Probe The Unknown Indirectly -- From Rutherford experiment to beyond

Cornell University

Xin Shi

March 13, 2009

Laboratory for Elementary Particle Physics

- In everyday life, we learn about things by holding them and looking at them with our eyes
- What if they are too small?
- We need *indirect* measurements
- Some tools are familiar such as microscopes, others are not.
- All of them let you draw conclusions about the object that you are measuring

Plum pudding model

 In 1897, J J Thomson discovered the negatively charged particle called electron

- Constituent of the (neutral) atom
- Theory: blob of positive charge where electrons are embedded

• But: how do you test it?

– Can't use a ruler: too small -> Indirect measurement

Test Thomson's model

- Ernest Rutherford
 - Hans Geiger
 - Ernest Marsden

- Test plum pudding model
- Find the nature of the atom

Rutherford experiment - Setup

- Expectation: most of them will go right through the foil
- May just deflected a little bit

- shoot "bullets" (positivly charged alpha particle) at target
- see how bullets deflect

Experiment Results

- Most of the data was just as expected: alpha "bullets" went straight through
- Some, however, were deflected right back!

It was almost as incredible as if you fired a 15-inch shell at a piece of tissue paper and it came back and hit you.

Beyond Rutherford ...

The Standard Model

A theory of :

- elementary particles
- fundamental interactions

- What is the world made of ?
- What holds it together ?

Still puzzles left ...

- Why are there three generations of particles?
- Does the Higgs boson really exist?
- High Precision Frontier
- High Energy Frontier

A Precision Frontier Experiment

Cornell Electron Storage Ring (CESR)

The modern "Rutherford experiment" - CLEO

CESR and **CLEO**

High Energy Frontier - LHC

The Large Hadron Collider: - Cross the boder of France and Switzerland - Circumference: 27 km (17 miles) - The internal pressure: 10^-13 atm

ARGE HADRON COLLIDER

our detectors around the 27-km-long accelerator will hunt for new particles, including the liggs boson or "God particle"

Below 100 meters ...

The Four Experiments on LHC Elementary-Particle Physics

Cornell University

Laboratory for

ATLAS - A Toroidal LHC Apparatus

CMS - Compact Muon Solenoid

ALICE - A Large Ion Collider Experiment

Cornell University

Laboratory for

The Compact Muon Solenoid (CMS) Elementary-Particle Physics

Tracks and Showers on CMS

A Higgs Particle Simulation in CMS

- Rutherford experiment tell us another way of observing our world – indirect measurement
- The same method is used in the modern particle physics experiment both for higher precision and higher energy frontier
- It's an exciting time for particle physics and let's share this with our students!

- Prof. Jim Alexander
- Prof. Anders Ryd
- Prof. Peter Wittich
- Souvik Das
- Lora Hine
- CLEO and CMS collaborators