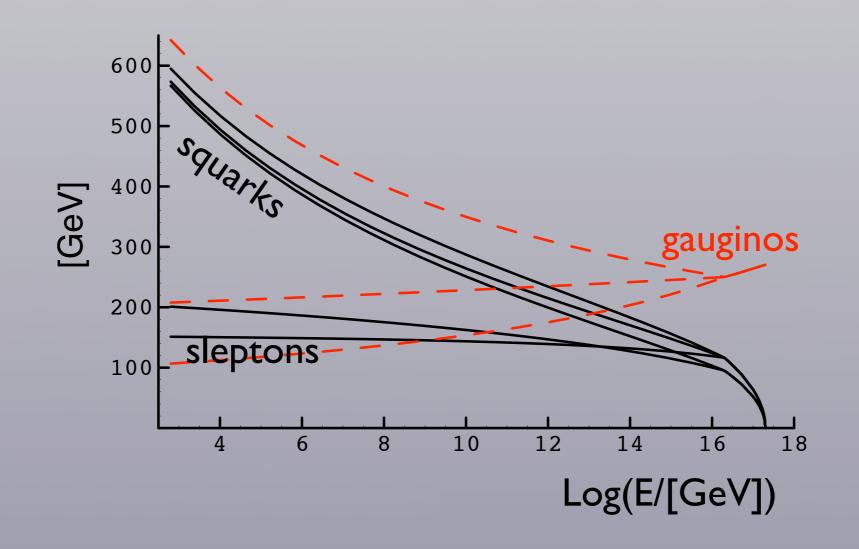
Gaugino mediation

At a 'high' scale f, matter fields and Higgs have no soft masses



Scalar masses are generated radiatively:

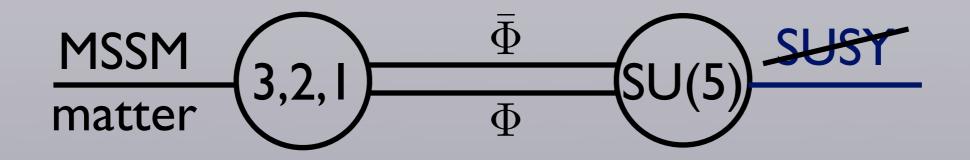
- Threshold contributions at the high scale f
- Running from f to EW scale
- Threshold contributions at the EW scale


Kaplan, Kribs, Schmaltz, PRD62 (2000) 035010; Chacko, Luty, Nelson, Ponton, JHEP0001 (2000) 003

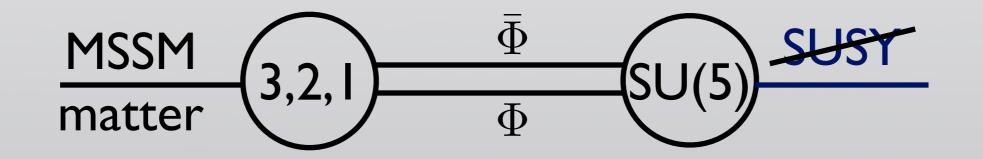
RG evolution of soft masses in the MSSM

In gaugino mediation the high scale was chosen at, or above, the GUT scale to avoid charged LSP (stau)

Consequently, threshold corrections were neglected as the log running dominates

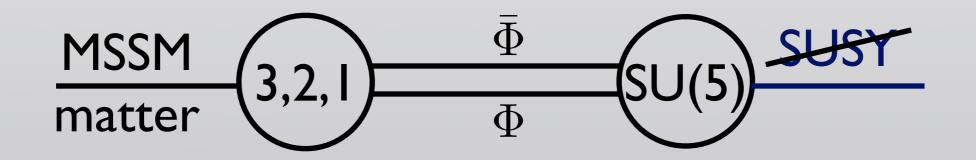

When the gravitino is light the charged LSP disappears. Log(f/EW) can be small as long as scalar masses are positive.

- Threshold contributions at the high scale f (model dependent)
- Running from f to EW scale (model independent)
- Threshold contributions at the EW scale (model independent)

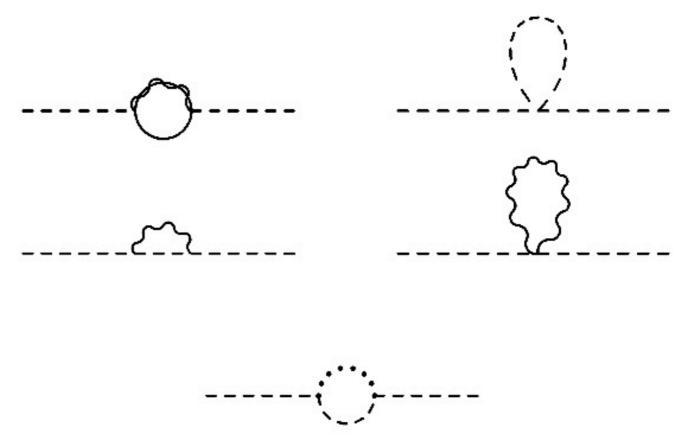

 $m_{\tilde{f}_i}^2 \propto \frac{\alpha_i}{4\pi} m_{\tilde{g}_i}^2$

Our model

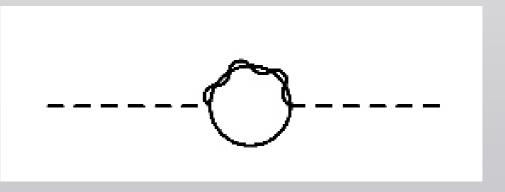
- product gauge group [SU(3)xSU(2)xU(1)]xSU(5)
- SUSY breaking communicates only to the SU(5) sector
- MSSM matter transforms under SU(3)xSU(2)xU(1)
- at a few TEV gauge group broken to SU(3)xSU(2)xU(1)



"Deconstructed gaugino mediation," Cheng, Kaplan, Schmaltz, Skiba, PLB 515 (2001) 395 Csaki, Erlich, Grojean, Kribs, PRD 65 (2002) 015003


SU(5) gauginos obtain mass from direct coupling to SUSY breaking, for example gauge mediation with the messengers charged under SU(5) only

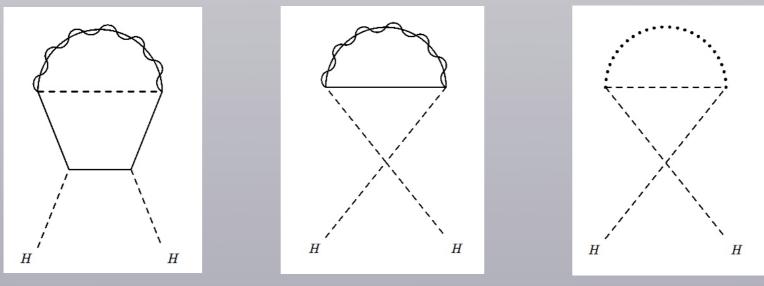
After the product gauge groups is broken to the SM, $\langle \Phi \rangle = \langle \bar{\Phi} \rangle = f$, the MSSM gauginos acquire soft masses.



SUSY-breaking terms forthe gauginos andthe link fields

MSSM matter fields obtain soft masses at one loop

In practice, this calculation is a lot more complicated than what meets the eye



There are three adjoint fermions that run in the loop: two gauginos from the two gauge group and one fermion from the link field that has a Dirac mass with one of the gauginos.

$$\Omega = \begin{pmatrix} 0 & 0 & g_A \sqrt{2}f \\ 0 & m_B & -g_B \sqrt{2}f \\ g_A \sqrt{2}f & -g_B \sqrt{2}f & 0 \end{pmatrix}$$

Breaking of SU(2)xU(1)?

- Higgs doublets get positive mass from the one loop diagrams, just like the matter fields do
- In high scale models, up-type Higgs gets a negative mass from the top-Yukawa contribution to the RG equations
- Radiative breaking happens in our model as well:

Why would 2 loops dominate over one loop? - large Yukawa, color factors, SU(3) coupling

Addition contribution to the Higgs mass

There are two gauge groups, each with its own D terms. In the absence of SUSY breaking the D-term for the diagonal (unbroken) group is governed by its coupling constant.

This is not the case with when SUSY is broken:

$$V_D = \frac{g_2^2(1+\Delta_2)}{8} \left| H_u^{\dagger} \sigma^a H_u + H_d^{\dagger} \sigma^a H_d \right|^2 + \frac{\frac{3}{5}g_1^2(1+\Delta_1)}{8} \left| H_u^{\dagger} H_u - H_d^{\dagger} H_d \right|^2$$

where
$$\Delta_i = \frac{s_i^2}{c_i^2} \frac{2m_{\Phi}^2}{M_i^2 + 2m_{\Phi}^2}$$

			mass
	inputs:	f	5000
		m_B	5000
Free parameters:		$m_{ ilde{\Phi}}$	5000
		$\tan \beta$	8
		g_{A_3}/g_B	0.8
f - vev of the link fields	heavy gauge bosons:	M_3	15400
		M_2	12970
g_B - SU(5) gauge coupling	gluino:	M_1	12500 1904
		m_3	$\frac{1904}{232}$
m_B - soft mass for the SU(5) gaugino	neutrannos.	$m_{\chi^0_1}$	$\frac{252}{253}$
m_{Φ} - soft mass of the link field		$egin{array}{c} m_{\chi^0_2} \ m_{-0} \end{array}$	383
m_{Φ} - solutinass of the link held		$egin{array}{c} m_{\chi^0_3}\ m_{\chi^0_4} \end{array}$	706
μ, B_{μ} - traded for Higgs vev and $\tan \beta$	charginos:	$m_{\chi_1^{\pm}}$	243
		$m_{\chi_2^{\pm}}$	706
	Higgs:	m_{h^0}	116
		m_{H^0}	324
		m_A	324
		$m_{H^{\pm}}$	334
		μ	249
	alantana	$\sqrt{B_{\mu}}$	114
	sleptons:	$m_{ ilde{e}_R}$	$\frac{102}{218}$
		$m_{ ilde{e}_L}$ m ~	$\frac{213}{203}$
	squarks:	$\frac{m_{\tilde{\nu}_L}}{m_{\tilde{u}_L}}$	934
		$m_{\tilde{u}_R}$	914
		$m_{ ilde{d}_L}$	938
		$m_{ ilde{d}_R}^{a_L}$	913

Constraints: precision electroweak, cosmology

Precision electroweak observables are affected by heavy gauge bosons and an SU(2) triplet from the link fields. All of these are much too heavy to be seriously constrained.

One needs to avoid overclosing of the universe by the LSP, and spoiling the successful predictions of the BBN by NLSP decays.

BBN: $\tau_{\text{NLSP}} \lesssim 5 \times 10^3$ that translates to $m_{3/2} \lesssim 1 \text{ GeV}$ Relic density: $m_{3/2} \lesssim 1 \text{ keV}$, but larger values possible if gravitino abundance is diluted by late entropy production. Most important features of the spectrum

- LSP the gravitino (keV- I GeV)
- NLSP right-handed sleptons (~100 GeV, collider stable) the RH stau is the lightest, but the decays of the smuon, or selectron to stau probably not visible

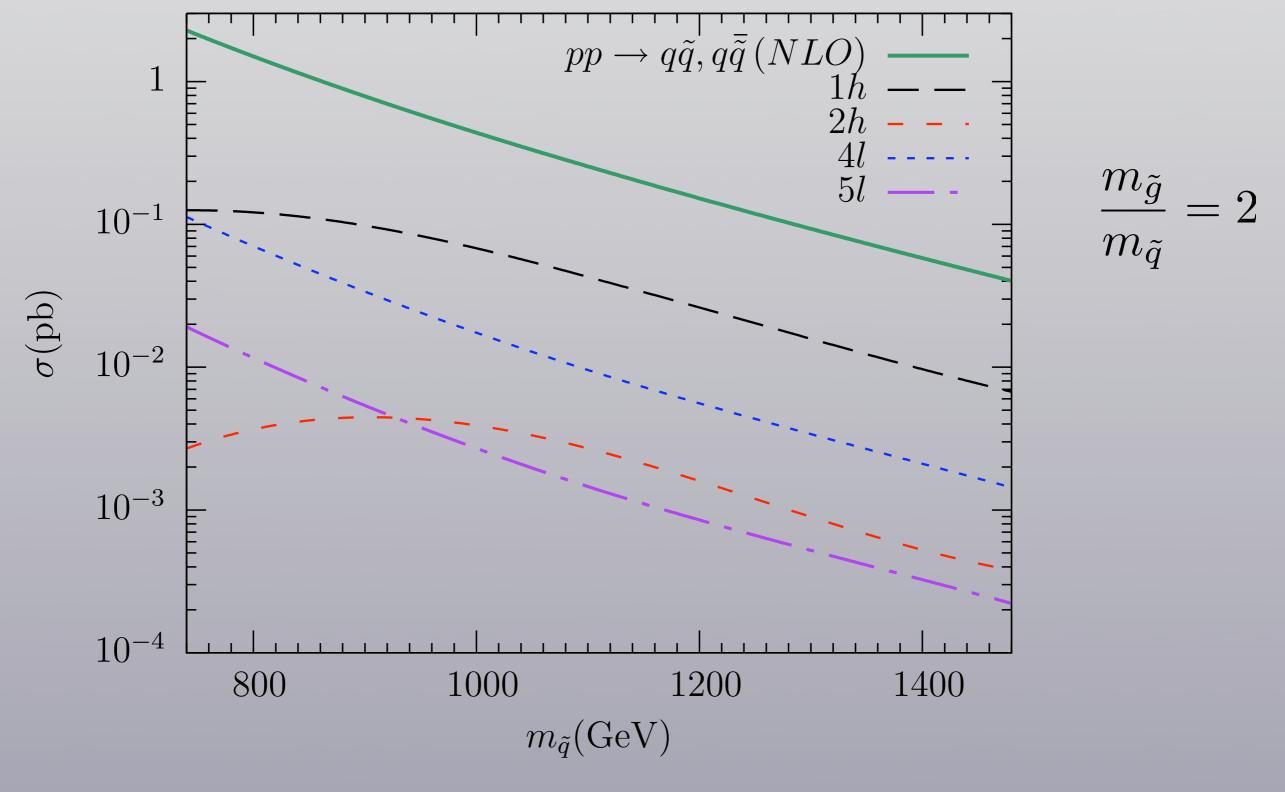
Right- and left-handed sleptons lighter than $\chi^0_{1,2,3,4}$ $\chi^{\pm}_{1,2}$

Squarks lighter than the gluinos

Examples of squark decays

$\tilde{u}_L \xrightarrow{55\%} d_L \tilde{W}^+ \xrightarrow{20\%} d_L l_L^+ \tilde{\nu} \xrightarrow{66\%} d_L l_L^+ \nu l_R^\pm \tilde{l}_R^\mp$

 $\tilde{u}_L \xrightarrow{28\%} u_L \ \tilde{W}^0 \xrightarrow{20\%} u_L \ l_L^{\pm} \ \tilde{l}_L^{\mp} \xrightarrow{55\%} u_L \ l_L^{\pm} \ l_L^{\mp} \ l_R^{\pm} \ \tilde{l}_R^{\mp}$


Higgs production in slepton decays

Left-handed sleptons decay mostly through the off-shell Bino with 3-body final state. However, often the 2 body decay

 $\tilde{l}_L \longrightarrow h \ \tilde{l}_R$

is kinematically allowed. This proceeds through the left-right mixing, so it is most important for the staus, but even for the smuons it can be significant.

Squark production and lepton and Higgs "multiplicity"

Stable charged particles (NLSP) in every event!

Open questions

- Solution to the μ/B_{μ} problem?
- A dynamical mechanism for generating the link field vevs perhaps tied to SUSY breaking
- Gauge coupling unification?
- More detailed phenomenology. Comparison with other models such as gauge mediation with a large number of messengers, scenarios with Dirac gaugino masses.

Conclusion

 There are still well-motivated yet unexplored regions of the MSSM parameter space with distinct and interesting signatures.

the end \blacksquare