Search for $B_s \rightarrow \mu^+ \mu^-$ Decays

Walter Hopkins

Cornell University

Lattice Meets Experiment 2010

Motivation

- $B_s \rightarrow \mu^+ \mu^-$ can only occur through higher order FCNC diagrams in Standard Model (SM)
- This decay is not only suppressed by the GIM Mechanism but also by helicity
- SM predicts very low rate with little SM background ($\mathcal{BR}(B_s \rightarrow \mu^+\mu^-) = (3.86 \pm 0.57) \times 10^{-9}$, M. Artuso et al, Eur. Phys. J. C57)
- Super symmetry (SUSY) models predict enhancement of this decay by $\tan\!\beta^6$
- Clean experimental signature $\rightarrow \tau$'s would have stronger coupling but experimentally difficult

- Reporting on 3.7 fb⁻¹ CDF result, first shown in Fall 2009
- Secondary vertex ID with excellent Silicon tracker: $\sigma_{p_t}/p_t^2 \sim 0.15\%$ and $\sigma_{vtx} = 30\mu m$
- Muon System

- Large background at hadron collider
 - Must reduce large background around dimuon mass of $m_{B_s} = 5.37$ GeV
 - Analysis requirements: Design an effective discriminant, determine the efficiency for signal, and estimating the background level

Data Sample

Central-Central (CMU) and Central-Forward (CMX) Di-muon Trigger

- Central: p_T >2.0 GeV and $|\eta|$ <0.6 Forward: p_T >2.2 GeV and 0.6< $|\eta|$ <1.0
- *p_T* cuts restrict us to well understood trigger regions

Basic Quality Cuts

- Tracker tracks with hits in 3 silicon layers
- Likelihood and dE/dx based muon Id
- Vertex Quality
- Loose preselection and analysis cuts
 - $p_T(\mu^+\mu-) >$ 4.0 GeV; 3D Decay length significance > 2
 - Loose Isolation and opening angle (pointing) cuts

Still background dominated after a reduction of events of 4 orders of magnitude

Analysis Method

- Measure rate of $B_s \rightarrow \mu^+ \mu^$ relative to $B^+ \rightarrow J/\Psi K^+$, $J/\Psi \rightarrow \mu^+ \mu^-$
- Apply same selection to find $B^+ \rightarrow J/\Psi K^+$
- Systematic uncertainties will cancel in ratio ⇒ e.g. dimuon trigger efficiency is the same for both modes
- D0 total B+ yield: 5728 \pm 85 (with 5 fb⁻¹)

$$\mathcal{BR}(B_{s} \to \mu^{+}\mu^{-}) = \underbrace{\begin{pmatrix} N_{B_{s}} & \frac{\epsilon_{B^{+}}^{trig}}{N_{B^{+}} & \epsilon_{B_{s}}^{tree}} \\ N_{B^{+}} & \frac{\epsilon_{B^{+}}^{trig}}{\epsilon_{B_{s}}^{tree}} \\ \hline \end{pmatrix} \underbrace{\frac{\alpha_{B^{+}}}{\alpha_{B_{s}}} \frac{1}{\epsilon_{B_{s}}^{NN}} \int_{f_{s}}^{f_{\mu}} \cdot \mathcal{BR}(B^{+} \to J/\Psi K^{+} \to \mu^{+}\mu^{-}K^{+})}_{From Data, From MC, From PDG}$$

- Estimate acceptances and efficiencies
- Identify variables that discriminate signal and background
- Make multivariate discriminant, for background rejection
 - Optimized with Pythia signal MC and data mass sideband
 - Validate in B⁺ sample
- Estimate Background
 - Combinatoric background
 - Peaking background: $B \rightarrow hh$

Discriminating Variables (CDF)

- Invariant mass of muons with 2.5σ window, $\sigma=24$ MeV
- 3 Secondary vertex related variables
 - $\lambda = c\tau$, proper decay time
 - $\frac{\lambda}{\sigma_{\lambda}}$ • $\Delta \alpha = |\phi_B - \phi_{vtx}|$
- Isolation: $\frac{p_T(B)}{\sum p_T(trks) + p_T(B)}$
- Transverse momentum of B and lower momentum muon

Discriminating Variables: Neural Network (CDF)

- Combined all variables except mass in neural network
- Unbiased optimization based on MC signal and sideband data
- Extensively tested for mass bias

Control Regions (CDF)

- Test background estimates in blinded signal region with independent data samples
- Compare predicted vs. observer background events for multiple NN events

Regions

- OS-: Opposite sign muons with negative proper decay length
- SS+ and SS-: Same sign muons, positive and negative decay length
- FM: OS- & OS+ with one μ failing muon id and loose vertex cuts

		CMU-CMU		CMU-CMX			
sample	NN cut	pred	obsv	$\operatorname{prob}(\%)$	pred	obsv	$\operatorname{prob}(\%)$
	$0.80 < \nu_{NN} < 0.95$	$275 \pm (9)$	287	26	$310 \pm (10)$	304	39
OS-	$0.95 < \nu_{NN} < 0.995$	$122 \pm (6)$	121	46	$124 \pm (6)$	148	3.2
	$0.995 < \nu_{NN} < 1.0$	$44 \pm (4)$	41	36	$31 \pm (3)$	50	0.4
SS+	$0.80 < \nu_{NN} < 0.95$	$2.7 \pm (0.9)$	1	29	$2.7 \pm (0.9)$	0	10
	$0.95 < \nu_{NN} < 0.995$	$1.2 \pm (0.6)$	0	34	$1.2 \pm (0.6)$	1	66
	$0.995 < \nu_{NN} < 1.0$	$0.6 \pm (0.4)$	0	55	$0.0 \pm (0.0)$	0	-
SS-	$0.80 < \nu_{NN} < 0.95$	$8.7 \pm (1.6)$	9	49	$5.7 \pm (1.6)$	2	11
	$0.95 < \nu_{NN} < 0.995$	$3.0 \pm (1.0)$	4	36	$3.6 \pm (1.0)$	2	34
	$0.995 < \nu_{NN} < 1.0$	$0.9 \pm (0.5)$	0	43	$0.3 \pm (0.3)$	0	70
FM+	$0.80 < \nu_{NN} < 0.95$	$169 \pm (7)$	169	50	$73 \pm (5)$	64	19
	$0.95 < \nu_{NN} < 0.995$	$55 \pm (4)$	43	9	$19 \pm (2)$	18	49
	$0.995 < \nu_{NN} < 1.0$	$20 \pm (2)$	20	48	$3.6 \pm (1.0)$	3	53

Expected Sensitivities (CDF)

- Single event sensitivity is at SM level (= 3.86×10^{-9})
- Largest uncertainty from $\frac{f_u}{f_s}$

	CMU-CMU		CMU-CMX		
$(\alpha_{B^+}/\alpha_{B_s})$	0.300 ± 0.018	$(\pm 6\%)$	0.196 ± 0.0014	$(\pm 7\%)$	
$(\epsilon_{B^+}^{trig}/\epsilon_{B_s}^{trig})$	0.99935 ± 0.00012	(-)	0.97974 ± 0.00016	(-)	
$(\epsilon_{B^+}^{reco}/\epsilon_{B_s}^{reco})$	0.82 ± 0.03	$(\pm 4\%)$	0.83 ± 0.03	$(\pm 4\%)$	
$\epsilon_{B_s}^{NN}(NN > 0.80)$	0.776 ± 0.047	$(\pm 6\%)$	0.789 ± 0.047	$(\pm 6\%)$	
N_{B^+}	14300 ± 170	$(\pm 1\%)$	5460 ± 110	$(\pm 2\%)$	
f_u/f_s	3.86 ± 0.59	$(\pm 15\%)$	3.86 ± 0.59	$(\pm 15\%)$	
$BR(B^+ \to J/\psi K^+ \to \mu^+ \mu^- K^+)$	$(5.94 \pm 0.21) \times 10^{-5}$	$(\pm 4\%)$	$(5.94 \pm 0.21) imes 10^{-5}$	$(\pm 4\%)$	
SES (All bins)	$5.1 imes 10^{-9}$	$(\pm 18\%)$	$8.5 imes10^{-9}$	$(\pm 19\%)$	
SES (Combined)	$3.2 imes 10^{-9} \ (\pm 18\%)$				

Neural Network

- 3 NN bins, majority of sensitivity comes from highest bin
- Treated separately \rightarrow Different Signal/Background
- Lower NN bins added \rightarrow 50% increase in efficiency and improved sensitivity
- Expected Signal: NN>0.8 \rightarrow 1.2 events

Background

- Combinatoric Background
 - Estimated with linear fit to sideband
 - Use p0 and exp fit in highest NN bin for syst. error estimation
- B→hh
 - Peaks in signal region
 - Use $B_{s(d)} \rightarrow hh$ MC to estimate acceptance and convolute with muon fake rate from data using D* tagged to $D \rightarrow K\pi$
 - Order of magnitude larger for B_d vs. B_s
 - For NN>0.995 in B_d mass window 0.81 events

Dimuon Mass vs NN

95% CL Limits on $\mathcal{B}(B_s \rightarrow \mu\mu)$

- Systematic uncertainties included
- CDF has worlds best limit at 4.3 \times 10 $^{-8}$ @ 95% CL with 3.7 fb $^{-1}$
- D0 expected sensitivity with 5 fb⁻¹: 5.3×10^{-8} @ 95% CL
- Last published D0 limit with 2 fb⁻¹: 9.3×10^{-8} @ 95% CL

	$\mathcal{B}(B_s ightarrow \mu^+ \mu^-)$)	$\mathcal{B}(B_d \to \mu^+ \mu^-)$	
	90%	95%	90%	95%
Expected \mathcal{B}	$2.7 imes10^{-8}$	$3.3 imes 10^{-8}$	$7.2 imes10^{-9}$	$9.1 imes 10^{-9}$
Observed \mathcal{B}	$3.6 imes 10^{-8}$	$4.3 imes 10^{-8}$	$6.0 imes10^{-9}$	7.6×10^{-9}
Walter Honkins (Cornell University)		earch for $B_{-} \rightarrow \mu^{+}\mu^{-}$ De	cavs Lattice Meet	s Experiment 2010 14

Future: CDF

CDF working to update and improve analysis for later this year

- More data, up to 6.7 fb^{-1}
- Apply improved dE/dx calibration
- Increase acceptance by introducing more detector regions, now better understood

Future: LHCb

- B Focused forward experiment \rightarrow many boosted B's
- Will reach SM limits quickly with less luminosity
- Similar discriminating variables

Plot shows for $E_{cm}=14$ TeV

CDF Preliminary Results with 3.7 fb⁻¹

 $\mathcal{BR}(B_s \to \mu^+ \mu^-) = 4.3 \times 10^{-8}$ at 95% CL $\mathcal{BR}(B_d \to \mu^+ \mu^-) = 7.6 \times 10^{-9}$ at 95% CL

- Reached sensitivity at the 3.2×10^{-9} level
- Set the world's best limits for both *B_s* and *B_d* in these modes
- Probing new parameter space across a variety of New Physics models
- D0 updating their analysis with 5 fb⁻¹
- LHCb projects Tevatron limit with 0.15 fb⁻¹ at $E_{cm} = 14$ TeV

