Search for $B_s \rightarrow \mu^+ \mu^-$ Decays

Walter Hopkins

Cornell University

Lattice Meets Experiment 2010
Motivation

- $B_s \to \mu^+\mu^-$ can only occur through higher order FCNC diagrams in Standard Model (SM)
- This decay is not only suppressed by the GIM Mechanism but also by helicity
- SM predicts very low rate with little SM background ($B R(B_s \to \mu^+\mu^-) = (3.86 \pm 0.57) \times 10^{-9}$, M. Artuso et al, Eur. Phys. J. C57)
- Super symmetry (SUSY) models predict enhancement of this decay by $\tan\beta^6$
- Clean experimental signature $\to \tau$‘s would have stronger coupling but experimentally difficult
Detector

- Reporting on 3.7 fb^{-1} CDF result, first shown in Fall 2009
- Secondary vertex ID with excellent Silicon tracker: $\sigma_{p_t/p_t^2} \sim 0.15\%$ and $\sigma_{vtx} = 30 \mu m$
- Muon System
Experimental Challenges

- Large background at hadron collider
 - Must reduce large background around dimuon mass of $m_{B_s} = 5.37$ GeV
 - Analysis requirements: Design an effective discriminant, determine the efficiency for signal, and estimating the background level
Central-Central (CMU) and Central-Forward (CMX) Di-muon Trigger

- **Central**: $p_T > 2.0$ GeV and $|\eta| < 0.6$ – **Forward**: $p_T > 2.2$ GeV and $0.6 < |\eta| < 1.0$
- p_T cuts restrict us to well understood trigger regions

Basic Quality Cuts

- Tracker tracks with hits in 3 silicon layers
- Likelihood and dE/dx based muon Id
- Vertex Quality
- Loose preselection and analysis cuts
 - $p_T(\mu^+\mu^-) > 4.0$ GeV; 3D Decay length significance > 2
 - Loose Isolation and opening angle (pointing) cuts

Still background dominated after a reduction of events of 4 orders of magnitude
Analysis Method

- Measure rate of $B_s \rightarrow \mu^+ \mu^-$ relative to $B^+ \rightarrow J/\psi K^+$, $J/\psi \rightarrow \mu^+ \mu^-$
- Apply same selection to find $B^+ \rightarrow J/\psi K^+$
- Systematic uncertainties will cancel in ratio \Rightarrow e.g. dimuon trigger efficiency is the same for both modes
- D0 total B^+ yield: 5728 ± 85 (with 5 fb^{-1})

$$BR(B_s \rightarrow \mu^+ \mu^-) = \frac{N_{B_s} \epsilon_{B_s}^{\text{trig}} \epsilon_{B_s}^{\text{reco}}}{N_{B^+} \epsilon_{B^+}^{\text{trig}} \epsilon_{B^+}^{\text{reco}}} \frac{\alpha_{B^+}}{\alpha_{B_s}} \frac{1}{\epsilon_{NN}} \frac{f_\mu}{f_s} \cdot BR(B^+ \rightarrow J/\psi K^+ \rightarrow \mu^+ \mu^- K^+)$$

From Data, From MC, From PDG
Analysis Method

- Estimate acceptances and efficiencies
- Identify variables that discriminate signal and background
- Make multivariate discriminant, for background rejection
 - Optimized with Pythia signal MC and data mass sideband
 - Validate in B^+ sample
- Estimate Background
 - Combinatoric background
 - Peaking background: $B \rightarrow hh$
Discriminating Variables (CDF)

- Invariant mass of muons with 2.5σ window, $\sigma=24$ MeV
- 3 Secondary vertex related variables
 - $\lambda = c\tau$, proper decay time
 - $\frac{\lambda}{\sigma_\lambda}$
 - $\Delta\alpha = |\phi_B - \phi_{vtx}|$
- Isolation: $\frac{p_T(B)}{\sum p_T(trks)+p_T(B)}$
- Transverse momentum of B and lower momentum muon

\[\Delta \alpha^{3d} [\text{rad}] \]
\[\lambda^{3d} \text{ significance} \]
Discriminating Variables: Neural Network (CDF)

- Combined all variables except mass in neural network
- Unbiased optimization based on MC signal and sideband data
- Extensively tested for mass bias

CDF Preliminary 3.7 fb\(^{-1}\)

- **Signal MC**
- **Data Sideband**

Run IIa

DØ Run II Preliminary

Fraction per 0.02

- **B_\text{s} \rightarrow \mu^+ \mu^- Signal**
- **Background (Sidebands)**

Arbitrary Unit

BDT Output
Control Regions (CDF)

- Test background estimates in blinded signal region with independent data samples
- Compare predicted vs. observer background events for multiple NN events

Regions

- OS-: Opposite sign muons with negative proper decay length
- SS+ and SS-: Same sign muons, positive and negative decay length
- FM: OS- & OS+ with one μ failing muon id and loose vertex cuts

<table>
<thead>
<tr>
<th>sample</th>
<th>NN cut</th>
<th>CMU-CMU</th>
<th>CMU-CMX</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>pred</td>
<td>obsv</td>
</tr>
<tr>
<td>OS-</td>
<td>$0.80 < \nu_{NN} < 0.95$</td>
<td>$275 \pm (9)$</td>
<td>287</td>
</tr>
<tr>
<td></td>
<td>$0.95 < \nu_{NN} < 0.995$</td>
<td>$122 \pm (6)$</td>
<td>121</td>
</tr>
<tr>
<td></td>
<td>$0.995 < \nu_{NN} < 1.0$</td>
<td>$44 \pm (4)$</td>
<td>41</td>
</tr>
<tr>
<td>SS+</td>
<td>$0.80 < \nu_{NN} < 0.95$</td>
<td>$2.7 \pm (0.9)$</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>$0.95 < \nu_{NN} < 0.995$</td>
<td>$1.2 \pm (0.6)$</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>$0.995 < \nu_{NN} < 1.0$</td>
<td>$0.6 \pm (0.4)$</td>
<td>0</td>
</tr>
<tr>
<td>SS-</td>
<td>$0.80 < \nu_{NN} < 0.95$</td>
<td>$8.7 \pm (1.6)$</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>$0.95 < \nu_{NN} < 0.995$</td>
<td>$3.0 \pm (1.0)$</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>$0.995 < \nu_{NN} < 1.0$</td>
<td>$0.9 \pm (0.5)$</td>
<td>0</td>
</tr>
<tr>
<td>FM+</td>
<td>$0.80 < \nu_{NN} < 0.95$</td>
<td>$169 \pm (7)$</td>
<td>169</td>
</tr>
<tr>
<td></td>
<td>$0.95 < \nu_{NN} < 0.995$</td>
<td>$55 \pm (4)$</td>
<td>43</td>
</tr>
<tr>
<td></td>
<td>$0.995 < \nu_{NN} < 1.0$</td>
<td>$20 \pm (2)$</td>
<td>20</td>
</tr>
</tbody>
</table>
Expected Sensitivities (CDF)

- Single event sensitivity is at SM level \((= 3.86 \times 10^{-9}) \)
- Largest uncertainty from \(\frac{f_u}{f_s} \)

<table>
<thead>
<tr>
<th></th>
<th>CMU-CMU</th>
<th>CMU-CMX</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{\alpha_{B^+}}{\alpha_{B_s}})</td>
<td>0.300 (\pm 0.018) ((\pm 6%))</td>
<td>0.196 (\pm 0.0014) ((\pm 7%))</td>
</tr>
<tr>
<td>(\frac{\epsilon_{B^+}^{trig}}{\epsilon_{B_s}^{trig}})</td>
<td>0.99935 (\pm 0.00012) ((-))</td>
<td>0.97974 (\pm 0.00016) ((-))</td>
</tr>
<tr>
<td>(\frac{\epsilon_{B_s}^{reco}}{\epsilon_{B_s}^{reco}})</td>
<td>0.82 (\pm 0.03) ((\pm 4%))</td>
<td>0.83 (\pm 0.03) ((\pm 4%))</td>
</tr>
<tr>
<td>(\epsilon_{B_s}^{NN} (NN > 0.80))</td>
<td>0.776 (\pm 0.047) ((\pm 6%))</td>
<td>0.789 (\pm 0.047) ((\pm 6%))</td>
</tr>
<tr>
<td>(N_{B^+})</td>
<td>14300 (\pm 170) ((\pm 1%))</td>
<td>5460 (\pm 110) ((\pm 2%))</td>
</tr>
<tr>
<td>(f_u/f_s)</td>
<td>3.86 (\pm 0.59) ((\pm 15%))</td>
<td>3.86 (\pm 0.59) ((\pm 15%))</td>
</tr>
<tr>
<td>(BR(B^+ \to J/\psi K^+ \to \mu^+\mu^- K^+))</td>
<td>(5.94 \pm 0.21 \times 10^{-5}) ((\pm 4%))</td>
<td>(5.94 \pm 0.21 \times 10^{-5}) ((\pm 4%))</td>
</tr>
<tr>
<td>SES (All bins)</td>
<td>(5.1 \times 10^{-9}) ((\pm 18%))</td>
<td>(8.5 \times 10^{-9}) ((\pm 19%))</td>
</tr>
<tr>
<td>SES (Combined)</td>
<td>(3.2 \times 10^{-9}) ((\pm 18%))</td>
<td></td>
</tr>
</tbody>
</table>

Neural Network

- 3 NN bins, majority of sensitivity comes from highest bin
- Treated separately \(\rightarrow \) Different Signal/Background
- Lower NN bins added \(\rightarrow \) 50% increase in efficiency and improved sensitivity
- Expected Signal: \(NN>0.8 \) \(\rightarrow \) 1.2 events
Background

- Combinatoric Background
 - Estimated with linear fit to sideband
 - Use p0 and exp fit in highest NN bin for syst. error estimation
- $B \rightarrow hh$
 - Peaks in signal region
 - Use $B_{s(d)} \rightarrow hh$ MC to estimate acceptance and convolute with muon fake rate from data using D^* tagged to $D \rightarrow K\pi$
 - Order of magnitude larger for B_d vs. B_s
 - For NN>0.995 in B_d mass window 0.81 events

Walter Hopkins (Cornell University)
Search for $B_s \rightarrow \mu^+ \mu^-$ Decays
Lattice Meets Experiment 2010
Dimuon Mass vs NN

CDF at 3.7 fb$^{-1}$

D0 at 2 fb$^{-1}$

Search for $B_s \rightarrow \mu^+ \mu^-$ Decays

Lattice Meets Experiment 2010
• Systematic uncertainties included
• CDF has worlds best limit at 4.3×10^{-8} @ 95% CL with 3.7 fb$^{-1}$
• D0 expected sensitivity with 5 fb$^{-1}$: 5.3×10^{-8} @ 95% CL
• Last published D0 limit with 2 fb$^{-1}$: 9.3×10^{-8} @ 95% CL

<table>
<thead>
<tr>
<th></th>
<th>$\mathcal{B}(B_s \rightarrow \mu^+\mu^-)$</th>
<th>$\mathcal{B}(B_d \rightarrow \mu^+\mu^-)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expected \mathcal{B}</td>
<td>2.7×10^{-8}</td>
<td>7.2×10^{-9}</td>
</tr>
<tr>
<td>Observed \mathcal{B}</td>
<td>3.6×10^{-8}</td>
<td>6.0×10^{-9}</td>
</tr>
</tbody>
</table>
CDF working to update and improve analysis for later this year

- More data, up to 6.7 fb$^{-1}$
- Apply improved dE/dx calibration
- Increase acceptance by introducing more detector regions, now better understood
Future: LHCb

- B Focused forward experiment → many boosted B’s
- Will reach SM limits quickly with less luminosity
- Similar discriminating variables

Plot shows for $E_{cm}=14$ TeV
Conclusion

CDF Preliminary Results with 3.7 fb\(^{-1}\)

\[
\begin{align*}
\mathcal{BR}(B_s \rightarrow \mu^+\mu^-) &= 4.3 \times 10^{-8} \text{ at } 95\% \text{ CL} \\
\mathcal{BR}(B_d \rightarrow \mu^+\mu^-) &= 7.6 \times 10^{-9} \text{ at } 95\% \text{ CL}
\end{align*}
\]

- Reached sensitivity at the \(3.2 \times 10^{-9}\) level
- Set the world’s best limits for both \(B_s\) and \(B_d\) in these modes
- Probing new parameter space across a variety of New Physics models
- D0 updating their analysis with 5 fb\(^{-1}\)
- LHCb projects Tevatron limit with 0.15 fb\(^{-1}\) at \(E_{cm} = 14\) TeV